CS 498ABD: Algorithms for Big Data

Applications of CountMin and Count Sketches

Lecture 10 September 24, 2020

CountMin Sketch

 $\begin{array}{l} \text{CountMin-Sketch}(w,d):\\ h_1,h_2,\ldots,h_d \text{ are pair-wise independent hash functions}\\ \text{from } [n] \to [w].\\ \text{While (stream is not empty) do}\\ e_t = (i_t,\Delta_t) \text{ is current item}\\ \text{for } \ell = 1 \text{ to } d \text{ do}\\ C[\ell,h_\ell(i_j)] \leftarrow C[\ell,h_\ell(i_j)] + \Delta_t\\ \text{endWhile}\\ \text{For } i \in [n] \text{ set } \tilde{x}_i = \min_{\ell=1}^d C[\ell,h_\ell(i)]. \end{array}$

Counter $C[\ell, j]$ simply counts the sum of all x_i such that $h_{\ell}(i) = j$. That is,

$$C[\ell,j] = \sum_{i:h_{\ell}(i)=j} x_i.$$

Summarizing

Lemma

Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and $\Pr[\tilde{x}_i > x_i + \epsilon ||x||_1] < \delta$.

Corollary

With $d = \Omega(\ln n)$ and $w = 2/\epsilon$, with probability $(1 - \frac{1}{n})$ for all $i \in [n]$: $\tilde{x}_i < x_i + \epsilon ||x||_1$.

Total space: $O(\frac{1}{\epsilon} \log n)$ counters and hence $O(\frac{1}{\epsilon} \log n \log m)$ bits.

Count Sketch

```
Count-Sketch(w, d):
h_1, h_2, \ldots, h_d are pair-wise independent hash functions
      from [n] \rightarrow [w].
g_1, g_2, \ldots, g_d are pair-wise independent hash functions
      from [n] \to \{-1, 1\}.
While (stream is not empty) do
      e_t = (i_t, \Delta_t) is current item
      for \ell = 1 to d do
            C[\ell, h_{\ell}(i_i)] \leftarrow C[\ell, h_{\ell}(i_i)] + g(i_t)\Delta_t
endWhile
For i \in [n]
      set \tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \dots, g_{\ell}(i)C[\ell, h_{\ell}(i)]\}.
```

Summarizing

Lemma

Let
$$d \ge 4 \log \frac{1}{\delta}$$
 and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$,
 $\mathbf{E}[\tilde{x}_i] = x_i$ and $\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le \delta$.

Corollary

With $d = \Omega(\ln n)$ and $w = 3/\epsilon^2$, with probability $(1 - \frac{1}{n})$ for all $i \in [n]$: $|\tilde{x}_i - x_i| \le \epsilon ||x||_2$.

Total space $O(\frac{1}{\epsilon^2} \log n)$ counters and hence $O(\frac{1}{\epsilon^2} \log n \log m)$ bits.

Part I

Applications

Heavy Hitters Problem: Find all items *i* such that $x_i > \alpha ||x||_1$ for some fixed $\alpha \in (0, 1]$.

Approximate version: output any *i* such that $x_i \ge (\alpha - \epsilon) \|x\|_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Heavy Hitters Problem: Find all items *i* such that $x_i > \alpha ||x||_1$ for some fixed $\alpha \in (0, 1]$.

Approximate version: output any *i* such that $x_i \ge (\alpha - \epsilon) \|x\|_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Go over each *i* and check if $\tilde{x}_i > (\alpha - \epsilon) ||x||_1$.

Heavy Hitters Problem: Find all items *i* such that $x_i > \alpha ||x||_1$ for some fixed $\alpha \in (0, 1]$.

Approximate version: output any *i* such that $x_i \ge (\alpha - \epsilon) \|x\|_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Go over each *i* and check if $\tilde{x}_i > (\alpha - \epsilon) \|x\|_1$. Expensive

Heavy Hitters Problem: Find all items *i* such that $x_i > \alpha ||x||_1$ for some fixed $\alpha \in (0, 1]$.

