CS 498ABD: Algorithms for Big Data

Frequency moments and Counting Distinct Elements
 Lecture 87 O6
 September 10, 2020

Part 1

Estimating Distinct Elements

Distinct Elements

Given a stream σ how many distinct elements did we see?

Offline solution via Dictionary data structure

Hashing based idea

- Assume idealized hash function: $\boldsymbol{h}:[n] \rightarrow[0,1]$ that is fully random over the real interval
- Suppose there are \boldsymbol{k} distinct elements in the stream
- What is the expected value of the minimum of hash values?

Analyzing idealized hash function

Lemma

Suppose $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ are random variables that are independent and uniformaly distributed in $[\mathbf{0}, \mathbf{1}]$ and let $\boldsymbol{Y}=\boldsymbol{\operatorname { m i n }}_{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathrm{E}[Y]=\frac{1}{(k+1)}$.

DistinctElements

Assume ideal hash function $h:[n] \rightarrow[0,1]$
$y \leftarrow 1$
While (stream is not empty) do
Let \boldsymbol{e} be next item in stream $y \leftarrow \min (z, h(e))$
EndWhile
Output $\frac{1}{y}-1$

Analyzing idealized hash function

Lemma

Suppose $X_{1}, X_{2}, \ldots, X_{k}$ are random variables that are independent and uniformaly distributed in $[\mathbf{0}, \mathbf{1}]$ and let $\boldsymbol{Y}=\boldsymbol{\operatorname { m i n }}_{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathrm{E}[Y]=\frac{1}{(k+1)}$.

Lemma

Suppose $X_{1}, X_{2}, \ldots, X_{k}$ are random variables that are independent and uniformaly distributed in $[\mathbf{0}, \mathbf{1}]$ and let $\boldsymbol{Y}=\boldsymbol{\operatorname { m i n }}_{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathbf{E}\left[Y^{2}\right]=\frac{2}{(k+1)(k+2)}$ and $\operatorname{Var}(Y)=\frac{k}{(k+1)^{2}(k+2)} \leq \frac{1}{(k+1)^{2}}$.

Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to good bounds:

- average \boldsymbol{h} parallel and independent estimates to reduce variance
- apply Chebyshev to show that the average estimator is a $(1+\epsilon)$-approximation with constant probability
- use preceding and median trick with $O(\log 1 / \delta)$ parallel copies to obtain a $(1+\epsilon)$-approximation with probability $(1-\delta)$
Total space: $O\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right)$ hash values to obtain an estimate that is within $(1 \pm \epsilon)$ approximation with probability at least $(1-\delta)$.

Algorithm via regular hashing

Do not have idealized hash function.

- Use $\boldsymbol{h}:[n] \rightarrow[N]$ for appropriate choice of N
- Use pairwise independent hash family \mathcal{H} so that random $\boldsymbol{h} \in \mathcal{H}$ can be stored in small space and computation can be done in small memory and fast

Several variants of idea with different trade offs between

- memory
- time to process each new element of the stream
- approximation quality and probability of success

Algorithm from BJKST

BJKST-DistinctElements:

\mathcal{H} is a 2-universal hash family from $[n]$ to $\left[\mathcal{N}=n^{3}\right]$
choose \boldsymbol{h} at, random from \mathcal{H}
$t \leftarrow \frac{c}{\epsilon^{2}} \rightarrow$ chorse lalt
While (stream is not empty) do
$\boldsymbol{a}_{\boldsymbol{i}}$ is current item
Update the smallest \boldsymbol{t} hash values seen so far with $\boldsymbol{h}\left(\boldsymbol{a}_{\boldsymbol{i}}\right)$ endWhile
Let v be the t 'th smallest value seen in the hast values. Output $t N / v$ - 1

Algorithm from BJKST

BJKST-DistinctElements:

\mathcal{H} is a 2-universal hash family from [n] to [$N=n^{3}$]
choose h at random from \mathcal{H}
$t \leftarrow \frac{c}{\epsilon^{2}}$
While (stream is not empty) do
$\boldsymbol{a}_{\boldsymbol{i}}$ is current item
Update the smallest \boldsymbol{t} hash values seen so far with $\boldsymbol{h}\left(\boldsymbol{a}_{\boldsymbol{i}}\right)$ endWhile
Let v be the t 'th smallest value seen in the hast values. Output $t \boldsymbol{N} / v$.

