CS 498ABD: Algorithms for Big Data

Frequency moments and Counting Distinct Elements

Lecture \bigcirc **D6** September 10, 2020

Part I

Estimating Distinct Elements

Distinct Elements

Given a stream σ how many distinct elements did we see?

Offline solution via Dictionary data structure

Hashing based idea

- Assume idealized hash function: $h: [n] \rightarrow [0, 1]$ that is fully random over the real interval
- Suppose there are k distinct elements in the stream
- What is the expected value of the minimum of hash values?

Analyzing idealized hash function

Lemma

Suppose $X_1, X_2, ..., X_k$ are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

```
\begin{array}{l} \text{DistinctElements} \\ \text{Assume ideal hash function } h:[n] \rightarrow [0,1] \\ y \leftarrow 1 \\ \text{While (stream is not empty) do} \\ \text{Let $e$ be next item in stream} \\ y \leftarrow \min(z,h(e)) \\ \text{EndWhile} \\ \text{Output } \frac{1}{y} - 1 \end{array}
```

Analyzing idealized hash function

Lemma

Suppose $X_1, X_2, ..., X_k$ are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

Lemma

Suppose $X_1, X_2, ..., X_k$ are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y^2] = \frac{2}{(k+1)(k+2)}$ and $Var(Y) = \frac{k}{(k+1)^2(k+2)} \le \frac{1}{(k+1)^2}$.

Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to good bounds:

- average h parallel and independent estimates to reduce variance
- apply Chebyshev to show that the average estimator is a $(1 + \epsilon)$ -approximation with constant probability
- use preceding and median trick with $O(\log 1/\delta)$ parallel copies to obtain a $(1 + \epsilon)$ -approximation with probability (1δ)

Total space: $O(\frac{1}{\epsilon^2} \log(1/\delta))$ hash values to obtain an estimate that is within $(1 \pm \epsilon)$ approximation with probability at least $(1 - \delta)$.

Algorithm via regular hashing

Do not have idealized hash function.

- Use $h: [n] \rightarrow [N]$ for appropriate choice of N
- Use pairwise independent hash family \mathcal{H} so that random $h \in \mathcal{H}$ can be stored in small space and computation can be done in small memory and fast

Several variants of idea with different trade offs between

- memory
- time to process each new element of the stream
- approximation quality and probability of success

Algorithm from BJKST

```
\begin{array}{l} \text{BJKST-DistinctElements:} \\ \mathcal{H} \text{ is a 2-universal hash family from} (n) to [N = n^3] \\ \text{choose } h \text{ at random from } \mathcal{H} \\ t \leftarrow \frac{c}{c^2} \xrightarrow{\phantom{aaa}} \mathcal{H} \text{ and } \text{ add } \\ \text{While (stream is not empty) do} \\ a_i \text{ is current item} \\ \text{Update the smallest } t \text{ hash values seen so far with } h(a_i) \\ \text{endWhile} \\ \text{Let } v \text{ be the } t' \text{th smallest value seen in the hast values.} \\ \text{Output } tN/v, -1 \end{array}
```

Algorithm from BJKST

- Memory: $t = O(1/\epsilon^2)$ values so $O(\log n)/\epsilon^2$ bits. Also $O(\log n)$ bits to store hash function
- Processing time per element: O(log(1/\epsilon)) comparisons of log n bit numbers by using a binary search tree. And computing hash value.

Let *d* be true number of distinct values in stream. Assume $d > c\epsilon^2$; can keep track of the exact count for small counts. How?

Let *d* be true number of distinct value in stream. Assume $d > c\epsilon^2$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0, 1]. Instead we map to integers in big range: 1 to $N = n^3$. $(n^3 - 1) = 1$

Let *d* be true number of distinct value in stream. Assume $d > c\epsilon^2$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0, 1]. Instead we map to integers in big range: 1 to $N = n^3$.

If *h* were truly random min hash value is around N/(d+1)

Let *d* be true number of distinct value in stream. Assume $d > c\epsilon^2$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0, 1]. Instead we map to integers in big range: 1 to $N = n^3$.

If *h* were truly random min hash value is around N/(d+1)

t'th minimum hash value v to be around tN/(d+1).

Let *d* be true number of distinct value in stream. Assume $d > c\epsilon^2$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0, 1]. Instead we map to integers in big range: 1 to $N = n^3$.

If h were truly random min hash value is around N/(d+1)

t'th minimum hash value v to be around tN/(d+1).

