CS 498ABD: Algorithms for Big Data

Heavy Hitters / Fequent Ilains

 Lecture 08September 17, 2020

Models

Richer model:

- Want to estimate a function of a vector $x \in \mathbb{R}^{\boldsymbol{n}}$ which is initially assume to be the all 0 's vector.
- Each element $\boldsymbol{e}_{\boldsymbol{j}}$ of a stream is a tuple $\left(\boldsymbol{i}_{j}, \boldsymbol{\Delta}_{\boldsymbol{j}}\right)$ where $\boldsymbol{i}_{\boldsymbol{j}} \in[\boldsymbol{n}]$ and $\Delta_{i} \in \mathbb{R}$ is a real-value: this updates $x_{i_{j}}$ to $x_{i_{j}}+\boldsymbol{\Delta}_{j} .\left(\boldsymbol{\Delta}_{j}\right.$ can be positive or negative)

Models

Richer model:

- Want to estimate a function of a vector $x \in \mathbb{R}^{\boldsymbol{n}}$ which is initially assume to be the all 0 's vector.
- Each element $\boldsymbol{e}_{\boldsymbol{j}}$ of a stream is a tuple $\left(\boldsymbol{i}_{\boldsymbol{j}}, \boldsymbol{\Delta}_{\boldsymbol{j}}\right)$ where $\boldsymbol{i}_{\boldsymbol{j}} \in[\boldsymbol{n}]$ and $\boldsymbol{\Delta}_{\boldsymbol{i}} \in \mathbb{R}$ is a real-value: this updates $\boldsymbol{x}_{i_{j}}$ to $\boldsymbol{x}_{\boldsymbol{i}_{j}}+\boldsymbol{\Delta}_{\boldsymbol{j}} .\left(\boldsymbol{\Delta}_{\boldsymbol{j}}\right.$ can be positive or negative)
- $\boldsymbol{\Delta}_{j}>\mathbf{0}$: cash register model. Special case is $\boldsymbol{\Delta}_{j}=\mathbf{1}$.
- Δ_{j} arbitrary: turnstile model
- $\boldsymbol{\Delta}_{\boldsymbol{j}}$ arbitrary but $\boldsymbol{x} \geq \mathbf{0}$ at all times: strict turnstile model
- Sliding window model: interested only in the last W items (window)

Frequent Items Problem
What is F_{k} when $k=\infty$? $\quad\left(f_{1}, f_{2}, \ldots, f_{n}\right)$

$$
F_{\infty}=\max _{i} f_{i}
$$

Frequent Items Problem

What is F_{k} when $k=\infty$? Maximum frequency.

Frequent Items Problem
What is F_{k} when $k=\infty$? Maximum frequency.
F_{∞} very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

$$
1,2, \ldots, 5
$$

20

$$
\frac{1,1, \ldots, 1}{m} \frac{2, \cdots}{\frac{m}{s}} \frac{3_{1} \cdots}{\frac{m}{s}} \cdot \frac{\cdots}{\frac{2 m}{s}}
$$

If $n \Rightarrow$ is way lane.

Frequent Items Problem

What is F_{k} when $k=\infty$? Maximum frequency.
F_{∞} very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

Hence settle for weaker (additive) guarantees.

Frequent Items Problem

What is F_{k} when $k=\infty$? Maximum frequency.
F_{∞} very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

Hence settle for weaker (additive) guarantees.
Heavy Hitters Problem: Find all items \boldsymbol{i} such that $f_{i}>m / k$ for some fixed k.

Heavy hitters are very frequent items.

Finding Majority Element

Majority element problem:

- Offline: given an array/list \boldsymbol{A} of \boldsymbol{m} integers, is there an element that occurs more than $m / 2$ times in A ?
- Streaming: is there an i such that $f_{i}>m / 2$?

