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CountMin Sketch

CountMin-Sketch(w , d):
h1, h2, . . . , hd are pair-wise independent hash functions

from [n]→ [w ].
While (stream is not empty) do

et = (it ,∆t) is current item

for ` = 1 to d do

C [`, h`(ij )]← C [`, h`(ij )] + ∆t
endWhile

For i ∈ [n] set x̃i = mind
`=1 C [`, h`(i)].

Counter C [`, j ] simply counts the sum of all xi such that h`(i) = j .
That is,

C [`, j ] =
∑

i :h`(i)=j

xi .
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Summarizing

Lemma

Let d = Ω(log 1
δ
) and w > 2

ε
. Then for any fixed i ∈ [n], xi ≤ x̃i

and
Pr[x̃i ≥ xi + ε‖x‖1] ≤ δ.

Corollary

With d = Ω(ln n) and w = 2/ε, with probability (1− 1
n ) for all

i ∈ [n]:
x̃i ≤ xi + ε‖x‖1.

Total space: O(1
ε

log n) counters and hence O(1
ε

log n log m) bits.
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Count Sketch

Count-Sketch(w , d):
h1, h2, . . . , hd are pair-wise independent hash functions

from [n]→ [w ].
g1, g2, . . . , gd are pair-wise independent hash functions

from [n]→ {−1, 1}.
While (stream is not empty) do

et = (it ,∆t) is current item

for ` = 1 to d do

C [`, h`(ij )]← C [`, h`(ij )] + g(it)∆t
endWhile

For i ∈ [n]
set x̃i = median{g1(i)C [1, h1(i)], . . . , g`(i)C [`, h`(i)]}.
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Summarizing

Lemma

Let d ≥ 4 log 1
δ

and w > 3
ε2 . Then for any fixed i ∈ [n],

E[x̃i ] = xi and Pr[|x̃i − xi | ≥ ε‖x‖2] ≤ δ.

Corollary

With d = Ω(ln n) and w = 3/ε2, with probability (1− 1
n ) for all

i ∈ [n]:
|x̃i − xi | ≤ ε‖x‖2.

Total space O( 1
ε2 log n) counters and hence O( 1

ε2 log n log m) bits.
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Part I

Applications
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Heavy Hitters: Point queries

Heavy Hitters Problem: Find all items i such that xi > α‖x‖1

for some fixed α ∈ (0, 1].

Approximate version: output any i such that xi ≥ (α− ε)‖x‖1

The sketches give us a data structure such that for any i ∈ [n] we
get an estimate x̃i of xi with additive error.

Go over each i and check if x̃i > (α− ε)‖x‖1. Expensive

Additional data structures to speed up above computation and
reduce time/space to be proportional to O( 1

α
polylog(n)). More

tricky for Count Sketch. See notes and references
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Range Queries

Range query: given i , j ∈ [n] want to know
∑

i≤`≤j x[i , j ]

Examples:

[n] corresponds to IP address space in network routing and [i , j ]
corresponds to addresses in a range

[n] corresponds to some numerical attribute in a database and
we want to know number of records within a range

[n] corresponds to the discretization of a signal value

Want to create a sketch data structure that can answer range queries
for any given range that is chosen after the sketch is done. Ω(n2)
potential queries
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Range Queries

Simple idea: imagine a binary tree over [n] and any interval [i , j ]
can be broken up into O(log n) disjoint ”dyadic” intervals

Create one sketch data structure per level of binary tree

Output estimate x̃[i , j ] by adding estimates for O(log n) dyadic
intervals that [i , j ] decomposes into

To manage error choose ε′ = ε/ log n: total space is O(α log n/ε)
where α is the space for single level sketch
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Part II

Sparse Recovery
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Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling

Data is often explicitly sparse. Examples: graphs, matrices,
vectors, documents (as word vectors)

Data is often implicitly sparse — in a different representation the
data is explicitly sparse. Examples: signals/images, topics, etc

Algorithmic goals

Take advantage of sparsity to improve performance (speed,
quality, memory etc)

Find implicit sparse representation to reveal information about
data. Excample: topics in documents, frequencies in Fourier
analysis
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Sparse Recovery

Problem: Given vector/signal x ∈ Rn find a sparse vector z such
that z approximates x

More concretely: given x and integer k ≥ 1, find z such that z
has at most k non-zeroes (‖z‖0 ≤ k) such that ‖x − z‖p is
minimized for some p ≥ 1.