Hence tN/v should be around d + 1

 $d_{t} = \frac{t}{t} \frac{u}{v}$ $d_{t} = \frac{t}{t} \frac{u}{v}$

t'th min hash value more robust estimator than minimum hash value and incorporates the averaging trick to reduce variance

Let *d* be actual number of distinct values in a given stream (assume $d > c/\epsilon^2$). Let \underline{D} be the output of the algorithm which is a random variable. $\mathcal{D} = \underbrace{\mathcal{D}}_{II}$

Let *d* be actual number of distinct values in a given stream (assume $d > c/\epsilon^2$). Let *D* be the output of the algorithm which is a random variable.

Lemma $\Pr[D < (1 - \epsilon)d] \le 1/6.$

Lemma

 $\Pr[D > (1 + \epsilon)d] \leq 1/6.$

Hence $\Pr[|D - d| \ge \epsilon d] < 1/3$. Can do median trick to reduce error probability to δ with $O(\log 1/\delta)$ parallel repetitions.

$$\left(\frac{c}{c^2} \operatorname{Lan}\right) \operatorname{La}\left(\frac{1}{s}\right)$$

For simplicity assume no collisions. Prove following as exercise.

Lemma

Since $N = n^3$ the probability that there are no collisions in h is at least 1 - 1/n.

Recall

Lemma

 $X = X_1 + X_2 + \ldots + X_k$ where X_1, X_2, \ldots, X_k are pairwise independent. Then $Var(X) = \sum_i Var(X_i)$.

$$\frac{1}{1-\epsilon} = 1 + \epsilon + \epsilon^2 \dots \Rightarrow 1 + \epsilon \leq \frac{1}{1-\epsilon} \leq 1 + \frac{3\epsilon}{2} \text{ for } \epsilon < 1/2.$$
$$\frac{1}{1+\epsilon} = 1 - \epsilon + \epsilon^2 \dots \Rightarrow 1 - \epsilon \leq \frac{1}{1+\epsilon} \leq 1 - \frac{\epsilon}{2}.$$

Let b_1, b_2, \ldots, b_d be the distinct values in the stream. Recall D = tN/v where v is the t'th smallest hash value seen.

- Each b_i hashed to a uniformly random bucket from 1 to N
- Consider buckets in interval $I = [1 ... \frac{tN}{d}]$
- Expected number of distinct items hashed into *I* is *t*
- Estimate $D < (1 \epsilon)d$ implies less than t hashed in interval $l_1 = [1 ... \frac{tN}{(1 \epsilon)d}]$ when expected is $\frac{t}{1 \epsilon}$
- Esitmate $D > (1 + \epsilon)d$ implies more than t hashed in interval $l_2 = [1..\frac{tN}{(1+\epsilon)d}]$ when expected is $\frac{t}{(1+\epsilon)}$.
- Use Chebyshev to analyse "bad" event probabilities via pairwise independence of hash function.

Lemma

$\Pr[D < (1 - \epsilon)d] \leq 1/6.$

Let b_1, b_2, \ldots, b_d be the distinct values in the stream. Recall D = tN/v where v is the t'th smallest hash value seen.

Lemma

$\Pr[D < (1 - \epsilon)d] \leq 1/6.$

Let b_1, b_2, \ldots, b_d be the distinct values in the stream. Recall D = tN/v where v is the t'th smallest hash value seen.

 $D < (1 - \epsilon)d$ iff $v > \frac{tN}{(1-\epsilon)d}$. Implies *less than t* hash values fell in the interval $I = [1 \cdot \cdot \frac{tN}{(1-\epsilon)d}]$. What is the probability of this event?

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$ is number that hashed to I

$$\Pr[D < (1 - \epsilon)d] = \Pr[X < t].$$

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

• Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon)t/d$.

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon)t/d$.
- $\mathbf{E}[X] \geq (1+\epsilon)t$.

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

Since h(b_i) is uniformly distributed in {1,..., N}, E[X_i] = Pr[X_i = 1] = t/((1-ε)d) ≥ (1 + ε)t/d.
E[X] > (1 + ε)t.

Recall $\Pr[D < (1 - \epsilon)d] = \Pr[X < t]$

Thus $D < (1 - \epsilon)d$ only if $X - E[X] < \epsilon t$. Use Chebyshev to upper bound this probability.

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon/2)t/d$
- $\mathbf{E}[X] \geq (1+\epsilon)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon/2)t/d$
- $\mathbf{E}[X] \geq (1+\epsilon)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 + 3\epsilon/2)t$.