Finding Majority Element

Streaming-Majority:

$$
\begin{aligned}
& \boldsymbol{c}=\mathbf{0}, \boldsymbol{s} \leftarrow \text { null } \\
& \text { While (stream is not empty) do } \\
& \text { If }\left(\boldsymbol{e}_{\boldsymbol{j}}=\boldsymbol{s}\right) \text { do } \\
& \qquad \boldsymbol{c} \leftarrow \boldsymbol{c}+\mathbf{1} \\
& \text { ElseIf }(\boldsymbol{c}=0) \\
& \qquad \boldsymbol{c}=\mathbf{1} \\
& \boldsymbol{s}=\boldsymbol{e}_{\boldsymbol{j}} \\
& \text { Else } \\
& \qquad \boldsymbol{c} \leftarrow \boldsymbol{c}-\mathbf{1} \\
& \text { endWhile } \\
& \text { Output } \boldsymbol{s}, \boldsymbol{c}
\end{aligned}
$$

$1,2,3,4,5,6,7$
$1,2,1,2,1,2,1$
$\xrightarrow{1,1,1,1,2,2,2}$
$2,2,2,1,1,1$

Finding Majority Element

$$
\begin{aligned}
& \text { Streaming-Majority: } \\
& \qquad \begin{array}{c}
\boldsymbol{c}=\mathbf{0}, \boldsymbol{s} \leftarrow \boldsymbol{n u l l} \\
\text { While }(\text { stream is not empty) do } \\
\text { If }\left(\boldsymbol{e}_{\boldsymbol{j}}=\boldsymbol{s}\right) \text { do } \\
\boldsymbol{c} \leftarrow \boldsymbol{c}+\mathbf{1} \\
\text { ElseIf }(\boldsymbol{c}=\mathbf{0}) \\
\boldsymbol{c}=\mathbf{1} \\
\boldsymbol{s}=\boldsymbol{e}_{\boldsymbol{j}} \\
\text { Else } \\
\boldsymbol{c} \leftarrow \boldsymbol{c}-\mathbf{1} \\
\text { endWhile } \\
\text { Output } \boldsymbol{s}, \boldsymbol{c}
\end{array}
\end{aligned}
$$

Claim: If there is a majority element \boldsymbol{i} then algorithm outputs $s=\boldsymbol{i}$ and $c \geq f_{i}-m / 2$.

Finding Majority Element

```
Streaming-Majority:
    \(c=0, s \leftarrow\) null
    While (stream is not empty) do
        If \(\left(e_{j}=s\right)\) do
            \(c \leftarrow c+1\)
        ElseIf ( \(c=0\) )
            \(c=1\)
            \(s=e_{j}\)
        Else
            \(c \leftarrow c-1\)
    endWhile
    Output s, c
```

Claim: If there is a majority element i then algorithm outputs $s=i$ and $c \geq f_{i}-m / 2$.
Caveat: Algorithm may output incorrect element if no majority element. Can verify correctness in a second pass.

Misra-Gries Algorithm

Heavy Hitters Problem: Find all items \boldsymbol{i} such that $\boldsymbol{f}_{\boldsymbol{i}}>\boldsymbol{m} / \boldsymbol{k}$.

```
MisraGreis(k):
    D is an empty associative array
    While (stream is not empty) do
        \mp@subsup{e}{j}{}}\mathrm{ is current item
        If (e}\mp@subsup{\boldsymbol{j}}{\mathrm{ is in keys(D))}}{\mathrm{ in}
            D[\mp@subsup{e}{j}{}]\leftarrowD[\mp@subsup{e}{j}{}]+1
        Else if (|keys(A)|<k-1) then
        D[ej]}\leftarrow
        Else
        for each }\ell\in\boldsymbol{keys(D) do
        D[\ell]}\leftarrowD[\ell]-
```

 Remove elements from \(\boldsymbol{D}\) whose counter values are \(\mathbf{0}\)
 endWhile
 For each $i \in \operatorname{keys}(D)$ set $\hat{f}_{i}=D[i]$
For each $\boldsymbol{i} \notin \boldsymbol{k e y s}(\boldsymbol{D})$ set $\boldsymbol{f}_{\boldsymbol{i}}=\mathbf{0}$

$$
k=3
$$

$$
1,2,1,4,5,1,2,10,1,3,5,4, \ldots
$$

$\left[\frac{2}{2}\right]\left[\begin{array}{l}\frac{1}{5} \\ \hline \frac{1}{6} \\ \hline\end{array}\right.$

$$
\begin{array}{ccc}
\hat{f}_{1}=2 \quad \hat{f}_{2}=0 & \hat{f}_{1}=0 \quad \hat{f}_{4}=1 \\
\hat{f}_{5}=1 & \text { The }_{2}
\end{array}
$$