- Memory: $t=O\left(1 / \epsilon^{2}\right)$ values so $\left.O(\log n) / \epsilon^{2}\right)$ bits. Also
$\rightarrow O(\log n)$ bits to store hash function
- Processing time per element: $O(\log (\mathbf{1} / \epsilon))$ comparisons of $\log \boldsymbol{n}$ bit numbers by using a binary search tree. And computing hash value.

Intuition for algorithm/analysis

Let \boldsymbol{d} be true number of distinct valuesin stream. Assume $\boldsymbol{d}>\boldsymbol{c} \boldsymbol{\epsilon}^{2}$; can keep track of the exact count for small counts. How?

Intuition for algorithm/analysis

Let \boldsymbol{d} be true number of distinct value in stream. Assume $\boldsymbol{d}>\boldsymbol{c} \boldsymbol{\epsilon}^{2}$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval $[\mathbf{0}, \mathbf{1}]$. Instead we map to integers in big range: $\mathbf{1}$ to $N=n^{3}$.

Hellillth $N=n^{3}$
$\xrightarrow{0}{ }^{1} \longrightarrow N-1$

Intuition for algorithm/analysis

Let \boldsymbol{d} be true number of distinct value in stream. Assume $\boldsymbol{d}>\boldsymbol{c} \boldsymbol{\epsilon}^{2}$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0,1]. Instead we map to integers in big range: $\mathbf{1}$ to $N=n^{3}$.

If h were truly random \min hash value is around $N /(d+1)$

Intuition for algorithm/analysis

Let \boldsymbol{d} be true number of distinct value in stream. Assume $\boldsymbol{d}>\boldsymbol{c} \boldsymbol{\epsilon}^{2}$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval $[\mathbf{0}, \mathbf{1}]$. Instead we map to integers in big range: $\mathbf{1}$ to $N=n^{3}$.

If h were truly random \min hash value is around $N /(d+1)$
t 'th minimum hash value v to be around $t N /(d+1)$.

Intuition for algorithm/analysis

Let \boldsymbol{d} be true number of distinct value in stream. Assume $\boldsymbol{d}>\boldsymbol{c} \boldsymbol{\epsilon}^{2}$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval $[\mathbf{0}, \mathbf{1}]$. Instead we map to integers in big range: $\mathbf{1}$ to $N=n^{3}$.

If h were truly random min hash value is around $N /(d+1)$
t 'th minimum hash value v to be around $t N /\left(d^{d}+1\right) . \approx v$
Hence $t N / v$ should be around $d+1$
t 'th min hash value more robust estimator than minimum hash value and incorporates the averaging trick to reduce variance

Analysis

Let \boldsymbol{d} be actual number of distinct values in a given stream (assume $\boldsymbol{d}>\boldsymbol{c} / \boldsymbol{\epsilon}^{2}$). Let \underline{D} be the output of the algorithm which is a random variable.

$$
D=\frac{E N}{V_{K}}
$$

Analysis

Let \boldsymbol{d} be actual number of distinct values in a given stream (assume $\boldsymbol{d}>\boldsymbol{c} / \boldsymbol{\epsilon}^{2}$). Let \boldsymbol{D} be the output of the algorithm which is a random variable.

