CS 498ABD: Algorithms for Big Data

JL Lemma, Dimensionality Reduction, and Subspace Embeddings

Lecture 11
September 29, 2020

F_{2} estimation in turnstile setting

AMS- ℓ_{2}-Estimate:

```
    Let \(Y_{1}, Y_{2}, \ldots, Y_{\boldsymbol{n}}\) be \(\{-\mathbf{1}, \mathbf{+ 1}\}\) random variables that are
            4-wise independent
    \(z \leftarrow 0\)
    While (stream is not empty) do
        \(a_{j}=\left(i_{j}, \boldsymbol{\Delta}_{j}\right)\) is current update
        \(z \leftarrow z+\Delta_{j} Y_{i_{j}}\)
    endWhile
    Output \(z^{2}\)
```

Claim: Output estimates $\|x\|_{2}^{2}$ where x is the vector at end of stream of updates.

$$
\left.\begin{array}{lll}
y_{1} & y_{2} & \cdots
\end{array} \quad y_{n}\right]\left[\begin{array}{c}
x_{1} \\
\pm 1
\end{array} \pm_{1} \quad\left[\begin{array}{c}
x_{2} \\
x_{2} \\
x_{n}
\end{array}\right]=z\right.
$$

Analysis

$Z=\sum_{i=1}^{n} x_{i} Y_{i}$ and output is Z^{2}

$$
Z^{2}=\sum_{i} x_{i}^{2} Y_{i}^{2}+2 \sum_{i \neq j} x_{i} x_{j} Y_{i} Y_{j}
$$

and hence

$$
\mathrm{E}\left[Z^{2}\right]=\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}
$$

One can show that $\operatorname{Var}\left(Z^{2}\right) \leq \mathbf{2}\left(\mathbf{E}\left[Z^{2}\right]\right)^{2}$.

Linear Sketching View

Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

AMS- ℓ_{2}-Sketch :

$$
\begin{aligned}
& \boldsymbol{k}=c \log (\mathbf{1} / \delta) / \epsilon^{2} \\
& \text { Let } M \text { be a } \ell \times n \text { matrix with entries in }\{-\mathbf{1}, \mathbf{1}\} \text { s.t } \\
& \quad \text { (i) rows are independent and } \\
& \quad \text { (ii) in each row entries are } 4 \text {-wise independent } \\
& \boldsymbol{z} \text { is a } \ell \times \mathbf{1} \text { vector initialized to } \mathbf{0} \\
& \text { While (stream is not empty) do } \\
& \quad \mathbf{a}_{j}=\left(\boldsymbol{i}_{j}, \Delta_{j}\right) \text { is current update } \\
& \quad \boldsymbol{z} \leftarrow \boldsymbol{z}+\Delta_{j} M e_{i_{j}} \\
& \text { endWhile } \\
& \text { Output vector } \boldsymbol{z} \text { as sketch. }
\end{aligned}
$$

M is compactly represented via \boldsymbol{k} hash functions, one per row, independently chosen from 4-wise independent hash family.

Geometric Interpretation

Given vector $x \in \mathbb{R}^{\boldsymbol{n}}$ let M the random map $z=M x$ has the following features

- $\mathrm{E}\left[z_{i}\right]=\mathbf{0}$ and $\mathrm{E}\left[z_{i}^{2}\right]=\|x\|_{2}^{2}$ for each $\mathbf{1} \leq i \leq k$ where k is number of rows of M
- Thus each z_{i}^{2} is an estimate of length of x in Euclidean norm
- When $k=\Theta\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right)$ one can obtain an $(1 \pm \epsilon)$ estimate of $\|x\|_{2}$ by averaging and median ideas
Thus we are able to compress \boldsymbol{x} into k-dimensional vector \boldsymbol{z} such that z contains information to estimate $\|x\|_{2}$ accurately

$$
\begin{aligned}
& \text { M }
\end{aligned}
$$

Geometric Interpretation

Given vector $x \in \mathbb{R}^{\boldsymbol{n}}$ let M the random map $z=M x$ has the following features