Analysis

Space usage $O(k)$.
Theorem
For each $\boldsymbol{i} \in[\boldsymbol{n}]: \boldsymbol{f}_{\boldsymbol{i}}-\frac{m}{k+1} \leq \hat{\boldsymbol{f}}_{\boldsymbol{i}} \leq \boldsymbol{f}_{\boldsymbol{i}}$.

Corollary

Any item with $\boldsymbol{f}_{\boldsymbol{i}}>\boldsymbol{m} / \boldsymbol{k}$ is in \boldsymbol{D} at the end of the algorithm.
A second pass to verify can be used to verify correctness of elements in D.

Proof of Correctness

Theorem

For each $\boldsymbol{i} \in[n]: \boldsymbol{f}_{\boldsymbol{i}}-\frac{m}{k+1} \leq \hat{\boldsymbol{f}}_{\boldsymbol{i}} \leq \boldsymbol{f}_{\boldsymbol{i}}$.

$$
\hat{f}_{i} \geqslant \max \left\{0, \quad f_{i}-\frac{m}{k+1}\right\}
$$

Proof of Correctness

Theorem
 For each $i \in[n]: f_{i}-\frac{m}{k+1} \leq \hat{f}_{i} \leq f_{i}$.

Easy to see: $\hat{\boldsymbol{f}}_{\boldsymbol{i}} \leq \boldsymbol{f}_{\boldsymbol{i}}$. Why?

Proof of Correctness

Theorem

For each $\boldsymbol{i} \in[n]: \boldsymbol{f}_{i}-\frac{m}{k+1} \leq \hat{f}_{i} \leq \boldsymbol{f}_{i}$.
Easy to see: $\hat{f}_{i} \leq f_{i}$. Why?
Alternative view of algorithm:

- Maintains counts $\boldsymbol{C}[\boldsymbol{i}]$ for each \boldsymbol{i} (initialized to $\mathbf{0}$). Only \boldsymbol{k} are non-zero at any time.
- When new element \boldsymbol{e}_{j} comes
- If $C\left[e_{j}\right]>0$ then increment $C\left[e_{j}\right]$
- Elself less then k positive counters then set $C\left[e_{j}\right]=\mathbf{1}$
- Else decrement all positive counters (exactly \boldsymbol{k} of them)
- Output $\hat{f}_{i}=C[i]$ for each i

Proof of Correctness

Want to show: $f_{i}-\hat{f}_{i} \leq m /(k+1)$:

$$
\hat{f}_{i} \leq f_{i}
$$

$$
\hat{f}_{i} \geqslant f_{i}-\frac{m}{k+1}
$$

Proof of Correctness

Want to show: $f_{i}-\hat{f}_{i} \leq m /(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented.

Proof of Correctness

Want to show: $f_{i}-\hat{f}_{i} \leq m /(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k+\ell \leq m$ which implies $\ell \leq m /(k+1)$.
- Consider $\alpha=\left(f_{i}-\hat{f}_{i}\right)$ as items are processed. Initially $\mathbf{0}$. How big can it get?