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon/2)t/d$
- $\mathbf{E}[X] \geq (1+\epsilon)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 + 3\epsilon/2)t$.

By Chebyshev:

 $\begin{aligned} \Pr[X < t] \leq \Pr[|X - \mathsf{E}[X]| > \epsilon t] &\leq Var(X)/\epsilon^2 t^2 \\ &\leq (1 + 3\epsilon/2)/c \end{aligned}$

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon/2)t/d$
- $\mathbf{E}[X] \geq (1 + \epsilon)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 + 3\epsilon/2)t$.

By Chebyshev:

 $\begin{aligned} \Pr[X < t] \leq \Pr[|X - \mathsf{E}[X]| > \epsilon t] &\leq Var(X)/\epsilon^2 t^2 \\ &\leq (1 + 3\epsilon/2)/c \end{aligned}$

Choose c sufficiently large to ensure ratio is at most 1/6.

Lemma

$\Pr[D > (1+\epsilon)d] \le 1/6].$

Let b_1, b_2, \ldots, b_d be the distinct values in the stream. Recall D = tN/v where v is the t'th smallest hash value seen.

 $D > (1 + \epsilon)d$ iff $v < \frac{tN}{(1+\epsilon)d}$. Implies more than t hash values fell in the interval $[1..\frac{tN}{(1+\epsilon)d}]$.

Lemma

$\Pr[D > (1 + \epsilon)d] \le 1/6].$

Let b_1, b_2, \ldots, b_d be the distinct values in the stream. Recall D = tN/v where v is the t'th smallest hash value seen.

 $D > (1 + \epsilon)d$ iff $v < \frac{tN}{(1+\epsilon)d}$. Implies more than t hash values fell in the interval $[1...\frac{tN}{(1+\epsilon)d}]$. What is the probability of this event?

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

$\Pr[D > (1 + \epsilon)d] = \Pr[Y > t].$

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1+\epsilon)d} \leq (1-\epsilon/2)t/d$.
- $\mathbf{E}[X] \leq (1 \epsilon/2)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 \epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 - \epsilon/2)t$.

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1+\epsilon)d} \leq (1-\epsilon/2)t/d$.
- $\mathbf{E}[X] \leq (1 \epsilon/2)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 \epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 - \epsilon/2)t$.

By Chebyshev:

 $\begin{aligned} \Pr[X > t] &\leq \Pr[|X - \mathsf{E}[X]| > \epsilon t/2] &\leq 4 \operatorname{Var}(X)/\epsilon^2 t^2 \\ &\leq 4(1 - \epsilon/2)/c \end{aligned}$

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1+\epsilon)d} \leq (1-\epsilon/2)t/d$.
- $\mathbf{E}[X] \leq (1 \epsilon/2)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 \epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 - \epsilon/2)t$.

By Chebyshev:

 $\begin{aligned} \Pr[X > t] &\leq \Pr[|X - \mathsf{E}[X]| > \epsilon t/2] &\leq 4 \operatorname{Var}(X)/\epsilon^2 t^2 \\ &\leq 4(1 - \epsilon/2)/c \end{aligned}$

Choose c sufficiently large to ensure ratio is at most 1/6.

Chandra ((UIUC)
-----------	--------

Question

Where did we use the fact that $d \ge c/\epsilon^2$?

Question

Where did we use the fact that $d \ge c/\epsilon^2$?

Analysis need to be more careful in using $\frac{N}{(1-\epsilon)d}$ and $\frac{N}{(1+\epsilon)d}$ since we need to round them to nearest integer; technically have to use floor and cielings. If $d > c/\epsilon^2$ then rounding error of 1 does not matter — adds only ϵd error.

We avoid floor and ceiling etc in lecture for clarity.

Summary on Distinct Elements

- with $O(\frac{1}{\epsilon^2} \log(1/\delta) \log n)$ bits algorithm output estimate D such that $|D d| \le \epsilon d$ with probability at least (1δ)
- Best known memory bound: O(^{log(1/δ)}/_{ε²} + log n) bits and for any fixed δ this meets lower bound within constant factors. Both lower bound and upper bound quite technical potential reading for projects.
- Continuous monitoring: want estimate to be correct not only at end of stream but also at all intermediate steps. Can be done with $O(\frac{\log \log n + \log(1/\delta)}{\epsilon^2} + \log n)$ bits.
- Deletions allowed! Can also be done. More on this later.