Approximate version: output any *i* such that $x_i \ge (\alpha - \epsilon) \|x\|_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Go over each *i* and check if $\tilde{x}_i > (\alpha - \epsilon) \|x\|_1$. Expensive

Additional data structures to speed up above computation and reduce time/space to be proportional to $O(\frac{1}{\alpha} \text{polylog}(n))$. More tricky for Count Sketch. See notes and references

Range query: given $i, j \in [n]$ want to know $\sum_{i < \ell < j} x[i, j]$

Examples:

- [n] corresponds to IP address space in network routing and [i, j] corresponds to addresses in a range
- [*n*] corresponds to some numerical attribute in a database and we want to know number of records within a range
- [n] corresponds to the discretization of a signal value

Range query: given $i, j \in [n]$ want to know $\sum_{i < \ell < j} x[i, j]$

Examples:

- [n] corresponds to IP address space in network routing and [i, j] corresponds to addresses in a range
- [*n*] corresponds to some numerical attribute in a database and we want to know number of records within a range
- [n] corresponds to the discretization of a signal value

Want to create a sketch data structure that can answer range queries for any given range that is chosen *after* the sketch is done. $\Omega(n^2)$ potential queries

Simple idea: imagine a binary tree over [n] and any interval [i, j] can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Simple idea: imagine a binary tree over [n] and any interval [i, j] can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Create one sketch data structure per level of binary tree

Simple idea: imagine a binary tree over [n] and any interval [i, j] can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Create one sketch data structure per level of binary tree

Output estimate $\tilde{x}[i, j]$ by adding estimates for $O(\log n)$ dyadic intervals that [i, j] decomposes into

Simple idea: imagine a binary tree over [n] and any interval [i, j] can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Create one sketch data structure per level of binary tree

Output estimate $\tilde{x}[i, j]$ by adding estimates for $O(\log n)$ dyadic intervals that [i, j] decomposes into

To manage error choose $\epsilon' = \epsilon / \log n$: total space is $O(\alpha \log n / \epsilon)$ where α is the space for single level sketch

Part II

Sparse Recovery

Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling

- Data is often *explicitly* sparse. Examples: graphs, matrices, vectors, documents (as word vectors)
- Data is often *implicitly* sparse in a different representation the data is explicitly sparse. Examples: signals/images, topics, etc

Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling

- Data is often *explicitly* sparse. Examples: graphs, matrices, vectors, documents (as word vectors)
- Data is often *implicitly* sparse in a different representation the data is explicitly sparse. Examples: signals/images, topics, etc

Algorithmic goals

- Take advantage of sparsity to improve performance (speed, quality, memory etc)
- Find implicit sparse representation to reveal information about data. Excample: topics in documents, frequencies in Fourier analysis

Sparse Recovery

Problem: Given vector/signal $x \in \mathbb{R}^n$ find a sparse vector z such that z approximates x

More concretely: given x and integer $k \ge 1$, find z such that z has at most k non-zeroes $(||z||_0 \le k)$ such that $||x - z||_p$ is minimized for some $p \ge 1$.

Optimum offline solution: z picks the largest k coordinates of x (in absolute value)

Want to do it in streaming setting: turnstile streams and p = 2 and want to use $\tilde{O}(k)$ space proportional to output

Sparse Recovery under ℓ_2 norm

Formal objective function:

$$\operatorname{err}_{2}^{k}(x) = \min_{z:\|z\|_{0} \leq k} \|x - z\|_{2}$$

Sparse Recovery under ℓ_2 norm

Formal objective function:

$$\operatorname{err}_{2}^{k}(x) = \min_{z:\|z\|_{0} \leq k} \|x - z\|_{2}$$

 $\operatorname{err}_{2}^{k}(x)$ is interesting only when it is small compared to $||x||_{2}$

For instance when x is uniform, say $x_i = 1$ for all *i* then $||x||_2 = \sqrt{n}$ but $\operatorname{err}_2^k(x) = \sqrt{n-k}$

 $\operatorname{err}_2^k(x) = 0$ iff $||x||_0 \le k$ and hence related to distinct element detection

Sparse Recovery under ℓ_2 norm

Theorem

There is a linear sketch with size $O(\frac{k}{\epsilon^2} polylog(n))$ that returns z such that $||z||_0 \le k$ and with high probability $||x - z||_2 \le (1 + \epsilon) err_2^k(x)$.