- $\mathrm{E}\left[z_{i}\right]=\mathbf{0}$ and $\mathrm{E}\left[z_{i}^{2}\right]=\|x\|_{2}^{2}$ for each $\mathbf{1} \leq i \leq k$ where k is number of rows of M
- Thus each z_{i}^{2} is an estimate of length of x in Euclidean norm
- When $k=\Theta\left(\frac{1}{\epsilon^{2}} \log (\mathbf{1} / \delta)\right)$ one can obtain an $(1 \pm \epsilon)$ estimate of $\|x\|_{2}$ by averaging and median ideas
Thus we are able to compress \boldsymbol{x} into \boldsymbol{k}-dimensional vector \boldsymbol{z} such that z contains information to estimate $\|x\|_{2}$ accurately

Question: Do we need median trick? Will averaging do?

Distributional JL Lemma

Lemma (Distributional JL Lemma)

Fix vector $x \in \mathbb{R}^{\boldsymbol{d}}$ and let $\boldsymbol{\Pi} \in \mathbb{R}^{k \times d}$ matrix where each entry $\boldsymbol{\Pi}_{i j}$ is chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{1})$ distribution. If $k=\Omega\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right)$, then with probability $(1-\delta)$
$(1-\mathcal{L})\|x\|_{2} \leq\left\|\frac{1}{\sqrt{k}} \Pi x\right\|_{2}(1+\epsilon)\|x\|_{2}$.
Can choose entries from $\{-\mathbf{1}, \mathbf{1}\}$ as well.
Note: unlike ℓ_{2} estimation, entries of $\boldsymbol{\Pi}$ are independent.
Letting $z=\frac{1}{\sqrt{k}} \Pi x$ we have projected x from d dimensions to $k=O\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right)$ dimensions while preserving length to within ($1 \pm \epsilon$)-factor.

$$
\begin{aligned}
& \pi_{i j} \sim N(0,1) \\
& \simeq(1 \pm \varepsilon)\|x\|_{2} \\
& \text { with puab } \\
& \geqslant(1-\delta) \text {. }
\end{aligned}
$$

Dimensionality reduction

Theorem (Metric JL Lemma)

Let $v_{1}, v_{2}, \ldots, v_{n}$ be any n points/vectors in $\mathbb{R}^{\boldsymbol{d}}$. For any $\boldsymbol{\epsilon} \in(\mathbf{0}, \mathbf{1} / \mathbf{2})$, there is linear map $f: \mathbb{R}^{\boldsymbol{d}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ where $k \leq 8 \ln n / \epsilon^{2}$ such that for all $\mathbf{1} \leq i<j \leq n$,

$$
(1-\epsilon)\left\|v_{i}-v_{j}\right\|_{2} \leq\left\|f\left(v_{i}\right)-f\left(v_{j}\right)\right\|_{2} \leq\left\|v_{i}-v_{j}\right\|_{2}
$$

Moreover f can be obtained in randomized polynomial-time.
Linear map f is simply given by random matrix Π : $f(v)=\Pi v$.

$$
\begin{aligned}
& \left\|\bar{v}_{i}\right\|_{i} \| \\
& \left\|\bar{v}_{j}\right\|_{2} \\
= & \left\|v_{i}-v_{j}\right\|_{L}
\end{aligned}
$$

$$
v_{1}, v_{2}, \ldots, \bar{v}_{n} \quad \in R^{d} .
$$

DJ L Lemma: If you Chose $\Pi \in R^{k \times d}$ for
$K=\frac{1}{\varepsilon^{2}} \ln \frac{1}{\delta}$ then $f 2$ any fixed vector

$$
\bar{x} \in R^{d^{2}} \frac{1}{\sqrt{k}}\|\pi x\|_{2} \approx(1 \pm \varepsilon)\|x\|_{2}
$$

$\binom{n}{2}$ vector $\bar{v}_{i}-\bar{v}_{j} \quad i \neq j$
If we chose $\delta=\frac{1}{n^{3}} \Rightarrow k=\frac{c}{\varepsilon^{2}} \ln \frac{1}{n^{3}}$ $\approx \frac{c}{\varepsilon^{2}} \ln n$.
than with park $\left(1-\frac{1}{n^{3}}\right)$

$$
\frac{1}{\sqrt{k}}\left\|\pi\left(\overline{v_{i}}-\bar{v}_{j}\right)\right\|_{2} \approx(1 \pm \varepsilon)\left\|\bar{v}_{i}-\bar{v}_{j}\right\|_{2}
$$

