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Part I

Estimating Distinct Elements
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Distinct Elements

Given a stream σ how many distinct elements did we see?

Offline solution via Dictionary data structure
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Hashing based idea

Assume idealized hash function: h : [n]→ [0, 1] that is fully
random over the real interval

Suppose there are k distinct elements in the stream

What is the expected value of the minimum of hash values?
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Analyzing idealized hash function

Lemma

Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then

E[Y ] = 1
(k+1)

.

DistinctElements
Assume ideal hash function h : [n]→ [0, 1]
y ← 1
While (stream is not empty) do

Let e be next item in stream

y ← min(z, h(e))
EndWhile

Output 1
y − 1
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Lemma

Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then

E
[
Y 2
]
= 2

(k+1)(k+2)
and Var(Y ) = k

(k+1)2(k+2)
≤ 1

(k+1)2
.
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Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to
good bounds:

average h parallel and independent estimates to reduce variance

apply Chebyshev to show that the average estimator is a
(1 + ε)-approximation with constant probability

use preceding and median trick with O(log 1/δ) parallel copies
to obtain a (1 + ε)-approximation with probability (1− δ)

Total space: O( 1
ε2
log(1/δ)) hash values to obtain an estimate that

is within (1± ε) approximation with probability at least (1− δ).
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Algorithm via regular hashing

Do not have idealized hash function.

Use h : [n]→ [N] for appropriate choice of N
Use pairwise independent hash family H so that random h ∈ H
can be stored in small space and computation can be done in
small memory and fast

Several variants of idea with different trade offs between

memory

time to process each new element of the stream

approximation quality and probability of success
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Algorithm from BJKST

BJKST-DistinctElements:
H is a 2-universal hash family from [n] to [N = n3]
choose h at random from H
t ← c

ε2

While (stream is not empty) do

ai is current item

Update the smallest t hash values seen so far with h(ai )
endWhile

Let v be the t’th smallest value seen in the hast values.

Output tN/v.

Memory: t = O(1/ε2) values so O(log n/ε2) bits. Also
O(log n) bits to store hash function

Processing time per element: O(log(1/ε)) comparisons of
log n bit numbers by using a binary search tree. And computing
hash value.
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Intuition for algorithm/analysis

Let d be true number of distinct value in stream. Assume d > cε2;
can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0, 1]. Instead we map to
integers in big range: 1 to N = n3.

If h were truly random min hash value is around N/(d + 1)

t’th minimum hash value v to be around tN/(d + 1).

Hence tN/v should be around d + 1

t’th min hash value more robust estimator than minimum hash value
and incorporates the averaging trick to reduce variance
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Analysis

Let d be actual number of distinct values in a given stream (assume
d > c/ε2). Let D be the output of the algorithm which is a random
variable.

Lemma

Pr[D < (1− ε)d ] ≤ 1/6.

Lemma

Pr[D > (1 + ε)d ] ≤ 1/6.

Hence Pr[|D − d | ≥ εd ] < 1/3. Can do median trick to reduce
error probability to δ with O(log 1/δ) parallel repetitions.
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Analysis

For simplicity assume no collisions. Prove following as exercise.

Lemma

Since N = n3 the probability that there are no collisions in h is at
least 1− 1/n.

Recall

Lemma

X = X1 + X2 + . . .+ Xk where X1,X2, . . . ,Xk are pairwise
independent. Then Var(X ) =

∑
i Var(Xi).

1
1−ε = 1 + ε+ ε2 · · · ⇒ 1 + ε ≤ 1

1−ε ≤ 1 + 3ε
2

for ε < 1/2.
1

1+ε
= 1− ε+ ε2 . . .⇒ 1− ε ≤ 1

1+ε
≤ 1− ε

2
.
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Analysis

Let b1, b2, . . . , bd be the distinct values in the stream.
Recall D = tN/v where v is the t’th smallest hash value seen.