Hence space is proportional to desired output. Assumption k is typically quite small compared to n, the dimension of x.

Note that if x is k-sparse vector is exactly reconstructed

Based on CountSketch

Algorithm

- Use Count Sketch with $w = 3k/\epsilon^2$ and $d = \Omega(\log n)$.
- Count Sketch gives estimages \tilde{x}_i for each $i \in n$
- Output the k coordinates with the largest estimates

Algorithm

- Use Count Sketch with $w = 3k/\epsilon^2$ and $d = \Omega(\log n)$.
- Count Sketch gives estimages \tilde{x}_i for each $i \in n$
- Output the k coordinates with the largest estimates

Intuition for analysis

- With w = ck/e² the k biggest coordinates will be spread out in their own buckets
- rest of small coordinates will be spread out evenly
- refine the analysis of Count-Sketch to carefully analyze the two scenarios

Analysis Outline

Lemma

Count-Sketch with $w = 3k/\epsilon^2$ and $d = O(\log n)$ ensures that

$$\forall i \in [n], \quad |\tilde{x}_i - x_i| \leq \frac{\epsilon}{\sqrt{k}} err_2^k(x)$$

with high probability (at least (1 - 1/n)).

Lemma

Let $x, y \in \mathbb{R}^n$ such that $||x - y||_{\infty} \leq \frac{\epsilon}{\sqrt{k}} err_2^k(x)$. Then, $||x - z||_2 \leq (1 + 5\epsilon)err_2^k(x)$, where z is the vector obtained as follows: $z_i = y_i$ for $i \in T$ where T is the set of k largest (in absolute value) indices of y and $z_i = 0$ for $i \notin T$.

Lemmas combined prove the correctness of algorithm.

Chandra (UIUC)	CS498ABD	16	Fall 2020	16 / 36

Count Sketch

```
Count-Sketch(w, d):
h_1, h_2, \ldots, h_d are pair-wise independent hash functions
      from [n] \rightarrow [w].
g_1, g_2, \ldots, g_d are pair-wise independent hash functions
      from [n] \to \{-1, 1\}.
While (stream is not empty) do
      e_t = (i_t, \Delta_t) is current item
      for \ell = 1 to d do
           C[\ell, h_{\ell}(i_i)] \leftarrow C[\ell, h_{\ell}(i_i)] + g(i_t)\Delta_t
endWhile
For i \in [n]
      set \tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \dots, g_d(i)C[d, h_d(i)]\}.
```

Recap of Analysis

Fix an $i \in [n]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_{\ell}(i) = h_{\ell}(i')$; that is *i* and *i'* collide in h_{ℓ} . $E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_{ℓ} .

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)] = g_{\ell}(i)\sum_{i'}g_{\ell}(i')x_{i'}Y_{i'}$$

Therefore,

$$E[Z_{\ell}] = x_i + \sum_{i' \neq i} E[g_{\ell}(i)g_{\ell}(i')Y_{i'}]x_{i'} = x_i,$$

because $E[g_{\ell}(i)g_{\ell}(i')] = 0$ for $i \neq i'$ from pairwise independence of g_{ℓ} and $Y_{i'}$ is independent of $g_{\ell}(i)$ and $g_{\ell}(i')$.