By union hound all ' $\bar{v}_{i}-v_{j}$ recti are presured witt pals $1-\binom{n}{2} \cdot \frac{1}{n^{3}}$

$$
\geqslant 1-\frac{1}{n} .
$$

Dimensionality reduction

Theorem (Metric JL Lemma)

Let $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be any \boldsymbol{n} points/vectors in $\mathbb{R}^{\boldsymbol{d}}$. For any $\boldsymbol{\epsilon} \in(\mathbf{0}, \mathbf{1} / \mathbf{2})$, there is linear map $f: \mathbb{R}^{\boldsymbol{d}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ where $k \leq 8 \ln n / \epsilon^{2}$ such that for all $\mathbf{1} \leq i<j \leq n$,

$$
(1-\epsilon)\left\|v_{i}-v_{j}\right\|_{2} \leq\left\|f\left(v_{i}\right)-f\left(v_{j}\right)\right\|_{2} \leq\left\|v_{i}-v_{j}\right\|_{2}
$$

Moreover f can be obtained in randomized polynomial-time.
Linear map f is simply given by random matrix $\Pi: f(v)=\Pi v$.

Proof.

Apply DJL with $\delta=\mathbf{1} / \boldsymbol{n}^{2}$ and apply union bound to $\binom{n}{2}$ vectors $\left(v_{i}-v_{j}\right), i \neq j$.

DJL and Metric JL

Key advantage: mapping is oblivious to data!

Normal Distribution

Density function: $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e$
Standard normal: $\mathcal{N}(0,1)$ is when $\mu=0, \sigma=1$ ソイ

Normal Distribution

Cumulative density function for standard normal: $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{\infty}^{t} e^{-t^{2} / 2}$ (no closed form)

Sum of independent Normally distributed variables

Lemma
Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. Let $Z=X+Y$. Then $Z \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$.

Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. Let $Z=X+Y$. Then $Z \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$.

Corollary

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$ and $Y \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$. Let $Z=a X+b Y$. Then $Z \sim \mathcal{N}\left(0, a^{2}+b^{2}\right)$.

Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. Let $Z=X+Y$. Then $Z \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$.

Corollary

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$ and $Y \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$. Let $Z=a X+b Y$. Then $Z \sim \mathcal{N}\left(0, a^{2}+b^{2}\right)$.

Normal distribution is a stable distributions: adding two independent random variables within the same class gives a distribution inside the class. Others exist and useful in $\boldsymbol{F}_{\boldsymbol{p}}$ estimation for $\boldsymbol{p} \in \mathbf{(0 , 2)}$.

Concentration of sum of squares of normally distributed variables

$\chi^{2}(k)$ distribution: distribution of sum of k independent standard normally distributed variables
$Y=\sum_{i=1}^{k} Z_{i}$ where each $Z_{i} \simeq \mathcal{N}(0,1)$.

Concentration of sum of squares of normally distributed variables

$\chi^{2}(k)$ distribution: distribution of sum of k independent standard normally distributed variables
$Y=\sum_{i=1}^{k} Z_{i}^{2}$ where each $Z_{i} \simeq \mathcal{N}(0,1) . \quad E\left[Z_{i}\right]=0$
$\mathrm{E}\left[Z_{i}^{2}\right]=1$ hence $\mathrm{E}[Y]=k$.

Concentration of sum of squares of normally distributed variables

$\chi^{2}(k)$ distribution: distribution of sum of k independent standard normally distributed variables
$Y=\sum_{i=1}^{k} Z_{i}$ where each $Z_{i} \simeq \mathcal{N}(\mathbf{0}, \mathbf{1})$.
$\mathrm{E}\left[Z_{i}^{2}\right]=1$ hence $\mathrm{E}[Y]=k$.