Optimum offline solution: z picks the largest k coordinates of x
(in absolute value)

Want to do it in streaming setting: turnstile streams and p = 2 and
want to use Õ(k) space proportional to output
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Sparse Recovery under `2 norm

Formal objective function:

errk2(x) = min
z :‖z‖0≤k

‖x − z‖2

errk2(x) is interesting only when it is small compared to ‖x‖2

For instance when x is uniform, say xi = 1 for all i then
‖x‖2 =

√
n but errk2(x) =

√
n − k

errk2(x) = 0 iff ‖x‖0 ≤ k and hence related to distinct element
detection
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Sparse Recovery under `2 norm

Theorem

There is a linear sketch with size O( k
ε2 polylog(n)) that returns z

such that ‖z‖0 ≤ k and with high probability
‖x − z‖2 ≤ (1 + ε)errk2(x).

Hence space is proportional to desired output. Assumption k is
typically quite small compared to n, the dimension of x .

Note that if x is k-sparse vector is exactly reconstructed

Based on CountSketch
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Algorithm

Use Count Sketch with w = 3k/ε2 and d = Ω(log n).

Count Sketch gives estimages x̃i for each i ∈ n
Output the k coordinates with the largest estimates

Intuition for analysis

With w = ck/ε2 the k biggest coordinates will be spread out
in their own buckets

rest of small coordinates will be spread out evenly

refine the analysis of Count-Sketch to carefully analyze the two
scenarios
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Analysis Outline

Lemma

Count-Sketch with w = 3k/ε2 and d = O(log n) ensures that

∀i ∈ [n], |x̃i − xi | ≤
ε
√

k
errk2(x)

with high probability (at least (1− 1/n)).

Lemma

Let x, y ∈ Rn such that ‖x − y‖∞ ≤ ε√
k

errk2(x). Then,

‖x − z‖2 ≤ (1 + 5ε)errk2(x), where z is the vector obtained as
follows: zi = yi for i ∈ T where T is the set of k largest (in
absolute value) indices of y and zi = 0 for i 6∈ T .

Lemmas combined prove the correctness of algorithm.
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Count Sketch

Count-Sketch(w , d):
h1, h2, . . . , hd are pair-wise independent hash functions

from [n]→ [w ].
g1, g2, . . . , gd are pair-wise independent hash functions

from [n]→ {−1, 1}.
While (stream is not empty) do

et = (it ,∆t) is current item

for ` = 1 to d do

C [`, h`(ij )]← C [`, h`(ij )] + g(it)∆t
endWhile

For i ∈ [n]
set x̃i = median{g1(i)C [1, h1(i)], . . . , gd (i)C [d , hd (i)]}.
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Recap of Analysis

Fix an i ∈ [n]. Let Z` = g`(i)C [`, h`(i)].

For i ′ ∈ [n] let Yi ′ be the indicator random variable that is 1 if
h`(i) = h`(i ′); that is i and i ′ collide in h`.
E [Yi ′] = E [Y 2

i ′ ] = 1/w from pairwise independence of h`.

Z` = g`(i)C [`, h`(i)] = g`(i)
∑
i ′

g`(i ′)xi ′Yi ′

Therefore,

E [Z`] = xi +
∑
i ′ 6=i

E [g`(i)g`(i ′)Yi ′]xi ′ = xi ,

because E [g`(i)g`(i ′)] = 0 for i 6= i ′ from pairwise independence
of g` and Yi ′ is independent of g`(i) and g`(i ′).
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Recap of Analysis

Z` = g`(i)C [`, h`(i)]. And E[Z`] = xi .

Var(Z`) = E
[
(Z` − xi)

2
]

= E

(
∑
i ′ 6=i

g`(i)g`(i ′)Yi ′xi ′)
2


= E

∑
i ′ 6=i

x2
i ′Y

2
i ′ +

∑
i ′ 6=i ′′

xi ′xi ′′g`(i ′)g`(i ′′)Yi ′Yi ′′xi ′xi ′′


=

∑
i ′ 6=i

x2
i ′ E
[
Y 2

i ′
]

≤ ‖x‖2
2/w .
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Refining Analysis

Tbig = {i ′ | i ′ is one of the k biggest coordinates in x}

Tsmall = [n] \ T∑
i ′∈Tsmall

x2
i ′ = (errk2(x))2

What is Pr
[
|Z` − xi | ≥ ε√

k
errk2(x)

]
?

