CS 498ABD: Algorithms for Big Data

CountMin and Count Sketches

Lecture 09 September 22, 2020

Heavy Hitters Problem

Heavy Hitters Problem: Find all items i such that $f_i > m/k$ for some fixed k.

Heavy hitters are **very** frequent items.

We saw Misra-Gries deterministic algorithm that in O(k) space finds the heavy hitters assuming they exist.

- Identifies correct heavy hitters if they exist but can make a mistake if they don't and need second pass to verify
- Cannot handle deletions

(Strict) Turnstile Model

- Turnstile model: each update is (i_j, Δ_j) where Δ_j can be positive or negative
- Strict turnstile: need $x_i \ge 0$ at all time for all i

In terms of frequent items we want additive error to x_i

Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items *i* such that $f_i > m/k$.

- Let b_1, b_2, \ldots, b_k be the k heavy hitters
- Suppose we pick h:[n]
 ightarrow [ck] for some c>1
- h spreads b_1, \ldots, b_k among the buckets (k balls into ck bins)
- In ideal situation each bucket can be used to count a separate heavy hitter
- Use multiple independent hash functions to improve estimate

Part I

CountMin Sketch

CountMin Sketch: Offline view

- d independent hash functions h_1, h_2, \ldots, h_d . Each hash function is pair-wise independent
- Each $h_{\ell} : [n] \rightarrow [w]$ (hence maps to w buckets)
- Store one number per bucket and hence total of *dw* numbers which can be viewed as 2-day array (*d* rows, *w* columns).
 C[ℓ, s] is the counter for bucket s for hash function *h*_ℓ.
- Let $x \in \mathbb{R}^n$ be the given vector. For $1 \leq \ell \leq d$, $1 \leq s \leq w$

$$C[\ell,s] = \sum_{i:h_{\ell}(i)=s} x_i$$

hence it keeps track of sum of all coordinates that h_ℓ maps to bucket s

CountMin Sketch

[Cormode-Muthukrishnan]

```
\begin{array}{l} \textbf{CountMin-Sketch}(w,d):\\ h_1,h_2,\ldots,h_d \text{ are pair-wise independent hash functions}\\ \text{from } [n] \rightarrow [w].\\ \text{While (stream is not empty) do}\\ e_t = (i_t,\Delta_t) \text{ is current item}\\ \text{for } \ell = 1 \text{ to } d \text{ do}\\ C[\ell,h_\ell(i_j)] \leftarrow C[\ell,h_\ell(i_j)] + \Delta_t\\ \text{endWhile}\\ \text{For } i \in [n] \text{ set } \tilde{x}_i = \min_{\ell=1}^d C[\ell,h_\ell(i)]. \end{array}
```

Counter $C[\ell, j]$ counts the sum of all x_i such that $h_{\ell}(i) = s$.

$$C[\ell,s] = \sum_{i:h_{\ell}(i)=s} x_i.$$

Intuition

- Suppose there are k heavy hitters b_1, b_2, \ldots, b_k
- Consider b_i: Hash function h_l sends b_i to h_l(b_i). C[l, h(b_i)] counts x_{b_i} and also other items that hash to same bucket h(b_i) so we always overcount (since strict turnstile model)
- Repeating with many hash functions and taking *minimum* is right thing to do: for b_i the goal is to avoid other heavy hitters colliding with it

Property of CountMin Sketch

Lemma

Consider strict turnstile mode $(x \ge 0)$. Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \le \tilde{x}_i$ and $\Pr[\tilde{x}_i > x_i + \epsilon ||x||_1] < \delta$.

Property of CountMin Sketch

Lemma

Consider strict turnstile mode $(x \ge 0)$. Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \le \tilde{x}_i$ and $\Pr[\tilde{x}_i > x_i + \epsilon ||x||_1] < \delta$.

- Unlike Misra-Greis we have over estimates
- Actual items are not stored (requires work to recover heavy hitters)
- Works in strict turnstile model and hence can handle deletions
- Space usage is $O(\frac{\log(1/\delta)}{\epsilon})$ counters and hence $O(\frac{\log(1/\delta)}{\epsilon} \log m)$ bits

Fix ℓ and $i \in [n]$: $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

Fix ℓ and $i \in [n]$: $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

 $Z_{\ell} = C[\ell, h_{\ell}(i)]$ is the counter value that *i* is hashed to.

Fix ℓ and $i \in [n]$: $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

 $Z_{\ell} = C[\ell, h_{\ell}(i)]$ is the counter value that *i* is hashed to.

 $\mathsf{E}[Z_{\ell}] = x_i + \sum_{i' \neq i} \mathsf{Pr}[h_{\ell}(i') = h_{\ell}(i)] x_{i'}$

Fix ℓ and $i \in [n]$: $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

 $Z_{\ell} = C[\ell, h_{\ell}(i)]$ is the counter value that *i* is hashed to.

