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Heavy Hitters Problem

Heavy Hitters Problem: Find all items i such that fi > m/k for
some fixed k .

Heavy hitters are very frequent items.

We saw Misra-Gries deterministic algorithm that in O(k) space finds
the heavy hitters assuming they exist.

Identifies correct heavy hitters if they exist but can make a
mistake if they don’t and need second pass to verify

Cannot handle deletions
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(Strict) Turnstile Model

Turnstile model: each update is (ij ,∆j) where ∆j can be
positive or negative

Strict turnstile: need xi ≥ 0 at all time for all i

In terms of frequent items we want additive error to xi
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Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items i such that fi > m/k .

Let b1, b2, . . . , bk be the k heavy hitters

Suppose we pick h : [n]→ [ck] for some c > 1

h spreads b1, . . . , bk among the buckets (k balls into ck bins)

In ideal situation each bucket can be used to count a separate
heavy hitter

Use multiple independent hash functions to improve estimate
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Part I

CountMin Sketch
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CountMin Sketch: Offline view

d independent hash functions h1, h2, . . . , hd . Each hash
function is pair-wise independent

Each h` : [n]→ [w ] (hence maps to w buckets)

Store one number per bucket and hence total of dw numbers
which can be viewed as 2-day array (d rows, w columns).
C [`, s] is the counter for bucket s for hash function h`.
Let x ∈ Rn be the given vector. For 1 ≤ ` ≤ d , 1 ≤ s ≤ w

C [`, s] =
∑

i :h`(i)=s

xi

hence it keeps track of sum of all coordinates that h` maps to
bucket s
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CountMin Sketch

[Cormode-Muthukrishnan]

CountMin-Sketch(w , d):
h1, h2, . . . , hd are pair-wise independent hash functions

from [n]→ [w ].
While (stream is not empty) do

et = (it ,∆t) is current item

for ` = 1 to d do

C [`, h`(ij )]← C [`, h`(ij )] + ∆t
endWhile

For i ∈ [n] set x̃i = mind
`=1 C [`, h`(i)].

Counter C [`, j ] counts the sum of all xi such that h`(i) = s.

C [`, s] =
∑

i :h`(i)=s

xi .
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Intuition

Suppose there are k heavy hitters b1, b2, . . . , bk

Consider bi : Hash function h` sends bi to h`(bi). C [`, h(bi)]
counts xbi and also other items that hash to same bucket h(bi)
so we always overcount (since strict turnstile model)

Repeating with many hash functions and taking minimum is
right thing to do: for bi the goal is to avoid other heavy hitters
colliding with it
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Property of CountMin Sketch

Lemma

Consider strict turnstile mode (x ≥ 0). Let d = Ω(log 1
δ
) and

w > 2
ε
. Then for any fixed i ∈ [n], xi ≤ x̃i and

Pr[x̃i ≥ xi + ε‖x‖1] ≤ δ.

Unlike Misra-Greis we have over estimates

Actual items are not stored (requires work to recover heavy
hitters)

Works in strict turnstile model and hence can handle deletions

Space usage is O( log(1/δ)
ε

) counters and hence

O( log(1/δ)
ε

log m) bits
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Analysis

Fix ` and i ∈ [n]: h`(i) is the bucket that h` hashes i to.

Z` = C [`, h`(i)] is the counter value that i is hashed to.

E[Z`] = xi +
∑

i ′ 6=i Pr[h`(i ′) = h`(i)]xi ′

By pairwise-independence

E[Z`] = xi +
∑

i ′ 6=i xi ′/w ≤ xi + ε‖x‖1/2

Via Markov applied to Z` − xi (we use strict turnstile here)
Pr[Z` − xi ] ≥ ε‖x‖1 ≤ 1/2

Since the d hash functions are independent
Pr[min` Z` ≥ xi + ε‖x‖1] ≤ 1/2d ≤ δ
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Summarizing

Lemma

Let d > log 1
δ
) and w > 2

ε
. Then for any fixed i ∈ [n], xi ≤ x̃i and

Pr[x̃i ≥ xi + ε‖x‖1] ≤ δ.

Choose d = 2 ln n and w = 2/ε. Then

Pr[x̃i ≥ xi + ε‖x‖1] ≤ 1/n2

Via union bound, with probability (1− 1/n), for all i ∈ [n]:

x̃i ≤ xi + ε‖x‖1
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Summarizing

Lemma

Let d = Ω(log 1
δ
) and w > 2

ε
. Then for any fixed i ∈ [n], xi ≤ x̃i

and
Pr[x̃i ≥ xi + ε‖x‖1] ≤ δ.

Corollary

With d = Ω(ln n) and w = 2/ε, with probability (1− 1
n ) for all

i ∈ [n]:
x̃i ≤ xi + ε‖x‖1

Total space: O(1
ε

log n) counters and hence O(1
ε

log n log m) bits.
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CountMin as a Linear Sketch

Question: Why is CountMin a linear sketch?