Chandra (UIUC)	CS498ABD	18	Fall 2020	18 / 36

Recap of Analysis

 $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$. And $\mathbf{E}[Z_{\ell}] = x_i$.

$$\begin{aligned} Var(Z_{\ell}) &= \mathsf{E}[(Z_{\ell} - x_{i})^{2}] \\ &= \mathsf{E}\left[\left(\sum_{i'\neq i} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'}\right)^{2}\right] \\ &= \mathsf{E}\left[\sum_{i'\neq i} x_{i'}^{2}Y_{i'}^{2} + \sum_{i'\neq i''} x_{i'}x_{i''}g_{\ell}(i')g_{\ell}(i'')Y_{i'}Y_{i''}x_{i'}x_{i''}\right] \\ &= \sum_{i'\neq i} x_{i'}^{2} \mathsf{E}[Y_{i'}^{2}] \\ &\leq ||x||_{2}^{2}/w. \end{aligned}$$

Refining Analysis

 $T_{\text{big}} = \{i' \mid i' \text{ is one of the } k \text{ biggest coordinates in } x\}$ $T_{\text{small}} = [n] \setminus T$

 $\sum_{i'\in T_{\text{small}}} x_{i'}^2 = (\operatorname{err}_2^k(x))^2$

Refining Analysis

 $T_{\text{big}} = \{i' \mid i' \text{ is one of the } k \text{ biggest coordinates in } x\}$ $T_{\text{small}} = [n] \setminus T$

 $\sum_{i' \in T_{\text{small}}} x_{i'}^2 = (\operatorname{err}_2^k(x))^2$ What is $\Pr\left[|Z_{\ell} - x_i| \ge \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)\right]$?

Refining Analysis

 $T_{\text{big}} = \{i' \mid i' \text{ is one of the } k \text{ biggest coordinates in } x\}$ $T_{\text{small}} = [n] \setminus T$

 $\sum_{i'\in T_{\text{small}}} x_{i'}^2 = (\operatorname{err}_2^k(x))^2$

What is
$$\Pr\left[|Z_{\ell} - x_i| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)\right]$$
?

Lemma

$$\Pr\left[|Z_{\ell}-x_i| \geq \frac{\epsilon}{\sqrt{k}}err_2^k(x)\right] \leq 2/5.$$

 $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)].$

Let A_ℓ be event that $h_\ell(i') = h_\ell(i)$ for some $i' \in T_{\text{big}}, i' \neq i$

Lemma

 $\Pr[A_{\ell}] \leq \epsilon^2/3$. In other words with $1 - \epsilon^2/3$ probability no big coordinates collide with *i* under h_{ℓ} .

 $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)].$

Let A_ℓ be event that $h_\ell(i') = h_\ell(i)$ for some $i' \in T_{\text{big}}, i' \neq i$

Lemma

 $\Pr[A_{\ell}] \leq \epsilon^2/3$. In other words with $1 - \epsilon^2/3$ probability no big coordinates collide with *i* under h_{ℓ} .

- $Y_{i'}$ indicator for $i' \neq i$ colliding with *i*. $\Pr[Y_{i'}] \leq 1/w \leq \epsilon^2/(3k)$.
- Let $Y = \sum_{i' \in T_{\text{big}}} Y_{i'}$. $\mathbf{E}[Y] \le \epsilon^2/3$ by linearity of expectation.
- Hence $\Pr[\mathcal{A}_\ell] = \Pr[\mathcal{Y} \geq 1] \leq \epsilon^2/3$ by Markov

$\begin{aligned} & Z_{\ell} = g_{\ell}(i) C[\ell, h_{\ell}(i)] \\ &= x_{i} + \sum_{i' \in T_{\text{big}}} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'} + \sum_{i' \in T_{\text{small}}} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'} \end{aligned}$

Let $Z'_{\ell} = \sum_{i' \in T_{\text{small}}} g_{\ell}(i) g_{\ell}(i') Y_{i'}$

Lemma

$$\Pr\left[|Z'_{\ell}| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 1/3.$$

$\begin{aligned} & Z_{\ell} = g_{\ell}(i) C[\ell, h_{\ell}(i)] \\ &= x_{i} + \sum_{i' \in T_{\text{big}}} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'} + \sum_{i' \in T_{\text{small}}} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'} \end{aligned}$