Lemma

Let $Z_{1}, Z_{2}, \ldots, Z_{k}$ be independent $\mathcal{N}(\mathbf{0}, \mathbf{1})$ random variables and let $Y=\sum_{i} Z_{i}^{2}$. Then, for $\epsilon \in(\mathbf{0}, \mathbf{1} / \mathbf{2})$, there is a constant c such that,

$$
\operatorname{Pr}\left[(1-\epsilon)^{2} \cdot k \leq \underset{=}{Y} \leq(1+\epsilon)^{2} k\right] \geq 1-2 \underline{e}^{-\epsilon^{2} \epsilon^{2} k}
$$

χ^{2} distribution

Density function

χ^{2} distribution

Cumulative density function

Concentration of sum of squares of normally distributed variables

$\chi^{2}(k)$ distribution: distribution of sum of k independent standard normally distributed variables

Lemma

Let $Z_{1}, Z_{2}, \ldots, Z_{k}$ be independent $\mathcal{N}(\mathbf{0}, \mathbf{1})$ random variables and let $Y=\sum_{i} Z_{i}^{2}$. Then, for $\epsilon \in(\mathbf{0}, \mathbf{1} / \mathbf{2})$, there is a constant c such that, $\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-2 e^{c \epsilon^{2} k}$.

Recall Chernoff-Hoeffding bound for bounded independent non-negative random variables. Z_{i}^{2} is not bounded, however Chernoff-Hoeffding bounds extend to sums of random variables with exponentially decaying tails.

Proof of DJL Lemma
Without loss of generality assume $\|x\|_{2}=1$ (unit vector) $x \in R^{n}$

$$
\begin{aligned}
& Z_{i}=\sum_{j=1}^{n} \Pi_{i j} x_{i} \\
& \text { - } Z_{i} \sim \mathcal{N}(0,1) \\
& \pi \in R^{k \times n} \\
& (1-\varepsilon)\|\bar{x}\|_{2} \subseteq\left\|\frac{1}{\sqrt{k}} \pi \bar{x}\right\|_{2} \leq(1+\varepsilon)\|\bar{x}\|_{2}
\end{aligned}
$$

with put ($1-8$) where

$$
\pi_{i j} \sim N(0,1) . \quad k \geqslant \frac{1}{\varepsilon^{2}} \ln \frac{1}{\delta}
$$

Proof of DJL Lemma

$$
\begin{aligned}
& \text { Without loss of generality assume }\|x\|_{2}=1 \text { (unit vector) } \\
& Z_{i}=\sum_{j=1}^{n} \Pi_{i j} x_{j} \quad Z_{i}=\sum_{j=1}^{n} \pi_{i j} x_{j} \\
& \text { - } Z_{i} \sim \mathcal{N}(0,1) \quad \sum x_{i}^{2}=1 \\
& \text { - Let } Y=\sum_{i=1}^{k} Z_{i}^{2} \text {. Y's distribution is } x_{(k)}^{2} \text { since } Z_{1}, \ldots, z_{k} \text { are } \\
& \text { iid. }
\end{aligned}
$$

Proof of DJL Lemma

Without loss of generality assume $\|x\|_{2}=1$ (unit vector)

- $z_{i} \sim \mathcal{N}(0,1)$
- Let $Y=\sum_{i=1}^{k} Z_{i}^{2}$. Y 's distribution is χ^{2} since Z_{1}, \ldots, Z_{k} are id.
- Hence $\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-2 e^{-c \epsilon^{2} k}$

$$
\begin{aligned}
& 1-2 e \\
& \geqslant 1-\delta
\end{aligned}
$$

Proof of DJL Lemma

Without loss of generality assume $\|x\|_{2}=\mathbf{1}$ (unit vector)
$Z_{i}=\sum_{j=1}^{n} \Pi_{i j} x_{i}$

- $Z_{i} \sim \mathcal{N}(0,1)$
- Let $Y=\sum_{i=1}^{k} Z_{i}^{2}$. Y 's distribution is χ^{2} since Z_{1}, \ldots, Z_{k} are iid.
- Hence $\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-2 e^{c \epsilon^{2} k}$
- Since $k=\Omega\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right)$ we have

$$
\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-\delta
$$

Proof of DJL Lemma

Without loss of generality assume $\|x\|_{2}=1$ (unit vector)
$Z_{i}=\sum_{j=1}^{n} \Pi_{i j} x_{i}$

- $Z_{i} \sim \mathcal{N}(0,1)$
- Let $Y=\sum_{i=1}^{k} Z_{i}^{2}$. Y 's distribution is χ^{2} since Z_{1}, \ldots, Z_{k} are iid.
- Hence $\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-2 e^{c \epsilon^{2} k}$
- Since $k=\Omega\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right)$ we have $\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-\delta$
- Therefore $\|z\|_{2}=\sqrt{Y / k}$ has the property that with probability $(1-\delta),\|z\|_{2}=(1 \pm \epsilon)\|x\|_{2}$.

