CS 498ABD: Algorithms for Big Data

JL Lemma, Dimensionality Reduction, and Subspace Embeddings

Lecture 11 September 29, 2020

F_2 estimation in turnstile setting

```
\begin{array}{l} \mathsf{AMS-}\ell_2\text{-Estimate:}\\ \text{Let } Y_1, Y_2, \ldots, Y_n \text{ be } \{-1, +1\} \text{ random variables that are}\\ 4\text{-wise independent}\\ z \leftarrow 0\\ \text{While (stream is not empty) do}\\ a_j = (i_j, \Delta_j) \text{ is current update}\\ z \leftarrow z + \Delta_j Y_{i_j}\\ \text{endWhile}\\ \text{Output } z^2 \end{array}
```

Claim: Output estimates $||x||_2^2$ where x is the vector at end of stream of updates.

Analysis

 $Z = \sum_{i=1}^{n} x_i Y_i$ and output is Z^2

$$Z^2 = \sum_i x_i^2 Y_i^2 + 2 \sum_{i \neq j} x_i x_j Y_i Y_j$$

and hence

$$\mathsf{E}[Z^2] = \sum_{i} x_i^2 = ||x||_2^2.$$

One can show that $Var(Z^2) \leq 2(E[Z^2])^2$.

Linear Sketching View

Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

```
\begin{split} \mathsf{AMS-}\ell_2\text{-Sketch:} & k = c\log(1/\delta)/\epsilon^2 \\ \text{Let } M \text{ be a } \ell \times n \text{ matrix with entries in } \{-1,1\} \text{ s.t} \\ & (\text{i}) \text{ rows are independent and} \\ & (\text{ii}) \text{ in each row entries are } 4\text{-wise independent} \\ z \text{ is a } \ell \times 1 \text{ vector initialized to } 0 \\ \text{While (stream is not empty) do} \\ & a_j = (i_j, \Delta_j) \text{ is current update} \\ & z \leftarrow z + \Delta_j Me_{i_j} \\ \text{endWhile} \\ \text{Output vector } z \text{ as sketch.} \end{split}
```

M is compactly represented via k hash functions, one per row, independently chosen from 4-wise independent hash family.

Geometric Interpretation

Given vector $x \in \mathbb{R}^n$ let M the random map z = Mx has the following features

- $\mathbf{E}[z_i] = \mathbf{0}$ and $\mathbf{E}[z_i^2] = ||x||_2^2$ for each $1 \le i \le k$ where k is number of rows of M
- Thus each z_i^2 is an estimate of length of x in Euclidean norm
- When k = Θ(¹/_{ε²} log(1/δ)) one can obtain an (1 ± ε) estimate of ||x||₂ by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such that z contains information to estimate $||x||_2$ accurately

Geometric Interpretation

Given vector $x \in \mathbb{R}^n$ let M the random map z = Mx has the following features

- $\mathbf{E}[z_i] = \mathbf{0}$ and $\mathbf{E}[z_i^2] = ||x||_2^2$ for each $1 \le i \le k$ where k is number of rows of M
- Thus each z_i^2 is an estimate of length of x in Euclidean norm
- When k = Θ(¹/_{ε²} log(1/δ)) one can obtain an (1 ± ε) estimate of ||x||₂ by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such that z contains information to estimate $||x||_2$ accurately

Question: Do we need median trick? Will averaging do?

Distributional JL Lemma

Lemma (Distributional JL Lemma)

Fix vector $\mathbf{x} \in \mathbb{R}^d$ and let $\Pi \in \mathbb{R}^{k \times d}$ matrix where each entry Π_{ij} is chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{1})$ distribution. If $k = \Omega(\frac{1}{\epsilon^2} \log(1/\delta))$, then with probability $(1 - \delta)$

$$\|\frac{1}{\sqrt{k}}\Pi x\|_{2} = (1 \pm \epsilon) \|x\|_{2}.$$

Can choose entries from $\{-1, 1\}$ as well. Note: unlike ℓ_2 estimation, entries of Π are independent.

Letting $z = \frac{1}{\sqrt{k}} \prod x$ we have projected x from d dimensions to $k = O(\frac{1}{\epsilon^2} \log(1/\delta))$ dimensions while preserving length to within $(1 \pm \epsilon)$ -factor.

Chandra (UIUC)

Dimensionality reduction

Theorem (Metric JL Lemma)

Let v_1, v_2, \ldots, v_n be any n points/vectors in \mathbb{R}^d . For any $\epsilon \in (0, 1/2)$, there is linear map $f : \mathbb{R}^d \to \mathbb{R}^k$ where $k \leq 8 \ln n/\epsilon^2$ such that for all $1 \leq i < j \leq n$,

$$(1-\epsilon)||v_i-v_j||_2 \leq ||f(v_i)-f(v_j)||_2 \leq ||v_i-v_j||_2.$$

Moreover **f** can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix Π : $f(v) = \Pi v$.