Let
$$Z'_{\ell} = \sum_{i' \in T_{\text{small}}} g_{\ell}(i) g_{\ell}(i') Y_{i'}$$

Lemma

$$\Pr\left[|Z'_{\ell}| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 1/3.$$

- $\mathbf{E}[Z'_{\ell}] = \mathbf{0}$
- $Var(Z'_{\ell}) \leq \mathsf{E}[(Z'_{\ell})^2] = \sum_{i' \in \mathcal{T}_{small}} x_{i'}^2/w \leq \frac{\epsilon^2}{3k} (\operatorname{err}_2^k(x))^2$
- By Cheybyshev $\Pr\left[|Z'_{\ell}| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)\right] \leq 1/3.$

Want to show:

Lemma

$$\Pr\left[|Z_{\ell}-x_i| \geq \frac{\epsilon}{\sqrt{k}} err_2^k(x)\right] \leq 2/5.$$

Want to show:

Lemma

$$\Pr\left[|Z_{\ell}-x_i| \geq \frac{\epsilon}{\sqrt{k}} err_2^k(x)\right] \leq 2/5.$$

We have $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$ = $x_i + \sum_{i' \in T_{\text{big}}} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'} + \sum_{i' \in T_{\text{small}}} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'}$

Want to show:

Lemma

$$\Pr\left[|Z_{\ell}-x_i| \geq \frac{\epsilon}{\sqrt{k}} err_2^k(x)\right] \leq 2/5.$$

We have $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$ = $x_i + \sum_{i' \in T_{\text{big}}} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'} + \sum_{i' \in T_{\text{small}}} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'}$ We saw:

Lemma

$$\Pr\left[|Z'_{\ell}| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 1/3$$

Lemma

 $\Pr[A_{\ell}] \leq \epsilon^2/3$. In other words with $1 - \epsilon^2/3$ probability no big coordinates collide with *i* under h_{ℓ} .

Chandra (UIUC)

 $\begin{aligned} Z_{\ell} &= g_{\ell}(i) C[\ell, h_{\ell}(i)] \\ &= x_{i} + \sum_{i' \in T_{\text{big}}} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'} + \sum_{i' \in T_{\text{small}}} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'} \end{aligned}$

 $|Z_{\ell} - x_i| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$ implies

• A_{ℓ} happens (that is some big coordinate collides with i in h_{ℓ} or

• $|Z'_{\ell}| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$

 $\begin{aligned} Z_{\ell} &= g_{\ell}(i) C[\ell, h_{\ell}(i)] \\ &= x_{i} + \sum_{i' \in T_{\text{big}}} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'} + \sum_{i' \in T_{\text{small}}} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'} \end{aligned}$

 $|Z_{\ell} - x_i| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$ implies

• A_{ℓ} happens (that is some big coordinate collides with *i* in h_{ℓ} or |Z| > |C| = |C| + |C|

• $|Z'_{\ell}| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$

Therefore, by union bound, $\Pr\left[|Z_{\ell} - x_i| \ge \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)\right] \le \epsilon^2/3 + 1/3 \le 2/5$ if ϵ is sufficiently small.

High probability estimate

Lemma

$$\Pr\left[|Z_{\ell}-x_i| \geq \frac{\epsilon}{\sqrt{k}} err_2^k(x)\right] \leq 2/5.$$

Recall \tilde{x}_i = median{ $g_1(i)C[1, h_1(i)], \ldots, g_d(i)C[d, h_d(i)]$ }.

• Hence by Chernoff bounds with $d = \Omega(\log n)$,

$$\Pr\left[|\tilde{x}_i - x_i| \ge \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)\right] \le 1/n^2$$

• By union bound, with probability at least (1 - 1/n), $|\tilde{x}_i - x_i| \leq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$ for all $i \in [n]$.

High probability estimate

Lemma

$$\Pr\left[|Z_{\ell}-x_i| \geq \frac{\epsilon}{\sqrt{k}} err_2^k(x)\right] \leq 2/5.$$

Recall \tilde{x}_i = median{ $g_1(i)C[1, h_1(i)], \ldots, g_d(i)C[d, h_d(i)]$ }.