 $\mathsf{E}[Z_{\ell}] = x_i + \sum_{i' \neq i} \mathsf{Pr}[h_{\ell}(i') = h_{\ell}(i)] x_{i'}$

By pairwise-independence $E[Z_{\ell}] = x_i + \sum_{i' \neq i} x_{i'}/w \le x_i + \epsilon ||x||_1/2$

Fix ℓ and $i \in [n]$: $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

 $Z_{\ell} = C[\ell, h_{\ell}(i)]$ is the counter value that *i* is hashed to.

 $\mathsf{E}[Z_{\ell}] = x_i + \sum_{i' \neq i} \mathsf{Pr}[h_{\ell}(i') = h_{\ell}(i)] x_{i'}$

By pairwise-independence $E[Z_{\ell}] = x_i + \sum_{i' \neq i} x_{i'}/w \le x_i + \epsilon ||x||_1/2$

Via Markov applied to $Z_{\ell} - x_i$ (we use strict turnstile here) $\Pr[Z_{\ell} - x_i] \ge \epsilon ||x||_1 \le 1/2$

Fix ℓ and $i \in [n]$: $h_{\ell}(i)$ is the bucket that h_{ℓ} hashes i to.

 $Z_{\ell} = C[\ell, h_{\ell}(i)]$ is the counter value that *i* is hashed to.

 $\mathsf{E}[Z_{\ell}] = x_i + \sum_{i' \neq i} \mathsf{Pr}[h_{\ell}(i') = h_{\ell}(i)] x_{i'}$

By pairwise-independence $E[Z_{\ell}] = x_i + \sum_{i' \neq i} x_{i'}/w \le x_i + \epsilon ||x||_1/2$

Via Markov applied to $Z_{\ell} - x_i$ (we use strict turnstile here) $\Pr[Z_{\ell} - x_i] \ge \epsilon ||x||_1 \le 1/2$

Since the *d* hash functions are independent $\Pr[\min_{\ell} Z_{\ell} \ge x_i + \epsilon ||x||_1] \le 1/2^d \le \delta$

Summarizing

Lemma

Let $d > \log \frac{1}{\delta}$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and $\Pr[\tilde{x}_i \geq x_i + \epsilon ||x||_1] \leq \delta$.

Choose $d = 2 \ln n$ and $w = 2/\epsilon$. Then

$$\Pr[\tilde{x}_i \ge x_i + \epsilon \|x\|_1] \le 1/n^2$$

Via union bound, with probability (1 - 1/n), for all $i \in [n]$:

 $\tilde{x}_i \leq x_i + \epsilon \|x\|_1$

Chandra ((UIUC))
Chanara	0.00	

Summarizing

Lemma

Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and $\Pr[\tilde{x}_i > x_i + \epsilon ||x||_1] < \delta$.

Corollary

With $d = \Omega(\ln n)$ and $w = 2/\epsilon$, with probability $(1 - \frac{1}{n})$ for all $i \in [n]$: $\tilde{x}_i < x_i + \epsilon ||x||_1$

Total space: $O(\frac{1}{\epsilon} \log n)$ counters and hence $O(\frac{1}{\epsilon} \log n \log m)$ bits.

CountMin as a Linear Sketch

Question: Why is CountMin a linear sketch?

CountMin as a Linear Sketch

Question: Why is CountMin a linear sketch?

Recall that for $1 \leq \ell \leq d$ and $1 \leq s \leq w$:

$$C[\ell,s] = \sum_{i:h_{\ell}(i)=s} x_i$$

Thus, once hash function h_{ℓ} is fixed:

 $C[\ell,s] = \langle u,x \rangle$

where u is a row vector in $\{0,1\}^n$ such that $u_i = 1$ if $h_\ell(i) = s$ and $u_i = 0$ otherwise Thus, once hash functions are fixed, the counter values can be written as Mx where $M \in \{0,1\}^{wd \times n}$ is the sketch matrix

Chandra (UIUC)	CS498ABD	13	Fall 2020	13 / 22

Part II

Count Sketch

Count Sketch

- Similar to CountMin use *d* hash functions each with *w* buckets etch and hence array of *dw* counters
- Inspired by F_2 estimation use additional $\{-1,1\}$ hash functions which creates negative values
- Use median estimate

Count Sketch

[Charikar-Chen-FarachColton]

```
Count-Sketch(w, d):
     h_1, h_2, \ldots, h_d are pair-wise independent hash functions
           from [n] \rightarrow [w].
     g_1, g_2, \ldots, g_d are pair-wise independent hash functions
           from [n] \to \{-1, 1\}.
     While (stream is not empty) do
           e_t = (i_t, \Delta_t) is current item
           for \ell = 1 to d do
                 C[\ell, h_{\ell}(i_i)] \leftarrow C[\ell, h_{\ell}(i_i)] + g(i_t)\Delta_t
     endWhile
     For i \in [n]
           set \tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \dots, g_\ell(i)C[\ell, h_\ell(i)]\}.
```

Like CountMin, Count sketch has wd counters. Now counter values can become negative even if x is positive.

Intuition

- Each hash function h_ℓ spreads the elements across w buckets
- The has function g_{ℓ} induces cancellations (inspired by F_2 estimation algorithm)
- Since answer may be negative even if $x \ge 0$, we take the median

Exercise: Show that Count sketch is also a linear sketch.