Lemma

Pr
[
|Z` − xi | ≥ ε√

k
errk2(x)

]
≤ 2/5.
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Analysis

Z` = g`(i)C [`, h`(i)].

Let A` be event that h`(i ′) = h`(i) for some i ′ ∈ Tbig, i ′ 6= i

Lemma

Pr[A`] ≤ ε2/3. In other words with 1− ε2/3 probability no big
coordinates collide with i under h`.

Yi ′ indicator for i ′ 6= i colliding with i .
Pr[Yi ′] ≤ 1/w ≤ ε2/(3k).

Let Y =
∑

i ′∈Tbig
Yi ′ . E[Y ] ≤ ε2/3 by linearity of expectation.

Hence Pr[A`] = Pr[Y ≥ 1] ≤ ε2/3 by Markov
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Analysis

Z` = g`(i)C [`, h`(i)]
= xi +

∑
i ′∈Tbig

g`(i)g`(i ′)Yi ′xi ′ +
∑

i ′∈Tsmall
g`(i)g`(i ′)Yi ′xi ′

Let Z ′` =
∑

i ′∈Tsmall
g`(i)g`(i ′)Yi ′

Lemma

Pr
[
|Z ′`| ≥

ε√
k

errk2(x)
]
≤ 1/3.

E
[
Z ′`
]

= 0

Var(Z ′`) ≤ E
[
(Z ′`)

2
]

=
∑

i ′∈Tsmall
x2

i ′/w ≤
ε2

3k (errk2(x))2

By Cheybyshev Pr
[
|Z ′`| ≥

ε√
k

errk2(x)
]
≤ 1/3.
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Analysis: Proof of lemma

Want to show:

Lemma

Pr
[
|Z` − xi | ≥ ε√

k
errk2(x)

]
≤ 2/5.

We have Z` = g`(i)C [`, h`(i)]
= xi +

∑
i ′∈Tbig

g`(i)g`(i ′)Yi ′xi ′ +
∑

i ′∈Tsmall
g`(i)g`(i ′)Yi ′xi ′

We saw:

Lemma

Pr
[
|Z ′`| ≥

ε√
k

errk2(x)
]
≤ 1/3.

Lemma

Pr[A`] ≤ ε2/3. In other words with 1− ε2/3 probability no big
coordinates collide with i under h`.
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Analysis: Proof of lemma

Z` = g`(i)C [`, h`(i)]
= xi +

∑
i ′∈Tbig

g`(i)g`(i ′)Yi ′xi ′ +
∑

i ′∈Tsmall
g`(i)g`(i ′)Yi ′xi ′

|Z` − xi | ≥ ε√
k

errk2(x) implies

A` happens (that is some big coordinate collides with i in h` or

|Z ′`| ≥
ε√
k

errk2(x)

Therefore, by union bound,

Pr
[
|Z` − xi | ≥ ε√

k
errk2(x)

]
≤ ε2/3 + 1/3 ≤ 2/5

if ε is sufficiently small.
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High probability estimate

Lemma

Pr
[
|Z` − xi | ≥ ε√

k
errk2(x)

]
≤ 2/5.

Recall x̃i = median{g1(i)C [1, h1(i)], . . . , gd(i)C [d , hd(i)]}.
Hence by Chernoff bounds with d = Ω(log n),

Pr
[
|x̃i − xi | ≥ ε√

k
errk2(x)

]
≤ 1/n2

By union bound, with probability at least (1− 1/n),
|x̃i − xi | ≤ ε√

k
errk2(x) for all i ∈ [n].

Lemma

Count-Sketch with w = 3k/ε2 and d = O(log n) ensures that
∀i ∈ [n], |x̃i − xi | ≤ ε√

k
errk2(x) with high probability (at least

(1− 1/n)).
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Second lemma of outline

Lemma

Let x, y ∈ Rn such that ‖x − y‖∞ ≤ ε√
k

errk2(x). Then,

‖x − z‖2 ≤ (1 + 5ε)errk2(x), where z is the vector obtained as
follows: zi = yi for i ∈ T where T is the set of k largest (in
absolute value) indices of y and zi = 0 for i 6∈ T .