JL lower bounds
Question: Are the bounds achieved by the lemmas tight or can we do better? How about non-linear maps?

Essentially optimal modulo constant factors for worst-case point sets.
n vectín in $R^{d} \rightarrow x$ vectin in

$$
R^{k} \quad k=\frac{s}{K^{2}} \ln n
$$

S.t dislaincer we pierced ni la nm

Fast JL and Sparse JL
Projection matrix $\boldsymbol{\Pi}$ is dense and hence $\boldsymbol{\Pi}$ x takes $\boldsymbol{\Theta}(\boldsymbol{k d})$ time.
Question: Can we find $\boldsymbol{\Pi}$ to improve time bound?
Two scenarios: x is dense and x is sparse

$$
\begin{aligned}
& \bar{v}_{1}, \bar{v}_{2} \ldots, \bar{v}_{n} \quad \rightarrow \quad v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime} \quad k . \\
& \text { End } \\
& \Pi \bar{v}_{i}=v_{i}^{\prime} \\
& \theta \text { (id) } \frac{1}{\varepsilon^{2}} \ln n d \\
& {\left[\begin{array}{l}
\pi \\
-\cdots- \\
\hdashline- \\
-
\end{array}\right]\left[\begin{array}{l}
v_{i} \\
1 \\
1 \\
R^{k}
\end{array}\right]=\stackrel{v_{i}^{\prime}}{=}}
\end{aligned}
$$

Fast JL and Sparse JL

Projection matrix Π is dense and hence Πx takes $\Theta(k d)$ time.
Question: Can we find Π to improve time
Two scenarios: \otimes is dense and \otimes is sparse

Known results:

- Choose $\boldsymbol{\Pi}_{i j}$ to be $\{-\mathbf{1}, \mathbf{0}, \mathbf{1}\}$ with probability $\mathbf{1 / 6}, \mathbf{1} / \mathbf{3}, \mathbf{1} / \mathbf{6}$. Also works. Roughly $\mathbf{1 / 3}$ entries are $\mathbf{0}$
- Fast JL: Choose $\boldsymbol{\Pi}$ in a dependent way to ensure $\boldsymbol{\Pi} \boldsymbol{x}$ can be computed in $O\left(d \log d+k^{2}\right)$ time. For dense x.
- Sparse JL: Choose $\boldsymbol{\Pi}$ such that each column is s-sparse. The best known is $s=O\left(\frac{1}{\epsilon} \log (\mathbf{1} / \delta)\right)$. Helps in sparse x.

Part I

(Oblivious) Subspace Embeddings

Subspace Embedding
Question: Suppose we have linear subspace E of \mathbb{R}^{n} of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$?
\bar{x} is arete in R^{n}

$$
\begin{gathered}
\bar{x} \text { is arkeli } \quad \text { in } \quad \pi_{x} \quad R^{k} \\
\text { Them }\|\overline{\|}\|_{2} \approx\|x\|_{2} \quad k<n . \\
y=c \bar{x} \quad \forall c \\
\quad\|\pi \bar{y}\|_{2} \approx(1 \pm 2)\|y\|_{2}
\end{gathered}
$$

Tro vectín.

$$
\begin{aligned}
& \left.\|\pi \bar{y}\|_{2} \approx(1 \pm \varepsilon) \text { 西 } \| y\right)
\end{aligned}
$$

Subspace Embedding

Question: Suppose we have linear subspace E of $\mathbb{R}^{\boldsymbol{n}}$ of dimension \boldsymbol{d}. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{(\mathbb{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$?

- Not possible if $\boldsymbol{k}<\boldsymbol{d}$. Why?