Proof of Correctness

Want to show: $f_{i}-\hat{f}_{i} \leq m /(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k+\ell \leq m$ which implies $\ell \leq m /(k+1)$.
- Consider $\alpha=\left(f_{i}-\hat{f}_{i}\right)$ as items are processed. Initially $\mathbf{0}$. How big can it get?
- If $\boldsymbol{e}_{\boldsymbol{j}}=\boldsymbol{i}$ and $\boldsymbol{C}[\boldsymbol{i}]$ is incremented $\boldsymbol{\alpha}$ stays same

Proof of Correctness

Want to show: $f_{i}-\hat{f}_{i} \leq m /(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k+\ell \leq m$ which implies $\ell \leq m /(k+1)$.
- Consider $\alpha=\left(f_{i}-\hat{f}_{i}\right)$ as items are processed. Initially $\mathbf{0}$. How big can it get?
- If $\boldsymbol{e}_{\boldsymbol{j}}=\boldsymbol{i}$ and $\boldsymbol{C}[\boldsymbol{i}]$ is incremented $\boldsymbol{\alpha}$ stays same
- If $\boldsymbol{e}_{\boldsymbol{j}}=\boldsymbol{i}$ and $C[\boldsymbol{i}]$ is not incremented then $\boldsymbol{\alpha}$ increases by one and \boldsymbol{k} counters decremented - charge to $\boldsymbol{\ell}$

Proof of Correctness

Want to show: $f_{i}-\hat{f}_{i} \leq m /(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k+\ell \leq m$ which implies $\ell \leq m /(k+1)$.
- Consider $\alpha=\left(f_{i}-\hat{f}_{i}\right)$ as items are processed. Initially $\mathbf{0}$. How big can it get?
- If $\boldsymbol{e}_{\boldsymbol{j}}=\boldsymbol{i}$ and $\boldsymbol{C}[\boldsymbol{i}]$ is incremented $\boldsymbol{\alpha}$ stays same
- If $\boldsymbol{e}_{\boldsymbol{j}}=\boldsymbol{i}$ and $\boldsymbol{C}[\boldsymbol{i}]$ is not incremented then $\boldsymbol{\alpha}$ increases by one and \boldsymbol{k} counters decremented - charge to ℓ
- If $\boldsymbol{e}_{\boldsymbol{j}} \neq \boldsymbol{i}$ and $\boldsymbol{\alpha}$ increases by $\mathbf{1}$ it is because $\boldsymbol{C}[\boldsymbol{i}]$ is decremented - charge to ℓ

Proof of Correctness

Want to show: $f_{i}-\hat{f}_{i} \leq m /(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k+\ell \leq m$ which implies $\ell \leq m /(k+1)$.
- Consider $\alpha=\left(f_{i}-\hat{f}_{i}\right)$ as items are processed. Initially $\mathbf{0}$. How big can it get?
- If $\boldsymbol{e}_{\boldsymbol{j}}=\boldsymbol{i}$ and $\boldsymbol{C}[\boldsymbol{i}]$ is incremented $\boldsymbol{\alpha}$ stays same
- If $\boldsymbol{e}_{\boldsymbol{j}}=\boldsymbol{i}$ and $\boldsymbol{C}[\boldsymbol{i}]$ is not incremented then $\boldsymbol{\alpha}$ increases by one and \boldsymbol{k} counters decremented - charge to ℓ
- If $\boldsymbol{e}_{\boldsymbol{j}} \neq \boldsymbol{i}$ and $\boldsymbol{\alpha}$ increases by $\mathbf{1}$ it is because $\boldsymbol{C}[\boldsymbol{i}]$ is decremented - charge to ℓ
- Hence total number of times $\boldsymbol{\alpha}$ increases is at most ℓ.

Deterministic to Randomized Sketches

Cannot improve $O(k)$ space if one wants additive error of at most m / k. Nice to have a deterministic algorithm that is near-optimal

Why look for randomized solution?

- Obtain a sketch that allows for deletions
- Additional applications of sketch based solutions
- Will see Count-Min and Count sketches

Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items \boldsymbol{i} such that $\boldsymbol{f}_{\boldsymbol{i}}>\boldsymbol{m} / \boldsymbol{k}$.

- Let $b_{1}, b_{2}, \ldots, b_{k}$ be the k heavy hitters
- Suppose we pick $\boldsymbol{h}:[n] \rightarrow[c k]$ for some $c>1$
- \boldsymbol{h} spreads b_{1}, \ldots, b_{k} among the buckets (\boldsymbol{k} balls into $c k$ bins)
- In ideal situation each bucket can be used to count a separate heavy hitter