Lemma

$$
\operatorname{Pr}[D<(1-\epsilon) d] \leq 1 / 6
$$

Lemma

$\operatorname{Pr}[D>(1+\epsilon) d] \leq 1 / 6$.
est id ll leith \downarrow
Hence $\operatorname{Pr}[|D-d| \geq \epsilon d]<1 / 3$. Can do median trick to reduce error probability to δ with $O(\log 1 / \delta)$ parallel repetitions.

$$
\left(\frac{c}{c^{2}} \operatorname{los} n\right) \operatorname{los}\left(\frac{1}{\delta}\right)
$$

Analysis

For simplicity assume no collisions. Prove following as exercise.

Lemma

Since $N=n^{3}$ the probability that there are no collisions in \boldsymbol{h} is at least $\mathbf{1 - 1 / n}$.

Recall

Lemma

$X=X_{1}+X_{2}+\ldots+X_{k}$ where $X_{1}, X_{2}, \ldots, X_{k}$ are pairwise independent. Then $\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right)$.

$$
\begin{aligned}
& \frac{1}{1-\epsilon}=1+\epsilon+\epsilon^{2} \cdots \Rightarrow 1+\epsilon \leq \frac{1}{1-\epsilon} \leq 1+\frac{3 \epsilon}{2} \text { for } \epsilon<1 / 2 . \\
& \frac{1}{1+\epsilon}=1-\epsilon+\epsilon^{2} \cdots \Rightarrow 1-\epsilon \leq \frac{1}{1+\epsilon} \leq 1-\frac{\epsilon}{2} .
\end{aligned}
$$

Analysis

Let $b_{1}, b_{2}, \ldots, b_{\boldsymbol{d}}$ be the distinct values in the stream.
Recall $D=t N / v$ where v is the t 'th smallest hash value seen.

- Each b_{i} hashed to a uniformly random bucket from 1 to N
- Consider buckets in interval I $=\left[\mathbf{1} . \frac{t N}{d}\right]$
- Expected number of distinct items hashed into I is t
- Estimate $\boldsymbol{D}<(\mathbf{1}-\boldsymbol{\epsilon}) \boldsymbol{d}$ implies less than t hashed in interval $I_{1}=\left[1 . . \frac{t N}{(1-\epsilon) d}\right]$ when expected is $\frac{t}{1-\epsilon}$
- Esitmate $D>(\mathbf{1}+\boldsymbol{\epsilon}) \boldsymbol{d}$ implies more than t hashed in interval $I_{2}=\left[1 . \cdot \frac{t N}{(1+\epsilon) d}\right]$ when expected is $\frac{t}{(1+\epsilon)}$.
- Use Chebyshev to analyse "bad" event probabilities via pairwise independence of hash function.

Analysis

Lemma

$$
\operatorname{Pr}[D<(1-\epsilon) d] \leq 1 / 6 .
$$

Let $b_{1}, b_{2}, \ldots, b_{d}$ be the distinct values in the stream. Recall $D=t N / v$ where v is the t 'th smallest hash value seen.
$D<(1-\epsilon) d$ iff $v>\frac{t N}{(1-\epsilon) d}$. Implies less than t hash values fell in the interval $I=\left[1 . \cdot \frac{t N}{(1-\epsilon) d}\right]$.

Analysis

Lemma

$$
\operatorname{Pr}[D<(1-\epsilon) d] \leq 1 / 6 .
$$

Let $b_{1}, b_{2}, \ldots, b_{d}$ be the distinct values in the stream. Recall $D=t N / v$ where v is the t 'th smallest hash value seen.
$D<(1-\epsilon) d$ iff $v>\frac{t N}{(1-\epsilon) d}$. Implies less than t hash values fell in the interval $I=\left[1 . \cdot \frac{t N}{(1-\epsilon) d}\right]$. What is the probability of this event?