Each bi hashed to a uniformly random bucket from 1 to N
Consider buckets in interval I = [1.. tNd ]

Expected number of distinct items hashed into I is t
Estimate D < (1− ε)d implies less than t hashed in interval
I1 = [1.. tN

(1−ε)d ] when expected is t
1−ε

Esitmate D > (1 + ε)d implies more than t hashed in interval
I2 = [1.. tN

(1+ε)d ] when expected is t
(1+ε)

.

Use Chebyshev to analyse “bad” event probabilities via pairwise
independence of hash function.
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Analysis

Lemma

Pr[D < (1− ε)d ] ≤ 1/6.

Let b1, b2, . . . , bd be the distinct values in the stream.
Recall D = tN/v where v is the t’th smallest hash value seen.

D < (1− ε)d iff v > tN
(1−ε)d . Implies less than t hash values fell in

the interval I = [1.. tN
(1−ε)d ].

What is the probability of this event?

Let Xi be indicator for h(bi) ≤ tN
(1−ε)d .

And X =
∑d

i=1 Xi is number that hashed to I

Pr[D < (1− ε)d ] = Pr[X < t] .
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Analysis

Let Xi be indicator for h(bi) ≤ tN
(1−ε)d . And X =

∑d
i=1 Xi

Since h(bi) is uniformly distributed in {1, . . . ,N},
E[Xi ] = Pr[Xi = 1] = t

(1−ε)d ≥ (1 + ε)t/d .

E[X ] ≥ (1 + ε)t.

Recall Pr[D < (1− ε)d ] = Pr[X < t]

Thus D < (1− ε)d only if X − E[X ] < εt. Use Chebyshev to
upper bound this probability.
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Analysis

Let Xi be indicator for h(bi) ≤ tN
(1−ε)d . And X =

∑d
i=1 Xi

Since h(bi) is uniformly distributed in {1, . . . ,N},
E[Xi ] = Pr[Xi = 1] = t

(1−ε)d ≥ (1 + ε/2)t/d

E[X ] ≥ (1 + ε)t.

Xi is a binary rv hence Var(Xi) ≤ E[Xi ] ≤ (1 + 3ε/2)t/d .

X1,X2, . . . ,Xd are pair-wise independent random variables
hence Var(X ) =

∑
i Var(Xi) ≤ (1 + 3ε/2)t.

By Chebyshev:

Pr[X < t] ≤ Pr[|X − E[X ] | > εt] ≤ Var(X )/ε2t2

≤ (1 + 3ε/2)/c

Choose c sufficiently large to ensure ratio is at most 1/6.
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Analysis

Lemma

Pr[D > (1 + ε)d ] ≤ 1/6].

Let b1, b2, . . . , bd be the distinct values in the stream.
Recall D = tN/v where v is the t’th smallest hash value seen.

D > (1 + ε)d iff v < tN
(1+ε)d . Implies more than t hash values fell

in the interval [1.. tN
(1+ε)d ].

What is the probability of this event?

Let Xi be indicator for h(bi) ≤ tN
(1+ε)d .

And X =
∑d

i=1 Xi

Pr[D > (1 + ε)d ] = Pr[Y > t] .
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Question

Where did we use the fact that d ≥ c/ε2?

Analysis need to be more careful in using N
(1−ε)d and N

(1+ε)d since we

need to round them to nearest integer; technically have to use floor
and cielings. If d > c/ε2 then rounding error of 1 does not matter
— adds only εd error.

We avoid floor and ceiling etc in lecture for clarity.
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Summary on Distinct Elements

with O( 1
ε2
log(1/δ) log n) bits algorithm output estimate D

such that |D − d | ≤ εd with probability at least (1− δ)
Best known memory bound: O( log(1/δ)

ε2
+ log n) bits and for

any fixed δ this meets lower bound within constant factors.
Both lower bound and upper bound quite technical — potential
reading for projects.

Continuous monitoring: want estimate to be correct not only at
end of stream but also at all intermediate steps. Can be done
with O( log log n+log(1/δ)

ε2
+ log n) bits.

Deletions allowed! Can also be done. More on this later.
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