Property of Count Sketch

Lemma

Let $d \ge 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $E[\tilde{x}_i] = x_i$ and

$$\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le \delta.$$

Property of Count Sketch

Lemma

Let $d \ge 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $\mathbf{E}[\tilde{x}_i] = x_i$ and

$$\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le \delta.$$

Comparison to CountMin

- Error guarantee is with respect to $||x||_2$ instead of $||x||_1$. For $x \ge 0$, $||x||_2 \le ||x||_1$ and in some cases $||x||_2 \ll ||x||_1$.
- Space increases to $O(\frac{1}{\epsilon^2} \log n)$ counters from $O(\frac{1}{\epsilon} \log n)$ counters

Fix an $i \in [n]$ and $\ell \in [d]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$.

Fix an $i \in [n]$ and $\ell \in [d]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_{\ell}(i) = h_{\ell}(i')$; that is *i* and *i'* collide in h_{ℓ} . $E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_{ℓ} .

Fix an $i \in [n]$ and $\ell \in [d]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_{\ell}(i) = h_{\ell}(i')$; that is *i* and *i'* collide in h_{ℓ} . $E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_{ℓ} .

 $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)] = g_{\ell}(i)\sum_{i'} g_{\ell}(i')x_{i'}Y_{i'}$

Fix an $i \in [n]$ and $\ell \in [d]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_{\ell}(i) = h_{\ell}(i')$; that is *i* and *i'* collide in h_{ℓ} . $E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_{ℓ} .

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)] = g_{\ell}(i)\sum_{i'}g_{\ell}(i')x_{i'}Y_{i'}$$

Therefore,

$$E[Z_{\ell}] = x_i + \sum_{i' \neq i} E[g_{\ell}(i)g_{\ell}(i')Y_{i'}]x_{i'} = x_i < 0$$

because $E[g_{\ell}(i)g_{\ell}(i')] = 0$ for $i \neq i'$ from pairwise independence of g_{ℓ} and $Y_{i'}$ is independent of $g_{\ell}(i)$ and $g_{\ell}(i')$.

Chandra (UIUC)	CS498ABD	19	Fall 2020	19 / 22

$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$. And $\mathbf{E}[Z_{\ell}] = x_i$.

 $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$. And $\mathbf{E}[Z_{\ell}] = x_i$.

$$\begin{aligned} Var(Z_{\ell}) &= \mathsf{E}[(Z_{\ell} - x_{i})^{2}] \\ &= \mathsf{E}\left[(\sum_{i' \neq i} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'})^{2}\right] \\ &= \mathsf{E}\left[\sum_{i' \neq i} x_{i'}^{2}Y_{i'}^{2} + \sum_{i' \neq i''} x_{i'}x_{i''}g_{\ell}(i')g_{\ell}(i'')Y_{i'}Y_{i''}\right] \\ &= \sum_{i' \neq i} x_{i'}^{2} \mathsf{E}[Y_{i'}^{2}] \\ &\leq ||x||_{2}^{2}/w. \end{aligned}$$

 $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)].$

We have seen: $\mathbf{E}[Z_{\ell}] = x_i$ and $Var(Z_{\ell}) \le ||x||_2^2/w$.

 $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)].$

We have seen: $\mathbf{E}[Z_{\ell}] = x_i$ and $Var(Z_{\ell}) \le ||x||_2^2/w$.

Using Chebyshev:

 $\mathsf{Pr}[|Z_{\ell}-x_i| \geq \epsilon \|x\|_2] \leq \frac{\mathsf{Var}(Z_{\ell})}{\epsilon^2 \|x\|_2^2} \leq \frac{1}{\epsilon^2 w} \leq 1/3.$

 $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)].$

We have seen: $\mathbf{E}[Z_{\ell}] = x_i$ and $Var(Z_{\ell}) \le ||x||_2^2/w$.

Using Chebyshev:

$$\mathsf{Pr}[|Z_{\ell}-x_i| \geq \epsilon \|x\|_2] \leq \frac{\mathsf{Var}(Z_{\ell})}{\epsilon^2 \|x\|_2^2} \leq \frac{1}{\epsilon^2 w} \leq 1/3.$$

Via the Chernoff bound,

 $\Pr[|\text{median}\{Z_1,\ldots,Z_d\}-x_i| \geq \epsilon ||x||_2] \leq e^{-cd} \leq \delta.$

Summarizing

Lemma

Let
$$d \ge 4 \log \frac{1}{\delta}$$
 and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$,
 $\mathbf{E}[\tilde{x}_i] = x_i$ and $\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le \delta$.

Corollary

With $d = \Theta(\ln n)$ and $w = 3/\epsilon^2$, with probability $(1 - \frac{1}{n})$ for all $i \in [n]$: $|\tilde{x}_i - x_i| \le \epsilon ||x||_2$.

Total space: $O(\frac{1}{\epsilon^2} \log n)$ counters and hence $O(\frac{1}{\epsilon^2} \log n \log m)$ bits.