Dimensionality reduction

Theorem (Metric JL Lemma)

Let v_1, v_2, \ldots, v_n be any n points/vectors in \mathbb{R}^d . For any $\epsilon \in (0, 1/2)$, there is linear map $f : \mathbb{R}^d \to \mathbb{R}^k$ where $k \leq 8 \ln n/\epsilon^2$ such that for all $1 \leq i < j \leq n$,

$$(1-\epsilon)||v_i-v_j||_2 \leq ||f(v_i)-f(v_j)||_2 \leq ||v_i-v_j||_2.$$

Moreover **f** can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix Π : $f(v) = \Pi v$.

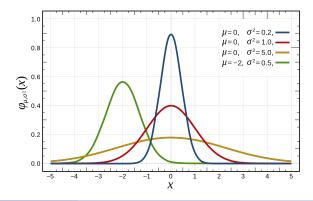
Proof.

Apply DJL with $\delta = 1/n^2$ and apply union bound to $\binom{n}{2}$ vectors $(v_i - v_j), i \neq j$.

Normal Distribution

Density function:
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Standard normal: $\mathcal{N}(0,1)$ is when $\mu = 0, \sigma = 1$

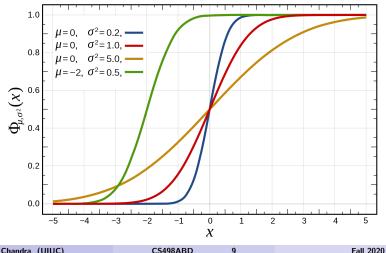


Chandra (UIUC)

CS498ABD

Normal Distribution

Cumulative density function for standard normal: $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{t} e^{-t^{2}/2} \text{ (no closed form)}$



Chandra (UIUC)

Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let Z = X + Y. Then $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let Z = X + Y. Then $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Corollary

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(0, 1)$ and $Y \sim \mathcal{N}(0, 1)$. Let Z = aX + bY. Then $Z \sim \mathcal{N}(0, a^2 + b^2)$.

Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let Z = X + Y. Then $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Corollary

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(0, 1)$ and $Y \sim \mathcal{N}(0, 1)$. Let Z = aX + bY. Then $Z \sim \mathcal{N}(0, a^2 + b^2)$.

Normal distribution is a *stable* distributions: adding two independent random variables within the same class gives a distribution inside the class. Others exist and useful in F_p estimation for $p \in (0, 2)$.

 $\chi^2(k)$ distribution: distribution of sum of k independent standard normally distributed variables

 $Y = \sum_{i=1}^{k} Z_i$ where each $Z_i \simeq \mathcal{N}(0, 1)$.

 $\chi^{2}(k)$ distribution: distribution of sum of k independent standard normally distributed variables $Y = \sum_{i=1}^{k} Z_{i}$ where each $Z_{i} \simeq \mathcal{N}(0, 1)$. $\mathbf{E}[Z_{i}^{2}] = 1$ hence $\mathbf{E}[Y] = k$.

 $\chi^2(k)$ distribution: distribution of sum of k independent standard normally distributed variables $Y = \sum_{i=1}^{k} Z_i$ where each $Z_i \simeq \mathcal{N}(0, 1)$.

$$\mathsf{E}[Z_i^2] = 1 \text{ hence } \mathsf{E}[Y] = k.$$

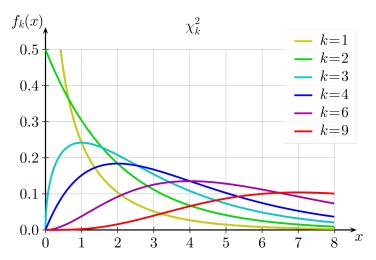
Lemma

Let Z_1, Z_2, \ldots, Z_k be independent $\mathcal{N}(0, 1)$ random variables and let $Y = \sum_i Z_i^2$. Then, for $\epsilon \in (0, 1/2)$, there is a constant c such that,

$$\Pr[(1-\epsilon)^2 k \leq Y \leq (1+\epsilon)^2 k] \geq 1-2e^{c\epsilon^2 k}.$$

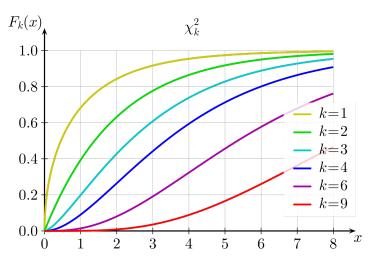
 χ^2 distribution

Density function



χ^2 distribution

Cumulative density function



Chandra (UIUC)

 $\chi^2(k)$ distribution: distribution of sum of k independent standard normally distributed variables

Lemma

Let Z_1, Z_2, \ldots, Z_k be independent $\mathcal{N}(0, 1)$ random variables and let $Y = \sum_i Z_i^2$. Then, for $\epsilon \in (0, 1/2)$, there is a constant c such that, $\Pr[(1 - \epsilon)^2 k \leq Y \leq (1 + \epsilon)^2 k] \geq 1 - 2e^{c\epsilon^2 k}$.