What the lemma is saying:

x̃ the estimated vector of Count-Sketch approximates x very
closely in each coordinate

Algorithm picks the top k coordinates of x̃ to create z
Then z approximates x well

Proof is basically follows the intuition of triangle inequality
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Proof of lemma

S (previously Tbig) is set of k biggest coordinates in x
T is the set of k biggest coordinates in y = x̃
Let E = 1√

k
errk2(x) for ease of notation.

(errk2(x))2 = kE 2 =
∑

i∈[n]\S

x2
i =

∑
i∈T\S

x2
i +

∑
i∈[n]\(S∪T )

x2
i .

Want to bound

‖x − z‖2
2 =

∑
i∈T

|xi − zi |2 +
∑

i∈S\T

|xi − zi |2 +
∑

i∈[n]\(S∪T )

x2
i

=
∑
i∈T

|xi − yi |2 +
∑

i∈S\T

x2
i +

∑
i∈[n]\(S∪T )

x2
i .
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Analysis continued

Want to bound

‖x − z‖2
2 =

∑
i∈T

|xi − zi |2 +
∑

i∈S\T

|xi − zi |2 +
∑

i∈[n]\(S∪T )

x2
i

=
∑
i∈T

|xi − yi |2 +
∑

i∈S\T

x2
i +

∑
i∈[n]\(S∪T )

x2
i .

First term:
∑

i∈T |xi − x̃i |2 ≤ kε2E 2 ≤ ε2(errk2(x))2

Third term: common to expression for (errk2(x))2

Second term: needs more care
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Analysis contd

Want to bound
∑

i∈S\T x2
i

Let ` = |S \ T | ≤ k . Since |S| = |T | = k , |T \ S| = `

Coordinates in S \ T and T \ S must be close: within ε√
k

errk2(x)

Claim: Let a = maxi∈S\T |xi | and b = mini∈T\S |xi |. Then
a ≤ b + 2 ε√

k
errk2(x).

Therefore∑
i∈S\T

x2
i ≤ `a2 ≤ `(b + 2

ε
√

k
errk2(x))2

≤ `b2 + 4k
ε2

k
(errk2(x))2 + 4kb

ε
√

k
errk2(x).
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Analysis contd

∑
i∈S\T

x2
i ≤ `a2 ≤ `(b + 2

ε
√

k
errk2(x))2

≤ `b2 + 4k
ε2

k
(errk2(x))2 + 4kb

ε
√

k
errk2(x)

≤ `b2 + 4ε2(errk2(x))2 + 4ε(
√

kb)errk2(x)

≤ `b2 + 8ε(errk2(x))2

≤
∑

i∈T\S

x2
i + 8ε(errk2(x))2.

Exercise: Why is
√

kb ≤ errk2(x)? (We used it above.)
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Analysis contd

‖x − z‖2
2 =

∑
i∈T

|xi − zi |2 +
∑

i∈S\T

|xi − zi |2 +
∑

i∈[n]\(S∪T )

x2
i

=
∑
i∈T

|xi − yi |2 +
∑

i∈S\T

x2
i +

∑
i∈[n]\(S∪T )

x2
i .

First term:
∑

i∈T |xi − x̃i |2 ≤ kε2E 2 ≤ ε2(errk2(x))2

Third term: common to expression for (errk2(x))2

Second term: at most
∑

i∈T\S x2
i + 8ε(errk2(x))2

Hence
‖x − z‖2

2 ≤ (1 + 9ε)(errk2(x))2

Implies

‖x − z‖2 ≤ (
√

1 + 9ε)errk2(x) ≤ (1 + 5ε)errk2(x)
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Application to signal processing

Given signal x approximate it via small number of basis signals

Fourier analysis and Wavelets

Useful in compression of various kinds

Transform x into y = Bx where B is a transform and then
approximate y by k-sparse vector z

To (approximately) reconstruct x , output x ′ = B−1z

If Bx can be computed in streaming fashion from stream for x , we
can apply preceding algorithm to obtain z
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Compressed Sensing

We saw that given x in streaming fashion we can construct sketch
that allows us to find k-sparse z that approximates x with high
probability

Compressed sensing: we want to create projection matrix Π such
that for any x we can create from Πx a good k-sparse approximation
to x

Doable! With Π that has O(k log(n/k)) rows. Creating Π requires
randomization but once found it can be used. Called RIP matrices.
First due to Candes, Romberg, Tao and Donoho. Lot of work in
signal processing and algorithms.

Chandra (UIUC) CS498ABD 33 Fall 2020 33 / 36


	Applications
	Sparse Recovery
	Sampling from Streams

