CS 498ABD: Algorithms for Big Data

AMS Sampling, Estimating Frequency moments, F_2 Estimation

Lecture 07 September 15, 2020

Frequency Moments

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let *f_i* denote the frequency of *i* or number of times *i* is seen in the stream
- Consider vector $\mathbf{f} = (f_1, f_2, \dots, f_n)$
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. We can also consider the ℓ_k norm of **f** which is $(F_k)^{1/k}$.

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5**Problem:** Estimate F_k from stream using small memory

A more general estimation problem

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let *f_i* denote the frequency of *i* or number of times *i* is seen in the stream
- Consider vector $\mathbf{f} = (f_1, f_2, \dots, f_n)$
- Define a function $g(\sigma)$ of stream σ to be $\sum_{i=1}^{m} g_i(f_i)$ where $g_i : \mathbb{R} \to \mathbb{R}$ is a real-valued function such that $g_i(0) = 0$.

A more general estimation problem

- Stream consists of e₁, e₂, ..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let *f_i* denote the frequency of *i* or number of times *i* is seen in the stream
- Consider vector $\mathbf{f} = (f_1, f_2, \dots, f_n)$
- Define a function $g(\sigma)$ of stream σ to be $\sum_{i=1}^{m} g_i(f_i)$ where $g_i : \mathbb{R} \to \mathbb{R}$ is a real-valued function such that $g_i(0) = 0$.

Examples:

• Frequency moments F_k where for each i, $g_i(f_i) = h(f_i)$ where $h(x) = x^k$

• Entropy of stream: $g(\sigma) = \sum_{i} f_i \log(f_i)$ (assume $0 \log 0 = 0$)

Part I

AMS Sampling

AMS Sampling

An unbiased statistical estimator for $g(\sigma)$

- Sample *e_J* uniformly at random from stream of length *m*
- Suppose $e_J = i$ where $i \in [n]$
- Let $R = |\{j \mid J \leq j \leq m, e_j = e_J = i\}|$
- Output $(g_i(R) g_i(R-1)) \cdot m$

AMS Sampling

An unbiased statistical estimator for $g(\sigma)$

- Sample *e_J* uniformly at random from stream of length *m*
- Suppose $e_J = i$ where $i \in [n]$
- Let $R = |\{j \mid J \leq j \leq m, e_j = e_J = i\}|$
- Output $(g_i(R) g_i(R-1)) \cdot m$

Can be implemented in streaming setting with reservoir sampling.

Streaming Implementation

```
AMSEstimate:
     s \leftarrow null
     m \leftarrow 0
     R \leftarrow 0
     While (stream is not done)
          m \leftarrow m + 1
          am is current item
          Toss a biased coin that is heads with probability 1/m
          If (coin turns up heads)
               s \leftarrow a_m
               R \leftarrow 1
          Else If (a_m == s)
               R \leftarrow R + 1
     endWhile
     Output (g_s(R) - g_s(R-1)) \cdot m
```

Expectation of output

Let \mathbf{Y} be the output of the algorithm.

Lemma

$$E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i).$$

Expectation of output

Let \mathbf{Y} be the output of the algorithm.

Lemma

$$E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i).$$

 $Pr[e_J = i] = f_i/m$ since e_J is chosen uniformly from stream.

Expectation of output

Let \mathbf{Y} be the output of the algorithm.

Lemma

 $E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i).$

 $Pr[e_J = i] = f_i/m$ since e_J is chosen uniformly from stream.

$$E[Y] = \sum_{i \in [n]} \Pr[a_J = i] E[Y|a_J = i]$$

$$= \sum_{i \in [n]} \frac{f_i}{m} E[Y|a_J = i]$$

$$= \sum_{i \in [n]} \frac{f_i}{m} \sum_{\ell=1}^{f_i} m \frac{1}{f_i} (g_i(\ell) - g_i(\ell - 1))$$

$$= \sum_{i \in [n]} g_i(f_i).$$

Chandra (UIUC)

Application to estimating frequency moments

Suppose $g(\sigma) = F_k$ for some k > 1. That is $g_i(x) = x^k$ for each *i*. What is Var(Y)?

Application to estimating frequency moments

Suppose $g(\sigma) = F_k$ for some k > 1. That is $g_i(x) = x^k$ for each *i*. What is Var(Y)?

Lemma

When $g(x) = x^k$ and $k \ge 1$, $Var[Y] \le kF_1F_{2k-1} \le kn^{1-\frac{1}{k}}F_k^2$.