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$.
And $X=\sum_{i=1}^{d} X_{i}$ is number that hashed to I

$$
\operatorname{Pr}[D<(1-\epsilon) d]=\operatorname{Pr}[X<t] .
$$

Analysis

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{\boldsymbol{t N}}{(1-\epsilon) \boldsymbol{d}}$. And $\boldsymbol{X}=\sum_{\boldsymbol{i}=\boldsymbol{d}}^{\boldsymbol{d}} \boldsymbol{X}_{\boldsymbol{i}}$

- Since $h\left(b_{i}\right)$ is uniformly distributed in $\{\mathbf{1}, \ldots, N\}$, $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1-\epsilon) d} \geq(1+\epsilon) t / d$.

Analysis

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t \boldsymbol{N}}{(1-\epsilon) \boldsymbol{d}}$. And $\boldsymbol{X}=\sum_{\boldsymbol{i}=\boldsymbol{1}}^{\boldsymbol{d}} \boldsymbol{X}_{\boldsymbol{i}}$

- Since $h\left(b_{i}\right)$ is uniformly distributed in $\{\mathbf{1}, \ldots, N\}$, $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1-\epsilon) d} \geq(1+\epsilon) t / d$.
- $\mathrm{E}[X] \geq(1+\epsilon) t$.

Analysis

Let X_{i} be indicator for $h\left(b_{i}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$. And $X=\sum_{i=1}^{\boldsymbol{d}} X_{i}$

- Since $h\left(b_{i}\right)$ is uniformly distributed in $\{1, \ldots, N\}$,

$$
\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1-\epsilon) d} \geq(1+\epsilon) t / d
$$

- $\mathrm{E}[X] \geq(1+\epsilon) t$.

Recall $\operatorname{Pr}[D<(1-\epsilon) d]=\operatorname{Pr}[X<t]$
Thus $D<(\mathbf{1}-\boldsymbol{\epsilon}) \boldsymbol{d}$ only if $\boldsymbol{X}-\mathrm{E}[X]<\boldsymbol{\epsilon t}$. Use Chebyshev to upper bound this probability.

Analysis

Let X_{i} be indicator for $h\left(b_{i}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$. And $X=\sum_{i=1}^{\boldsymbol{d}} X_{\boldsymbol{i}}$

- Since $h\left(b_{i}\right)$ is uniformly distributed in $\{\mathbf{1}, \ldots, N\}$, $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1-\epsilon) d} \geq(1+\epsilon / 2) t / d$
- $\mathrm{E}[X] \geq(1+\epsilon) t$.
- X_{i} is a binary rv hence $\operatorname{Var}\left(X_{i}\right) \leq \mathrm{E}\left[X_{i}\right] \leq(1+3 \epsilon / 2) t / d$.

Analysis

Let X_{i} be indicator for $h\left(b_{i}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$. And $X=\sum_{i=1}^{\boldsymbol{d}} X_{i}$

- Since $h\left(b_{i}\right)$ is uniformly distributed in $\{1, \ldots, N\}$, $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1-\epsilon) d} \geq(1+\epsilon / 2) t / d$
- $\mathrm{E}[X] \geq(1+\epsilon) t$.
- X_{i} is a binary rv hence $\operatorname{Var}\left(X_{i}\right) \leq \mathrm{E}\left[X_{i}\right] \leq(1+3 \epsilon / 2) t / d$.
- $X_{1}, X_{2}, \ldots, X_{d}$ are pair-wise independent random variables hence $\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right) \leq(1+3 \epsilon / 2) t$.

Analysis

Let X_{i} be indicator for $h\left(b_{i}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$. And $X=\sum_{i=1}^{d} X_{i}$

- Since $h\left(b_{i}\right)$ is uniformly distributed in $\{1, \ldots, N\}$,

$$
\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1-\epsilon) d} \geq(1+\epsilon / 2) t / d
$$