Subspace Embedding

Question: Suppose we have linear subspace E of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{k}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$?

- Not possible if $\boldsymbol{k}<\boldsymbol{d}$. Why? $\boldsymbol{\Pi}$ maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to $\mathbf{0}$

Subspace Embedding

Question: Suppose we have linear subspace E of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{k}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$?

- Not possible if $\boldsymbol{k}<\boldsymbol{d}$. Why? $\boldsymbol{\Pi}$ maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to $\mathbf{0}$
- Possible if $k=d$. Why?

Subspace Embedding

Question: Suppose we have linear subspace E of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{k}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$?

- Not possible if $k<\boldsymbol{d}$. Why? $\boldsymbol{\Pi}$ maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to $\mathbf{0}$
- Possible if $\boldsymbol{k}=\boldsymbol{d}$. Why? Pick $\boldsymbol{\Pi}$ to be an orthonormal basis for E.

Subspace Embedding

Question: Suppose we have linear subspace E of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{k}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$?

- Not possible if $\boldsymbol{k}<\boldsymbol{d}$. Why? $\boldsymbol{\Pi}$ maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to $\mathbf{0}$
- Possible if $\boldsymbol{k}=\boldsymbol{d}$. Why? Pick $\boldsymbol{\Pi}$ to be an orthonormal basis for E. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

Subspace Embedding

Question: Suppose we have linear subspace E of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$?

- Not possible if $k<\boldsymbol{d}$. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to $\mathbf{0}$
- Possible if $\boldsymbol{k}=\boldsymbol{d}$. Why? Pick $\boldsymbol{\Pi}$ to be an orthonormal basis for E. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based on random projections

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of $\mathbb{R}^{\boldsymbol{n}}$ of dimension \boldsymbol{d}. Let Π be a $D J L$ matrix $\Pi \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{n}}$ with $k=O\left(\frac{d}{\epsilon^{2}} \log (\mathbf{1} / \delta)\right)$ rows. Then with probability $(\mathbf{1}-\boldsymbol{\delta})$ for every $x \in E$,

$$
\left\|\frac{1}{\sqrt{k}} \Pi x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}
$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

Proof Idea

How do we prove that Π works for all $x \in E$ which is an infinite set?

Several proofs but one useful argument that is often a starting hammer is the "net argument"

- Choose a large but finite set of vectors \boldsymbol{T} carefully (the net)
- Prove that Π preserves lengths of vectors in \boldsymbol{T} (via naive union bound)
- Argue that any vector $x \in E$ is sufficiently close to a vector in T and hence Π also preserves length of \boldsymbol{x}

Net argument

Sufficient to focus on unit vectors in E. Why?

Net argument
Sufficient to focus on unit vectors in E. Why?
Also assume wog and ease of notation that E is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.
E is linear fulspace of d-dim in R^{n}.

Net argument

Sufficient to focus on unit vectors in E. Why?
Also assume wlog and ease of notation that E is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.

Claim: There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Net argument

Sufficient to focus on unit vectors in E. Why?
Also assume wog and ease of notation that E is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.
Claim: There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Assuming claim: use DJL with $k=O\left(\frac{d}{\epsilon^{2}} \log (\mathbf{1} / \delta)\right)$ and union bound to show that all vectors in T are preserved in length up to $(1 \pm \epsilon)$ factor.

$T=$ all "quid points" of the box $[-1,1]^{d}$ what is the Spacing?

$$
|T|=? \quad \frac{\frac{\varepsilon}{d}}{\left[\left(\frac{2 d}{\varepsilon}\right)^{d}\right.}
$$

Claim: If all vectors in T are presser to ($1 \pm \varepsilon$) than all unit veclín per to (1 ± 22).

$$
k=\frac{1}{\varepsilon^{2}} \ln \left(\left(\frac{2 d}{\varepsilon}\right)^{d} \cdot \frac{1}{\delta}\right)
$$

$d \ln d$

$$
\begin{aligned}
& \frac{1}{k} \pi \bar{x} \|_{i} \approx(1 \pm \varepsilon) \\
& \|\times\|_{2} \\
& \forall \times \text { on } \\
& \text { the cinch. }
\end{aligned}
$$ we kino.

$$
\left\|\frac{1}{\sqrt{L}} \pi \bar{y}\right\|_{2} x(H z)
$$

$$
\|y\|_{2}
$$

$$
\begin{aligned}
& H x=y+z \\
& z=x-y .
\end{aligned}
$$

Net argument

Sufficient to focus on unit vectors in E.
Also assume wlog and ease of notation that E is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.