Application to estimating frequency moments

Suppose $g(\sigma) = F_k$ for some k > 1. That is $g_i(x) = x^k$ for each *i*. What is Var(Y)?

Lemma

When $g(x) = x^k$ and $k \ge 1$, $Var[Y] \le kF_1F_{2k-1} \le kn^{1-\frac{1}{k}}F_k^2$.

 $E[Y] = F_k$ and $Var(Y) \leq kn^{1-\frac{1}{k}}F_k^2$. Hence, if we want to use averaging and Cheybyshev we need to average $h = \Omega(\frac{1}{\epsilon^2}kn^{1-\frac{1}{k}})$ parallel runs and space to get a $(1 \pm \epsilon)$ estimate to F_k with constant probability.

Variance calculation

$$\begin{aligned} \text{Var}[Y] &\leq \mathsf{E}[Y^2] \\ &\leq \sum_{i \in [n]} \mathsf{Pr}[a_J = i] \sum_{\ell=1}^{f_i} \frac{m^2}{f_i} \left(\ell^k - (\ell-1)^k\right)^2 \\ &\leq \sum_{i \in [n]} \frac{f_i}{m} \sum_{\ell=1}^{f_i} \frac{m^2}{f_i} \left(\ell^k - (\ell-1)^k\right) \left(\ell^k - (\ell-1)^k\right) \\ &\leq m \sum_{i \in [n]} \sum_{\ell=1}^{f_i} k \ell^{k-1} \left(\ell^k - (\ell-1)^k\right) \quad \text{using } x^k - (x-1)^k \leq k x^{k-1} \\ &\leq k m \sum_{i \in [n]} f_i^{k-1} f_i^k \\ &\leq k m F_{2k-1} = k F_1 F_{2k-1}. \end{aligned}$$

Variance calculation

Claim: For $k \ge 1$, $F_1 F_{2k-1} \le n^{1-1/k} (F_k)^2$.

Variance calculation

Claim: For $k \ge 1$, $F_1 F_{2k-1} \le n^{1-1/k} (F_k)^2$.

The function $g(x) = x^k$ is convex for $k \ge 1$. Implies $\sum_i x_i/n \le ((\sum_i x_i^k)/n)^{1/k}$.

$$F_{1}F_{2k-1} = (\sum_{i} f_{i})(\sum_{i} f_{i}^{2k-1}) \leq (\sum_{i} f_{i})(F_{\infty})^{k-1}(\sum_{i} f_{i}^{k})$$

$$\leq (\sum_{i} f_{i})(\sum_{i} f_{i}^{k})^{\frac{k-1}{k}}(\sum_{i} f_{i}^{k})$$

$$\leq n^{1-1/k}(\sum_{i} f_{i}^{k})^{1/k}(\sum_{i} f_{i}^{k})^{\frac{k-1}{k}}(\sum_{i} f_{i}^{k})$$

$$= n^{1-1/k}(F_{k})^{2}$$

Worst case is when $f_i = m/n$ for each $i \in [n]$.

Chandra (UIUC)	CS498ABD	10	Fall 2020	10 / 24

Frequency moment estimation

AMS-Estimator shows that F_k can be estimated in $O(n^{1-1/k})$ space.

Question: Can one do better?

Frequency moment estimation

AMS-Estimator shows that F_k can be estimated in $O(n^{1-1/k})$ space.

Question: Can one do better?

- For F_2 and $1 \le k \le 2$ one can do O(polylog(n)) space!
- For k > 2 space complexity is Õ(n^{1-2/k}) which is known to be essentially tight.

Thus a phase transition at k = 2.

Part II

F₂ Estimation

Estimating F_2

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let *f_i* denote the frequency of *i* or number of times *i* is seen in the stream
- Consider vector $\mathbf{f} = (f_1, f_2, \dots, f_n)$

Question: Estimate $F_2 = \sum_{i=1}^m f_i^2$ in small space.

Using generic AMS sampling scheme we can do this in $O(\sqrt{n \log n})$ space. Can we do it better?