- $\mathrm{E}[X] \geq(1+\epsilon) t$.
- X_{i} is a binary rv hence $\operatorname{Var}\left(X_{i}\right) \leq \mathrm{E}\left[X_{i}\right] \leq(1+3 \epsilon / 2) t / d$.
- $X_{1}, X_{2}, \ldots, X_{d}$ are pair-wise independent random variables hence $\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right) \leq(1+3 \epsilon / 2) t$.
By Chebyshev:

$$
\begin{aligned}
\operatorname{Pr}[X<t] \leq \operatorname{Pr}[|X-\mathrm{E}[X]|>\epsilon t] & \leq \operatorname{Var}(X) / \epsilon^{2} t^{2} \\
& \leq(1+3 \epsilon / 2) / c
\end{aligned}
$$

Analysis

Let X_{i} be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$. And $X=\sum_{i=1}^{\boldsymbol{d}} X_{\boldsymbol{i}}$

- Since $h\left(b_{i}\right)$ is uniformly distributed in $\{1, \ldots, N\}$,

$$
\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1-\epsilon) d} \geq(1+\epsilon / 2) t / d
$$

- $\mathrm{E}[X] \geq(1+\epsilon) t$.
- X_{i} is a binary rv hence $\operatorname{Var}\left(X_{i}\right) \leq \mathrm{E}\left[X_{i}\right] \leq(1+3 \epsilon / 2) t / d$.
- $X_{1}, X_{2}, \ldots, X_{d}$ are pair-wise independent random variables hence $\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right) \leq(1+3 \epsilon / 2) t$.
By Chebyshev:

$$
\begin{aligned}
\operatorname{Pr}[X<t] \leq \operatorname{Pr}[|X-\mathrm{E}[X]|>\epsilon t] & \leq \operatorname{Var}(X) / \epsilon^{2} t^{2} \\
& \leq(1+3 \epsilon / 2) / c
\end{aligned}
$$

Choose c sufficiently large to ensure ratio is at most $\mathbf{1 / 6}$.

Analysis

Lemma

$\operatorname{Pr}[D>(1+\epsilon) d] \leq 1 / 6]$.

Let $b_{1}, b_{2}, \ldots, b_{d}$ be the distinct values in the stream. Recall $D=t N / v$ where v is the t 'th smallest hash value seen.
$D>(1+\epsilon) d$ iff $v<\frac{t N}{(1+\epsilon) d}$. Implies more than t hash values fell in the interval $\left[1 . . \frac{t N}{(1+\epsilon) d}\right]$.

Analysis

Lemma

$\operatorname{Pr}[D>(1+\epsilon) d] \leq 1 / 6]$.

Let $b_{1}, b_{2}, \ldots, b_{d}$ be the distinct values in the stream. Recall $D=t N / v$ where v is the t 'th smallest hash value seen.
$D>(1+\epsilon) d$ iff $v<\frac{t N}{(1+\epsilon) d}$. Implies more than t hash values fell in the interval $\left[1 . \cdot \frac{t N}{(1+\epsilon) d}\right]$. What is the probability of this event?

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t N}{(1+\epsilon) \boldsymbol{d}}$.
And $X=\sum_{i=1}^{d} X_{i}$

$$
\operatorname{Pr}[D>(1+\epsilon) d]=\operatorname{Pr}[Y>t]
$$

Analysis

Let X_{i} be indicator for $h\left(b_{i}\right) \leq \frac{t N}{(1+\epsilon) \boldsymbol{d}}$. And $X=\sum_{i=1}^{d} X_{i}$

- Since $h\left(b_{i}\right)$ is uniformly distributed in $\{\mathbf{1}, \ldots, N\}$, $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1+\epsilon) d} \leq(1-\epsilon / 2) t / d$.
- $\mathrm{E}[X] \leq(1-\epsilon / 2) t$.
- X_{i} is a binary rv hence $\operatorname{Var}\left(X_{i}\right) \leq \mathrm{E}\left[X_{i}\right] \leq(1-\epsilon / 2) t / d$.
- $X_{1}, X_{2}, \ldots, X_{d}$ are pair-wise independent random variables hence $\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right) \leq(1-\epsilon / 2) t$.

