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Models

Richer model:

Want to estimate a function of a vector x ∈ Rn which is
initially assume to be the all 0’s vector.

Each element ej of a stream is a tuple (ij ,∆j) where ij ∈ [n]
and ∆i ∈ R is a real-value: this updates xij to xij + ∆j . (∆j
can be positive or negative)

∆j > 0: cash register model. Special case is ∆j = 1.

∆j arbitrary: turnstile model

∆j arbitrary but x ≥ 0 at all times: strict turnstile model

Sliding window model: interested only in the last W items
(window)
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Frequent Items Problem

What is Fk when k =∞?

Maximum frequency.

F∞ very brittle and hard to estimate with low memory. Can show
strong lower bounds for very weak relative approximations.

Hence settle for weaker (additive) guarantees.

Heavy Hitters Problem: Find all items i such that fi > m/k for
some fixed k .

Heavy hitters are very frequent items.
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Finding Majority Element

Majority element problem:

Offline: given an array/list A of m integers, is there an element
that occurs more than m/2 times in A?

Streaming: is there an i such that fi > m/2?
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Finding Majority Element

Streaming-Majority:
c = 0, s ← null
While (stream is not empty) do

If (ej = s) do

c ← c + 1
ElseIf (c = 0)

c = 1
s = ej

Else

c ← c − 1
endWhile

Output s, c

Claim: If there is a majority element i then algorithm outputs s = i
and c ≥ fi −m/2.
Caveat: Algorithm may output incorrect element if no majority
element. Can verify correctness in a second pass.
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Misra-Gries Algorithm

Heavy Hitters Problem: Find all items i such that fi > m/k .

MisraGreis(k):
D is an empty associative array

While (stream is not empty) do

ej is current item

If (ej is in keys(D))
D[ej ]← D[ej ] + 1

Else if (|keys(A)| < k − 1) then

D[ej ]← 1
Else

for each ` ∈ keys(D) do

D[`]← D[`]− 1
Remove elements from D whose counter values are 0

endWhile

For each i ∈ keys(D) set f̂i = D[i ]
For each i 6∈ keys(D) set f̂i = 0
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Analysis

Space usage O(k).

Theorem

For each i ∈ [n]: fi − m
k+1
≤ f̂i ≤ fi .

Corollary

Any item with fi > m/k is in D at the end of the algorithm.

A second pass to verify can be used to verify correctness of elements
in D.
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Proof of Correctness

Theorem

For each i ∈ [n]: fi − m
k+1
≤ f̂i ≤ fi .

Easy to see: f̂i ≤ fi . Why?

Alternative view of algorithm:

Maintains counts C [i ] for each i (initialized to 0). Only k are
non-zero at any time.

When new element ej comes

If C [ej ] > 0 then increment C [ej ]
ElseIf less then k positive counters then set C [ej ] = 1
Else decrement all positive counters (exactly k of them)

Output f̂i = C [i ] for each i
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Proof of Correctness

Want to show: fi − f̂i ≤ m/(k + 1):

Suppose we have ` occurrences of k counters being
decremented. Then `k + ` ≤ m which implies ` ≤ m/(k + 1).

Consider α = (fi − f̂i) as items are processed. Initially 0. How
big can it get?

If ej = i and C [i ] is incremented α stays same
If ej = i and C [i ] is not incremented then α increases by one
and k counters decremented — charge to `
If ej 6= i and α increases by 1 it is because C [i ] is decremented
— charge to `

Hence total number of times α increases is at most `.
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Deterministic to Randomized Sketches

Cannot improve O(k) space if one wants additive error of at most
m/k . Nice to have a deterministic algorithm that is near-optimal

Why look for randomized solution?

Obtain a sketch that allows for deletions

Additional applications of sketch based solutions

Will see Count-Min and Count sketches
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Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items i such that fi > m/k .

Let b1, b2, . . . , bk be the k heavy hitters

Suppose we pick h : [n]→ [ck] for some c > 1

h spreads b1, . . . , bk among the buckets (k balls into ck bins)

In ideal situation each bucket can be used to count a separate
heavy hitter
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