Recall Chernoff-Hoeffding bound for *bounded* independent non-negative random variables. Z_i^2 is not bounded, however Chernoff-Hoeffding bounds extend to sums of random variables with exponentially decaying tails.

Without loss of generality assume $||x||_2 = 1$ (unit vector)

 $Z_i = \sum_{j=1}^n \Pi_{ij} x_i$

• $Z_i \sim \mathcal{N}(0, 1)$

Without loss of generality assume $||x||_2 = 1$ (unit vector)

- $Z_i \sim \mathcal{N}(0, 1)$
- Let $Y = \sum_{i=1}^{k} Z_i^2$. Y's distribution is χ^2 since Z_1, \ldots, Z_k are iid.

Without loss of generality assume $||x||_2 = 1$ (unit vector)

- $Z_i \sim \mathcal{N}(0,1)$
- Let $Y = \sum_{i=1}^{k} Z_i^2$. Y's distribution is χ^2 since Z_1, \ldots, Z_k are iid.
- Hence $\Pr[(1-\epsilon)^2 k \leq Y \leq (1+\epsilon)^2 k] \geq 1 2e^{c\epsilon^2 k}$

Without loss of generality assume $||x||_2 = 1$ (unit vector)

- $Z_i \sim \mathcal{N}(0,1)$
- Let $Y = \sum_{i=1}^{k} Z_i^2$. Y's distribution is χ^2 since Z_1, \ldots, Z_k are iid.
- Hence $\Pr[(1-\epsilon)^2 k \leq Y \leq (1+\epsilon)^2 k] \geq 1 2e^{c\epsilon^2 k}$
- Since $k = \Omega(\frac{1}{\epsilon^2} \log(1/\delta))$ we have $\Pr[(1-\epsilon)^2 k \le Y \le (1+\epsilon)^2 k] \ge 1-\delta$

Without loss of generality assume $||x||_2 = 1$ (unit vector)

- $Z_i \sim \mathcal{N}(0,1)$
- Let $Y = \sum_{i=1}^{k} Z_i^2$. Y's distribution is χ^2 since Z_1, \ldots, Z_k are iid.
- Hence $\Pr[(1-\epsilon)^2 k \leq Y \leq (1+\epsilon)^2 k] \geq 1 2e^{c\epsilon^2 k}$
- Since $k = \Omega(\frac{1}{\epsilon^2} \log(1/\delta))$ we have $\Pr[(1-\epsilon)^2 k \le Y \le (1+\epsilon)^2 k] \ge 1-\delta$
- Therefore $||z||_2 = \sqrt{Y/k}$ has the property that with probability (1δ) , $||z||_2 = (1 \pm \epsilon)||x||_2$.

JL lower bounds

Question: Are the bounds achieved by the lemmas tight or can we do better? How about non-linear maps?

Essentially optimal modulo constant factors for worst-case point sets.

Fast JL and Sparse JL

Projection matrix Π is dense and hence Πx takes $\Theta(kd)$ time.

Question: Can we find Π to improve time bound?

Two scenarios: x is dense and x is sparse

Fast JL and Sparse JL

Projection matrix Π is dense and hence Πx takes $\Theta(kd)$ time.

Question: Can we find Π to improve time bound?

Two scenarios: x is dense and x is sparse

Known results:

- Choose Π_{ij} to be $\{-1, 0, 1\}$ with probability 1/6, 1/3, 1/6. Also works. Roughly 1/3 entries are 0
- Fast JL: Choose Π in a dependent way to ensure Πx can be computed in O(d log d + k²) time. For dense x.
- Sparse JL: Choose Π such that each column is s-sparse. The best known is s = O(¹/_ε log(1/δ)). Helps in sparse x.

Part I

(Oblivious) Subspace Embeddings

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ . Can we find a projection $\Pi : \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon) \|x\|_2$?

• Not possible if $k < \ell$. Why?

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ . Can we find a projection $\Pi : \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon) \|x\|_2$?

 Not possible if k < ℓ. Why? Π maps E to a lower dimension. Implies some non-zero vector x ∈ E mapped to 0

- Not possible if k < ℓ. Why? Π maps E to a lower dimension. Implies some non-zero vector x ∈ E mapped to 0
- Possible if $k = \ell$. Why?

- Not possible if k < ℓ. Why? Π maps E to a lower dimension. Implies some non-zero vector x ∈ E mapped to 0
- Possible if k = ℓ. Why? Pick ⊓ to be an orthonormal basis for E.