Recall that for 1 ≤ ` ≤ d and 1 ≤ s ≤ w :

C [`, s] =
∑

i :h`(i)=s

xi

Thus, once hash function h` is fixed:

C [`, s] = 〈u, x〉

where u is a row vector in {0, 1}n such that ui = 1 if h`(i) = s
and ui = 0 otherwise
Thus, once hash functions are fixed, the counter values can be
written as Mx where M ∈ {0, 1}wd×n is the sketch matrix
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Part II

Count Sketch
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Count Sketch

Similar to CountMin use d hash functions each with w buckets
etch and hence array of dw counters

Inspired by F2 estimation use additional {−1, 1} hash functions
which creates negative values

Use median estimate
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Count Sketch

[Charikar-Chen-FarachColton]

Count-Sketch(w , d):
h1, h2, . . . , hd are pair-wise independent hash functions

from [n]→ [w ].
g1, g2, . . . , gd are pair-wise independent hash functions

from [n]→ {−1, 1}.
While (stream is not empty) do

et = (it ,∆t) is current item

for ` = 1 to d do

C [`, h`(ij )]← C [`, h`(ij )] + g(it)∆t
endWhile

For i ∈ [n]
set x̃i = median{g1(i)C [1, h1(i)], . . . , g`(i)C [`, h`(i)]}.

Like CountMin, Count sketch has wd counters. Now counter values
can become negative even if x is positive.
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Intuition

Each hash function h` spreads the elements across w buckets

The has function g` induces cancellations (inspired by F2

estimation algorithm)

Since answer may be negative even if x ≥ 0, we take the median

Exercise: Show that Count sketch is also a linear sketch.
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Property of Count Sketch

Lemma

Let d ≥ 4 log 1
δ

and w > 3
ε2 . Then for any fixed i ∈ [n],

E[x̃i ] = xi and

Pr[|x̃i − xi | ≥ ε‖x‖2] ≤ δ.

Comparison to CountMin

Error guarantee is with respect to ‖x‖2 instead of ‖x‖1. For
x ≥ 0, ‖x‖2 ≤ ‖x‖1 and in some cases ‖x‖2 � ‖x‖1.

Space increases to O( 1
ε2 log n) counters from O(1

ε
log n)

counters
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Analysis

Fix an i ∈ [n] and ` ∈ [d ]. Let Z` = g`(i)C [`, h`(i)].

For i ′ ∈ [n] let Yi ′ be the indicator random variable that is 1 if
h`(i) = h`(i ′); that is i and i ′ collide in h`.
E [Yi ′] = E [Y 2

i ′ ] = 1/w from pairwise independence of h`.

Z` = g`(i)C [`, h`(i)] = g`(i)
∑
i ′

g`(i ′)xi ′Yi ′

Therefore,

E [Z`] = xi +
∑
i ′ 6=i

E [g`(i)g`(i ′)Yi ′]xi ′ = xi <

because E [g`(i)g`(i ′)] = 0 for i 6= i ′ from pairwise independence
of g` and Yi ′ is independent of g`(i) and g`(i ′).
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Analysis

Z` = g`(i)C [`, h`(i)]. And E[Z`] = xi .

Var(Z`) = E
[
(Z` − xi)

2
]

= E

(
∑
i ′ 6=i

g`(i)g`(i ′)Yi ′xi ′)
2


= E

∑
i ′ 6=i

x2
i ′Y

2
i ′ +

∑
i ′ 6=i ′′

xi ′xi ′′g`(i ′)g`(i ′′)Yi ′Yi ′′


=

∑
i ′ 6=i

x2
i ′ E
[
Y 2

i ′
]

≤ ‖x‖2
2/w .
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Analysis

Z` = g`(i)C [`, h`(i)].

We have seen: E[Z`] = xi and Var(Z`) ≤ ‖x‖2
2/w .

Using Chebyshev:

Pr[|Z` − xi | ≥ ε‖x‖2] ≤
Var(Z`)
ε2‖x‖2

2

≤
1

ε2w
≤ 1/3.

Via the Chernoff bound,

Pr[|median{Z1, . . . ,Zd} − xi | ≥ ε‖x‖2] ≤ e−cd ≤ δ.
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Summarizing

Lemma

Let d ≥ 4 log 1
δ

and w > 3
ε2 . Then for any fixed i ∈ [n],

E[x̃i ] = xi and Pr[|x̃i − xi | ≥ ε‖x‖2] ≤ δ.

Corollary

With d = Θ(ln n) and w = 3/ε2, with probability (1− 1
n ) for all

i ∈ [n]:
|x̃i − xi | ≤ ε‖x‖2.

Total space: O( 1
ε2 log n) counters and hence O( 1

ε2 log n log m) bits.
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