Analysis

Let X_{i} be indicator for $h\left(b_{i}\right) \leq \frac{t N}{(1+\epsilon) \boldsymbol{d}}$. And $X=\sum_{i=1}^{d} X_{i}$

- Since $h\left(b_{i}\right)$ is uniformly distributed in $\{1, \ldots, N\}$,

$$
\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1+\epsilon) d} \leq(1-\epsilon / 2) t / d
$$

- $\mathrm{E}[X] \leq(1-\epsilon / 2) t$.
- X_{i} is a binary rv hence $\operatorname{Var}\left(X_{i}\right) \leq \mathrm{E}\left[X_{i}\right] \leq(1-\epsilon / 2) t / d$.
- $X_{1}, X_{2}, \ldots, X_{d}$ are pair-wise independent random variables hence $\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right) \leq(1-\epsilon / 2) t$.
By Chebyshev:

$$
\begin{aligned}
\operatorname{Pr}[X>t] \leq \operatorname{Pr}[|X-\mathrm{E}[X]|>\epsilon t / 2] & \leq 4 \operatorname{Var}(X) / \epsilon^{2} t^{2} \\
& \leq 4(1-\epsilon / 2) / c
\end{aligned}
$$

Analysis

Let X_{i} be indicator for $h\left(b_{i}\right) \leq \frac{t N}{(1+\epsilon) d}$. And $X=\sum_{i=1}^{d} X_{i}$

- Since $h\left(b_{i}\right)$ is uniformly distributed in $\{1, \ldots, N\}$, $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1+\epsilon) d} \leq(1-\epsilon / 2) t / d$.
- $\mathrm{E}[X] \leq(1-\epsilon / 2) t$.
- X_{i} is a binary rv hence $\operatorname{Var}\left(X_{i}\right) \leq \mathrm{E}\left[X_{i}\right] \leq(1-\epsilon / 2) t / d$.
- $X_{1}, X_{2}, \ldots, X_{d}$ are pair-wise independent random variables hence $\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right) \leq(1-\epsilon / 2) t$.
By Chebyshev:

$$
\begin{aligned}
\operatorname{Pr}[X>t] \leq \operatorname{Pr}[|X-\mathrm{E}[X]|>\epsilon t / 2] & \leq 4 \operatorname{Var}(X) / \epsilon^{2} t^{2} \\
& \leq 4(1-\epsilon / 2) / c
\end{aligned}
$$

Choose cufficiently large to ensure ratio is at most $\mathbf{1 / 6}$.

Question

Where did we use the fact that $d \geq c / \epsilon^{2}$?

Question

Where did we use the fact that $d \geq c / \epsilon^{2}$?
Analysis need to be more careful in using $\frac{N}{(1-\epsilon) d}$ and $\frac{N}{(1+\epsilon) d}$ since we need to round them to nearest integer; technically have to use floor and cielings. If $\boldsymbol{d}>\boldsymbol{c} / \boldsymbol{\epsilon}^{2}$ then rounding error of $\mathbf{1}$ does not matter — adds only $\boldsymbol{\epsilon d}$ error.

We avoid floor and ceiling etc in lecture for clarity.

Summary on Distinct Elements

- with $O\left(\frac{1}{\epsilon^{2}} \log (1 / \delta) \log n\right)$ bits algorithm output estimate D such that $|\boldsymbol{D}-\boldsymbol{d}| \leq \boldsymbol{\epsilon} \boldsymbol{d}$ with probability at least $(\mathbf{1}-\boldsymbol{\delta})$
- Best known memory bound: $O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}+\log n\right)$ bits and for any fixed δ this meets lower bound within constant factors. Both lower bound and upper bound quite technical - potential reading for projects.
- Continuous monitoring: want estimate to be correct not only at end of stream but also at all intermediate steps. Can be done with $O\left(\frac{\log \log n+\log (1 / \delta)}{\epsilon^{2}}+\log n\right)$ bits.
- Deletions allowed! Can also be done. More on this later.