- Not possible if k < ℓ. Why? Π maps E to a lower dimension. Implies some non-zero vector x ∈ E mapped to 0
- Possible if k = ℓ. Why? Pick Π to be an orthonormal basis for E. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ . Can we find a projection $\Pi : \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon) \|x\|_2$?

- Not possible if k < ℓ. Why? Π maps E to a lower dimension. Implies some non-zero vector x ∈ E mapped to 0
- Possible if k = ℓ. Why? Pick Π to be an orthonormal basis for E. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

What we really want: *Oblivious* subspace embedding ala JL based on random projections

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of \mathbb{R}^n of dimension d. Let Π be a DJL matrix $\Pi \in \mathbb{R}^{k \times n}$ with $k = O(\frac{d}{\epsilon^2} \log(1/\delta))$ rows. Then with probability $(1 - \delta)$ for every $x \in E$,

$$\|rac{1}{\sqrt{k}}\Pi x\|_2 = (1\pm\epsilon)\|x\|_2.$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

Proof Idea

How do we prove that Π works for all $x \in E$ which is an infinite set?

Several proofs but one useful argument that is often a starting hammer is the "net argument"

- Choose a large but finite set of vectors *T* carefully (the net)
- Prove that **Π** preserves lengths of vectors in **T** (via naive union bound)
- Argue that any vector x ∈ E is sufficiently close to a vector in
 T and hence Π also preserves length of x

Sufficient to focus on unit vectors in *E*. Why?

Sufficient to focus on unit vectors in *E*. Why?

Also assume wlog and ease of notation that E is the subspace formed by the first d coordinates in standard basis.

Sufficient to focus on unit vectors in *E*. Why?

Also assume wlog and ease of notation that E is the subspace formed by the first d coordinates in standard basis.

Claim: There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Sufficient to focus on unit vectors in *E*. Why?

Also assume wlog and ease of notation that E is the subspace formed by the first d coordinates in standard basis.

Claim: There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Assuming claim: use DJL with $k = O(\frac{d}{\epsilon^2} \log(1/\delta))$ and union bound to show that all vectors in T are preserved in length up to $(1 \pm \epsilon)$ factor.

Sufficient to focus on unit vectors in *E*.

Also assume wlog and ease of notation that E is the subspace formed by the first d coordinates in standard basis.

A weaker net:

- Consider the box $[-1,1]^d$ and make a grid with side length ϵ/d
- Number of grid vertices is $(2d/\epsilon)^d$
- Sufficient to take *T* to be the grid vertices
- Gives a weaker bound of $O(\frac{1}{\epsilon^2} d \log(d/\epsilon))$ dimensions
- A more careful net argument gives tight bound

Net argument: analysis

Fix any $x \in E$ such that $||x||_2 = 1$ (unit vector) There is grid point y such that $||y||_2 \leq 1$ and x is close to y Let z = x - y. We have $|z_i| \leq \epsilon/d$ for $1 \leq i \leq i \leq d$ and $z_i = 0$ for i > d

Net argument: analysis

Fix any $x \in E$ such that $||x||_2 = 1$ (unit vector) There is grid point y such that $||y||_2 \leq 1$ and x is close to y Let z = x - y. We have $|z_i| \leq \epsilon/d$ for $1 \leq i \leq i \leq d$ and $z_i = 0$ for i > d

 $\begin{aligned} \|\Pi x\| &= \|\Pi y + \Pi z\| \\ &\leq \|\Pi y\| + \|\Pi z\| \\ &\leq (1+\epsilon) + (1+\epsilon) \sum_{i=1}^{d} |z_i| \\ &\leq (1+\epsilon) + \epsilon (1+\epsilon) \leq 1 + 3\epsilon \end{aligned}$

Net argument: analysis

Fix any $x \in E$ such that $||x||_2 = 1$ (unit vector) There is grid point y such that $||y||_2 \leq 1$ and x is close to y Let z = x - y. We have $|z_i| \leq \epsilon/d$ for $1 \leq i \leq i \leq d$ and $z_i = 0$ for i > d

 $\|\Pi x\| = \|\Pi y + \Pi z\| \leq \|\Pi y\| + \|\Pi z\|$ $\leq (1+\epsilon) + (1+\epsilon) \sum_{i=1}^{d} |z_i|$ $\leq (1+\epsilon) + \epsilon(1+\epsilon) \leq 1 + 3\epsilon$

Similarly $\|\Pi x\| \geq 1 - O(\epsilon)$.

Application of Subspace Embeddings

Faster algorithms for approximate

- matrix multiplication
- regression
- SVD

Basic idea: Want to perform operations on matrix A with n data columns (say in large dimension \mathbb{R}^h) with small effective rank d. Want to reduce to a matrix of size roughly $\mathbb{R}^{d \times d}$ by spending time proportional to nnz(A).

Later in course.