AMS Scheme for F_2

```
\begin{array}{l} \mathsf{AMS}\text{-}\textit{F}_2\text{-}\mathsf{Estimate:}\\ \text{Let } h:[n] \to \{-1,1\} \text{ be chosen from}\\ a \text{ } 4\text{-wise independent hash family } \mathcal{H}\text{.}\\ z \leftarrow 0\\ \text{While (stream is not empty) do}\\ a_j \text{ is current item}\\ z \leftarrow z + h(a_j)\\ \text{endWhile}\\ \text{Output } z^2 \end{array}
```

AMS Scheme for F_2

```
\begin{array}{l} \mathsf{AMS}\text{-}\textit{F}_2\text{-}\mathsf{Estimate:}\\ \text{Let }h:[n] \to \{-1,1\} \text{ be chosen from}\\ a \text{ 4-wise independent hash family }\mathcal{H}\text{.}\\ z \leftarrow 0\\ \text{While (stream is not empty) do}\\ a_j \text{ is current item}\\ z \leftarrow z + h(a_j)\\ \text{endWhile}\\ \text{Output }z^2 \end{array}
```

```
AMS-F_2-Estimate:Let Y_1, Y_2, \ldots, Y_n be \{-1, +1\} random variable that are4-wise independentz \leftarrow 0While (stream is not empty) doa_j is current itemz \leftarrow z + Y_{a_j}endWhileOutput z^2Chandra (UUC)CS498ABD14Fall 202014 / 24
```

 $Z = \sum_{i=1}^{n} f_i Y_i$ and output is Z^2

 $Z = \sum_{i=1}^{n} f_i Y_i$ and output is Z^2

- $\mathbf{E}[Y_i] = \mathbf{0}$ and $Var(Y_i) = \mathbf{E}[Y_i^2] = \mathbf{1}$
- For $i \neq j$, since Y_i and Y_j are pairwise-independent $E[Y_i Y_j] = 0$.

 $Z = \sum_{i=1}^{n} f_i Y_i$ and output is Z^2

- $\mathbf{E}[Y_i] = \mathbf{0}$ and $Var(Y_i) = \mathbf{E}[Y_i^2] = \mathbf{1}$
- For $i \neq j$, since Y_i and Y_j are pairwise-independent $E[Y_i Y_j] = 0$.

$$Z^2 = \sum_i f_i^2 Y_i^2 + 2 \sum_{i \neq j} f_i f_j Y_i Y_j$$

and hence

$$\mathsf{E}[Z^2] = \sum_i f_i^2 = F_2.$$

What is $Var(Z^2)$?

What is $Var(Z^2)$?

$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell].$

What is $Var(Z^2)$?

$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell].$

4-wise independence implies $\mathbf{E}[Y_i Y_j Y_k Y_\ell] = \mathbf{0}$ if there is a number among i, j, k, ℓ that occurs only once. Otherwise 1.

What is $Var(Z^2)$?

$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell].$

4-wise independence implies $\mathbf{E}[Y_i Y_j Y_k Y_\ell] = \mathbf{0}$ if there is a number among i, j, k, ℓ that occurs only once. Otherwise 1.

$$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell]$$

$$= \sum_{i \in [n]} f_i^4 + 6 \sum_{i=1}^n \sum_{j=i+1}^n f_i^2 f_j^2.$$

$$\begin{aligned}
\text{Var}(Z^2) &= \mathsf{E}[Z^4] - (\mathsf{E}[Z^2])^2 \\
&= F_4 - F_2^2 + \mathbf{6} \sum_{i=1}^n \sum_{j=i+1}^n f_i^2 f_j^2 \\
&= F_4 - (F_4 + 2 \sum_{i=1}^n \sum_{j=i+1}^n f_i^2 f_j^2) + \mathbf{6} \sum_{i=1}^n \sum_{j=i+1}^n f_i^2 f_j^2 \\
&= 4 \sum_{i=1}^n \sum_{j=i+1}^n f_i^2 f_j^2 \\
&\leq 2F_2^2.
\end{aligned}$$

Averaging and median trick again

Output is Z^2 : and $\mathbf{E}[Z^2] = F_2$ and $Var(Z^4) \leq 2F_2^2$

- Reduce variance by averaging 8/e² independent estimates. Let
 Y be the averaged estimator.
- Apply Chebyshev to average estimator. $\Pr[|Y - F_2| \ge \epsilon F_2] \le 1/4.$
- Reduce error probability to δ by independently doing $O(\log(1/\delta))$ estimators above.
- Total space $O(\log(1/\delta)\frac{1}{\epsilon^2}\log n)$

Geometric Interpretation

Observation: The estimation algorithm works even when f_i 's can be negative. What does this mean?

Geometric Interpretation

Observation: The estimation algorithm works even when f_i 's can be negative. What does this mean?