• Hence by Chernoff bounds with $d = \Omega(\log n)$,

$$\mathsf{Pr}\Big[| ilde{x}_i - x_i| \geq rac{\epsilon}{\sqrt{k}}\mathsf{err}_2^k(x)\Big] \leq 1/n^2$$

• By union bound, with probability at least (1 - 1/n), $|\tilde{x}_i - x_i| \le \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$ for all $i \in [n]$.

Lemma

Count-Sketch with $w = 3k/\epsilon^2$ and $d = O(\log n)$ ensures that $\forall i \in [n], |\tilde{x}_i - x_i| \leq \frac{\epsilon}{\sqrt{k}} err_2^k(x)$ with high probability (at least (1 - 1/n)).

Second lemma of outline

Lemma

Let $x, y \in \mathbb{R}^n$ such that $||x - y||_{\infty} \leq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$. Then, $||x - z||_2 \leq (1 + 5\epsilon)\operatorname{err}_2^k(x)$, where z is the vector obtained as follows: $z_i = y_i$ for $i \in T$ where T is the set of k largest (in absolute value) indices of y and $z_i = 0$ for $i \notin T$.

What the lemma is saying:

- \tilde{x} the estimated vector of Count-Sketch approximates x very closely in *each coordinate*
- Algorithm picks the top k coordinates of \tilde{x} to create z
- Then z approximates x well

Second lemma of outline

Lemma

Let $x, y \in \mathbb{R}^n$ such that $||x - y||_{\infty} \leq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$. Then, $||x - z||_2 \leq (1 + 5\epsilon)\operatorname{err}_2^k(x)$, where z is the vector obtained as follows: $z_i = y_i$ for $i \in T$ where T is the set of k largest (in absolute value) indices of y and $z_i = 0$ for $i \notin T$.

What the lemma is saying:

- \tilde{x} the estimated vector of Count-Sketch approximates x very closely in *each coordinate*
- Algorithm picks the top k coordinates of \tilde{x} to create z
- Then z approximates x well

Proof is basically follows the intuition of triangle inequality

Proof of lemma

S (previously T_{big}) is set of k biggest coordinates in x **T** is the set of k biggest coordinates in $y = \tilde{x}$ Let $E = \frac{1}{\sqrt{k}} \text{err}_2^k(x)$ for ease of notation.

$$(\operatorname{err}_{2}^{k}(x))^{2} = kE^{2} = \sum_{i \in [n] \setminus S} x_{i}^{2} = \sum_{i \in T \setminus S} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}.$$

Want to bound

$$\begin{aligned} \|x - z\|_{2}^{2} &= \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2} \\ &= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}. \end{aligned}$$

Analysis continued

Want to bound

$$\begin{aligned} \|x - z\|_{2}^{2} &= \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2} \\ &= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}. \end{aligned}$$

First term: $\sum_{i \in T} |x_i - \tilde{x}_i|^2 \le k \epsilon^2 E^2 \le \epsilon^2 (\operatorname{err}_2^k(x))^2$

Analysis continued

Want to bound

$$\begin{aligned} \|x - z\|_{2}^{2} &= \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2} \\ &= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}. \end{aligned}$$

First term: $\sum_{i \in T} |x_i - \tilde{x}_i|^2 \le k \epsilon^2 E^2 \le \epsilon^2 (\operatorname{err}_2^k(x))^2$

Third term: common to expression for $(err_2^k(x))^2$

Analysis continued

Want to bound

$$\begin{aligned} \|x - z\|_{2}^{2} &= \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2} \\ &= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}. \end{aligned}$$

First term: $\sum_{i \in T} |x_i - \tilde{x}_i|^2 \le k \epsilon^2 E^2 \le \epsilon^2 (\operatorname{err}_2^k(x))^2$

Third term: common to expression for $(err_2^k(x))^2$

Second term: needs more care

Want to bound $\sum_{i \in S \setminus T} x_i^2$

Let $\ell = |S \setminus T| \le k$. Since |S| = |T| = k, $|T \setminus S| = \ell$