A weaker net:

- Consider the box $[-1,1]^{d}$ and make a grid with side length ϵ / d
- Number of grid vertices is $(2 d / \epsilon)^{d}$
- Sufficient to take T to be the grid vertices
- Gives a weaker bound of $O\left(\frac{1}{\epsilon^{2}} d \log (d / \epsilon)\right)$ dimensions
- A more careful net argument gives tight bound

Net argument: analysis

Fix any $x \in E$ such that $\|x\|_{2}=1$ (unit vector)
There is grid point y such that $\|y\|_{2} \leq 1$ and x is close to y Let $z=x-y$. We have $\left|z_{i}\right| \leq \bar{\epsilon} / \boldsymbol{d}$ for $\mathbf{1} \leq \boldsymbol{i} \leq i \leq \boldsymbol{d}$ and $z_{i}=0$ for $i>d$

Net argument: analysis

Fix any $x \in E$ such that $\|x\|_{2}=1$ (unit vector)
There is grid point y such that $\|y\|_{2} \leq \mathbf{1}$ and x is close to y Let $z=x-y$. We have $\left|z_{i}\right| \leq \epsilon / d$ for $1 \leq i \leq i \leq d$ and $z_{i}=0$ for $i>d$

$$
\begin{aligned}
\| \pi \nexists \mid & z_{1} \bar{e}_{1}+z_{2} \bar{e}_{2} \\
& +\cdots+z_{d} \cdot \overline{e_{d}}
\end{aligned}
$$

$$
\begin{aligned}
& \|\Pi x\|=\|\Pi y+\Pi z\| \leq\|\Pi y\|+\|\Pi z\| \\
& \leq(1+\epsilon)+(1+\epsilon) \sum_{i=1}^{d}\left|z_{i}\right| \\
& \leq(1+\epsilon)+\epsilon(1+\epsilon) \leq 1+3 \epsilon \\
& \|\pi x\| \geqslant 1-3 \varepsilon \\
& \|\pi y\| \geqslant(1-\varepsilon)\|y\| \\
& \geqslant(1-\varepsilon)(1-c) \geqslant 1-2 c
\end{aligned}
$$

Net argument: analysis

Fix any $x \in E$ such that $\|x\|_{2}=1$ (unit vector)
There is grid point y such that $\|y\|_{2} \leq 1$ and x is close to y Let $z=x-y$. We have $\left|z_{i}\right| \leq \epsilon / \boldsymbol{d}$ for $\mathbf{1} \leq i \leq i \leq \boldsymbol{d}$ and $z_{i}=0$ for $i>d$

$$
\begin{aligned}
\|\Pi x\|=\|\Pi y+\Pi z\| & \leq\|\Pi y\|+\|\Pi z\| \\
& \leq(1+\epsilon)+(1+\epsilon) \sum_{i=1}^{d}\left|z_{i}\right| \\
& \leq(1+\epsilon)+\epsilon(1+\epsilon) \leq 1+3 \epsilon
\end{aligned}
$$

Similarly $\|\Pi x\| \geq 1-O(\epsilon)$.

Application of Subspace Embeddings

Faster algorithms for approximate

- matrix multiplication
- regression
- SVD

Basic idea: Want to perform operations on matrix \boldsymbol{A} with \boldsymbol{n} data columns (say in large dimension \mathbb{R}^{h}) with small effective rank \boldsymbol{d}. Want to reduce to a matrix of size roughly $\mathbb{R}^{\boldsymbol{d} \times \boldsymbol{d}}$ by spending time proportional to $n n z(A)$.
Later in course. $\quad \frac{1}{\varepsilon^{2}} \ln \frac{1}{\delta}$ π when π is a DJL $\pi \in R^{k \times n}$
$A \in R^{n \times d}$

$$
\pi \bar{x}
$$