Richer model:

- Want to estimate a function of a vector x ∈ ℝⁿ which is initially assume to be the all 0's vector. (previously we were thinking of the frequency vector f)
- Each element e_j of a stream is a tuple (i_j, Δ_j) where i_j ∈ [n] and Δ_i ∈ ℝ is a real-value: this updates x_{ij} to x_{ij} + Δ_j. (Δ_j can be positive or negative)

Algorithm revisited

Algorithm revisited

Claim: Output estimates $||x||_2^2$ where x is the vector at end of stream of updates.

 $Z = \sum_{i=1}^{n} x_i Y_i$ and output is Z^2

 $Z = \sum_{i=1}^{n} x_i Y_i$ and output is Z^2

- $\mathbf{E}[Y_i] = \mathbf{0}$ and $Var(Y_i) = \mathbf{E}[Y_i^2] = \mathbf{1}$
- For $i \neq j$, since Y_i and Y_j are pairwise-independent $E[Y_i Y_j] = 0$.

$$Z^2 = \sum_i x_i^2 Y_i^2 + 2 \sum_{i \neq j} x_i x_j Y_i Y_j$$

and hence

$$\mathbf{E}[Z^2] = \sum_i x_i^2 = ||x||_2^2.$$

 $Z = \sum_{i=1}^{n} x_i Y_i$ and output is Z^2

- $\mathbf{E}[Y_i] = \mathbf{0}$ and $Var(Y_i) = \mathbf{E}[Y_i^2] = \mathbf{1}$
- For $i \neq j$, since Y_i and Y_j are pairwise-independent $E[Y_i Y_j] = 0$.

$$Z^2 = \sum_i x_i^2 Y_i^2 + 2 \sum_{i \neq j} x_i x_j Y_i Y_j$$

and hence

$$\mathsf{E}[Z^2] = \sum_{i} x_i^2 = ||x||_2^2.$$

And as before one can show that $Var(Z^2) \leq 2(E[Z^2])^2$.

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?

A sketch is a *linear* sketch if $C(\sigma_1 \cdot \sigma_2) = C(\sigma_1) + C(\sigma_2)$.

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?

A sketch is a *linear* sketch if $C(\sigma_1 \cdot \sigma_2) = C(\sigma_1) + C(\sigma_2)$.

Is the sketch for F_2 estimation a linear sketch?

F₂ Estimation as Linear Sketching

Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

```
\begin{split} \mathsf{AMS-}\ell_2\text{-Sketch:} \\ \ell &= c\log(1/\delta)/\epsilon^2 \\ \text{Let } M \text{ be a } \ell \times n \text{ matrix with entries in } \{-1,1\} \text{ s.t} \\ & (\text{i}) \text{ rows are independent and} \\ & (\text{ii}) \text{ in each row entries are } 4\text{-wise independent} \\ z \text{ is a } \ell \times 1 \text{ vector initialized to } 0 \\ \text{While (stream is not empty) do} \\ & a_j = (i_j, \Delta_j) \text{ is current update} \\ & z \leftarrow z + \Delta_j M e_{i_j} \\ \text{endWhile} \\ \text{Output vector } z \text{ as sketch.} \end{split}
```

M is compactly represented via ℓ hash functions, one per row, independently chosen from 4-wise independent hash familty.

An Application to Join Size Estimation

In Databases an important operation is the "join" operation

- A relation/table *r* of arity *k* consists of tuples of size *k* where each tuple element is from some given type. Example: (netid, uin, last name, first name, dob, address) in a student data base
- Given two relations *r* and *s* and a common attribute *a* one often needs to compute their join *r* ⋈ *s* over some common attribute that they share
- $r \bowtie s$ can have size quadratic in size of r and s

Question: Estimate size of $r \bowtie s$ without computing it explicitly. Very useful in database query optimization.

An Application to Join Size Estimation

In Databases an important operation is the "join" operation

- A relation/table *r* of arity *k* consists of tuples of size *k* where each tuple element is from some given type. Example: (netid, uin, last name, first name, dob, address) in a student data base
- Given two relations *r* and *s* and a common attribute *a* one often needs to compute their join *r* ⋈ *s* over some common attribute that they share
- $r \bowtie s$ can have size quadratic in size of r and s

Question: Estimate size of $r \bowtie s$ without computing it explicitly. Very useful in database query optimization.

Estimating $r \bowtie r$ over an attribute a is same as F_2 estimation. Why?

Sketching: a shift in perspective

- Sketching ideas have many powerful applications in theory and practice
- In particular linear sketches are powerful. Allows one to handle negative entries and deletions. Surprisingly linear sketches are feasible in several settings.
- Connected to dimension reduction (JL Lemma), subspace embeddings and other important topics