Coordinates in $S \setminus T$ and $T \setminus S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$

Want to bound $\sum_{i \in S \setminus T} x_i^2$

Let $\ell = |S \setminus T| \le k$. Since |S| = |T| = k, $|T \setminus S| = \ell$

Coordinates in $S \setminus T$ and $T \setminus S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$

Claim: Let $a = \max_{i \in S \setminus T} |x_i|$ and $b = \min_{i \in T \setminus S} |x_i|$. Then $a \le b + 2\frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$.

Want to bound $\sum_{i \in S \setminus T} x_i^2$

Let $\ell = |S \setminus T| \le k$. Since |S| = |T| = k, $|T \setminus S| = \ell$

Coordinates in $S \setminus T$ and $T \setminus S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$

Claim: Let $a = \max_{i \in S \setminus T} |x_i|$ and $b = \min_{i \in T \setminus S} |x_i|$. Then $a \le b + 2\frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$.

Therefore

$$\sum_{i \in S \setminus T} x_i^2 \leq \ell a^2 \leq \ell (b + 2\frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x))^2$$
$$\leq \ell b^2 + 4k \frac{\epsilon^2}{k} (\operatorname{err}_2^k(x))^2 + 4k b \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x).$$

29

$$\sum_{i \in S \setminus T} x_i^2 \leq \ell a^2 \leq \ell (b + 2 \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x))^2$$
$$\leq \ell b^2 + 4k \frac{\epsilon^2}{k} (\operatorname{err}_2^k(x))^2 + 4k b \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$$
$$\leq \ell b^2 + 4\epsilon^2 (\operatorname{err}_2^k(x))^2 + 4\epsilon (\sqrt{k}b) \operatorname{err}_2^k(x)$$
$$\leq \ell b^2 + 8\epsilon (\operatorname{err}_2^k(x))^2$$
$$\leq \sum_{i \in T \setminus S} x_i^2 + 8\epsilon (\operatorname{err}_2^k(x))^2.$$

Exercise: Why is $\sqrt{k}b \leq \operatorname{err}_2^k(x)$? (We used it above.)

$$||x - z||_{2}^{2} = \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}$$

$$= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}.$$

First term: $\sum_{i \in T} |x_i - \tilde{x}_i|^2 \le k\epsilon^2 E^2 \le \epsilon^2 (\operatorname{err}_2^k(x))^2$ Third term: common to expression for $(\operatorname{err}_2^k(x))^2$ Second term: at most $\sum_{i \in T \setminus S} x_i^2 + 8\epsilon (\operatorname{err}_2^k(x))^2$ Hence

$$||x - z||_2^2 \le (1 + 9\epsilon)(\operatorname{err}_2^k(x))^2$$

Implies

$$\|x-z\|_2 \leq (\sqrt{1+9\epsilon})\operatorname{err}_2^k(x) \leq (1+5\epsilon)\operatorname{err}_2^k(x)$$

Application to signal processing

Given signal x approximate it via small number of basis signals

- Fourier analysis and Wavelets
- Useful in compression of various kinds

Application to signal processing

Given signal x approximate it via small number of basis signals

- Fourier analysis and Wavelets
- Useful in compression of various kinds

Transform x into y = Bx where B is a transform and then approximate y by k-sparse vector z

To (approximately) reconstruct x, output $x' = B^{-1}z$

If Bx can be computed in streaming fashion from stream for x, we can apply preceding algorithm to obtain z

Compressed Sensing

We saw that given x in streaming fashion we can construct sketch that allows us to find k-sparse z that approximates x with high probability

Compressed sensing: we want to create projection matrix Π such that for *any* x we can create from Πx a good k-sparse approximation to x

Doable! With Π that has $O(k \log(n/k))$ rows. Creating Π requires randomization but once found it can be used. Called RIP matrices. First due to Candes, Romberg, Tao and Donoho. Lot of work in signal processing and algorithms.