CS 498ABD: Algorithms for Big Data

Frequency moments and Counting Distinct Elements

Lecture 05 September 8, 2020

Part I

Frequency Moments

Streaming model

- The input consists of *m* objects/items/tokens *e*₁, *e*₂, ..., *e*_{*m*} that are seen one by one by the algorithm.
- The algorithm has "limited" memory say for B tokens where B < m (often $B \ll m$) and hence cannot store all the input
- Want to compute interesting functions over input

Examples:

- Each token in a number from [n]
- High-speed network switch: tokens are packets with source, destination IP addresses and message contents.
- Each token is an edge in graph (graph streams)
- Each token in a point in some feature space
- Each token is a row/column of a matrix

Frequency Moment Problem(s)

- A fundamental class of problems
- Formally introduced in the seminal paper of Alon Matias, Szegedy titled "The Space Complexity of Approximating the Frequency Moments" in 1999.

Frequency Moment Problem(s)

- A fundamental class of problems
- Formally introduced in the seminal paper of Alon Matias, Szegedy titled "The Space Complexity of Approximating the Frequency Moments" in 1999.

Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream
- Consider vector $\mathbf{f} = (f_1, f_2, \dots, f_n)$
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. We can also consider the ℓ_k norm of f which is $(F_k)^{1/k}$.

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂,..., f_n)

• For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

• k = 0: F_0 is simply the number of *distinct elements* in stream

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- k = 0: F_0 is simply the number of *distinct elements* in stream
- k = 1: F_1 is the length of stream which is easy

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)

• For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- k = 0: F_0 is simply the number of *distinct elements* in stream
- k = 1: F_1 is the length of stream which is easy
- k = 2: F_2 is fundamental in many ways as we will see

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂,..., f_n)

• For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- k = 0: F_0 is simply the number of *distinct elements* in stream
- k = 1: F_1 is the length of stream which is easy
- k = 2: F_2 is fundamental in many ways as we will see
- $k = \infty$: F_{∞} is the maximum frequency (heavy hitters prob)

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂,..., f_n)

• For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- k = 0: F_0 is simply the number of *distinct elements* in stream
- k = 1: F_1 is the length of stream which is easy
- k = 2: F_2 is fundamental in many ways as we will see
- $k = \infty$: F_{∞} is the maximum frequency (heavy hitters prob)
- 0 < k < 1 and 1 < k < 2

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)

• For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- k = 0: F_0 is simply the number of *distinct elements* in stream
- k = 1: F_1 is the length of stream which is easy
- k = 2: F_2 is fundamental in many ways as we will see
- $k = \infty$: F_{∞} is the maximum frequency (heavy hitters prob)
- 0 < k < 1 and 1 < k < 2
- $2 < k < \infty$

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f_i^k ?

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f_i^k ?

Sketching

Given a stream and k can we create a *sketch/summary* of small size?

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f_i^k ?

Sketching

Given a stream and k can we create a *sketch/summary* of small size?

Questions easy if we have memory $\Omega(n)$: store **f** explicitly. Interesting when memory is $\ll n$. Ideally want to do it with $\log^c n$ memory for some fixed $c \ge 1$ (polylog(n)). Note that $\log n$ is roughly the memory required to store one token/number.

Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms.

Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms. Hence

- focus on $(1\pm\epsilon)$ -approximation or constant factor approximation
- and randomized algorithms

Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms. Hence

- focus on $(1\pm\epsilon)$ -approximation or constant factor approximation
- and randomized algorithms

Relative approximation

Let $g(\sigma)$ be a real-valued *non-negative* function over streams σ .

Definition

Let $\mathcal{A}(\sigma)$ be the real-valued output of a randomized streaming algorithm on stream σ . We say that \mathcal{A} provides an (α, β) relative approximation for a real-valued function g if for all σ :

$$\mathsf{Pr}\left[|rac{\mathcal{A}(\sigma)}{g(\sigma)}-1|>lpha
ight]\leqeta.$$

Our ideal goal is to obtain a (ϵ, δ) -approximation for any given $\epsilon, \delta \in (0, 1)$.

Additive approximation

Let $g(\sigma)$ be a real-valued function over streams σ . If $g(\sigma)$ can be negative, focus on additive approximation.

Definition

Let $\mathcal{A}(\sigma)$ be the real-valued output of a randomized streaming algorithm on stream σ . We say that \mathcal{A} provides an (α, β) additive approximation for a real-valued function g if for all σ :

$$\Pr\left[|\mathcal{A}(\sigma) - g(\sigma)| > lpha
ight] \leq eta.$$

When working with additive approximations some normalization/scaling is typically necessary. Our ideal goal is to obtain a (ϵ, δ) -approximation for any given $\epsilon, \delta \in (0, 1)$.

Part II

Estimating Distinct Elements

Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Offline solution?

Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Offline solution? via Dictionary data structure

Offline Solution

```
\begin{array}{l} \textbf{DistinctElements} \\ \textbf{Initialize dictionary } \mathcal{D} \text{ to be empty} \\ \textbf{\textit{k}} \leftarrow \textbf{0} \\ \textbf{While (stream is not empty) do} \\ \textbf{Let $e$ be next item in stream} \\ \textbf{If ($e \notin \mathcal{D}$) then} \\ \textbf{Insert $e$ into $\mathcal{D}$} \\ \textbf{\textit{k}} \leftarrow \textbf{\textit{k}} + \textbf{1} \\ \textbf{EndWhile} \\ \textbf{Output $k$} \end{array}
```

Offline Solution

```
\begin{array}{l} \textbf{DistinctElements} \\ & \text{Initialize dictionary } \mathcal{D} \text{ to be empty} \\ \textbf{\textit{k}} \leftarrow \textbf{0} \\ & \text{While (stream is not empty) do} \\ & \text{Let $e$ be next item in stream} \\ & \text{If ($e \not\in \mathcal{D}$) then} \\ & \text{Insert $e$ into $\mathcal{D}$} \\ & \textbf{\textit{k}} \leftarrow \textbf{\textit{k}} + \textbf{1} \\ & \text{EndWhile} \\ & \text{Output $k$} \end{array}
```

Which dictionary data structure?

Offline Solution

```
\begin{array}{l} \textbf{DistinctElements} \\ & \text{Initialize dictionary } \mathcal{D} \text{ to be empty} \\ \textbf{\textit{k}} \leftarrow \textbf{0} \\ & \text{While (stream is not empty) do} \\ & \text{Let $e$ be next item in stream} \\ & \text{If ($e \not\in \mathcal{D}$) then} \\ & \text{Insert $e$ into $\mathcal{D}$} \\ & \textbf{\textit{k}} \leftarrow \textbf{\textit{k}} + \textbf{1} \\ & \text{EndWhile} \\ & \text{Output $k$} \end{array}
```

Which dictionary data structure?

- Binary search trees: space O(k) and total time $O(m \log k)$
- Hashing: space O(k) and expected time O(m).

- Use hash function $h: [n] \rightarrow [N]$ for some N polynomial in n.
- Store only the minimum hash value seen. That is min_{ei} h(ei).
 Need only O(log n) bits since numbers are in range [N].

- Use hash function $h: [n] \rightarrow [N]$ for some N polynomial in n.
- Store only the minimum hash value seen. That is min_{ei} h(ei).
 Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

• Assume *idealized* hash function: $h: [n] \rightarrow [0, 1]$ that is fully random over the real interval

- Use hash function $h: [n] \rightarrow [N]$ for some N polynomial in n.
- Store only the minimum hash value seen. That is min_{ei} h(ei).
 Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

- Assume *idealized* hash function: $h: [n] \rightarrow [0, 1]$ that is fully random over the real interval
- Suppose there are k distinct elements in the stream

- Use hash function $h: [n] \rightarrow [N]$ for some N polynomial in n.
- Store only the minimum hash value seen. That is min_{ei} h(ei).
 Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

- Assume *idealized* hash function: $h: [n] \rightarrow [0, 1]$ that is fully random over the real interval
- Suppose there are k distinct elements in the stream
- What is the expected value of the minimum of hash values?

Lemma

Suppose $X_1, X_2, ..., X_k$ are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

Lemma

Suppose $X_1, X_2, ..., X_k$ are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

```
\begin{array}{l} \text{DistinctElements} \\ \text{Assume ideal hash function } h:[n] \rightarrow [0,1] \\ y \leftarrow 1 \\ \text{While (stream is not empty) do} \\ \text{Let $e$ be next item in stream} \\ y \leftarrow \min(y,h(e)) \\ \text{EndWhile} \\ \text{Output } \frac{1}{y} - 1 \end{array}
```

Lemma

Suppose $X_1, X_2, ..., X_k$ are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

Lemma

Suppose $X_1, X_2, ..., X_k$ are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

Lemma

Suppose $X_1, X_2, ..., X_k$ are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y^2] = \frac{2}{(k+1)(k+2)}$ and $Var(Y) = \frac{k}{(k+1)^2(k+2)} \le \frac{1}{(k+1)^2}$.

Apply standard methodology to go from exact statistical estimator to good bounds:

- ullet average $m{h}$ parallel and independent estimates to reduce variance
- apply Chebyshev to show that the average estimator is a $(1 + \epsilon)$ -approximation with constant probability
- use preceding and median trick with $O(\log 1/\delta)$ parallel copies to obtain a $(1 + \epsilon)$ -approximation with probability (1δ)

- Run basic estimator independently and in parallel h times to obtain X₁, X₂, ..., X_h
- 2 Let $Z = \frac{1}{h}X_i$
- Output $\frac{1}{z} 1$

- Run basic estimator independently and in parallel h times to obtain X₁, X₂,..., X_h
- 2 Let $Z = \frac{1}{h}X_i$
- 3 Output $\frac{1}{Z} 1$

Claim: $E[Z] = \frac{1}{(k+1)}$ and $Var(Z) \le \frac{1}{h} \frac{1}{(k+1)^2}$.

- Run basic estimator independently and in parallel h times to obtain X₁, X₂,..., X_h
- 2 Let $Z = \frac{1}{h}X_i$
- 3 Output $\frac{1}{Z} 1$

Claim: $E[Z] = \frac{1}{(k+1)}$ and $Var(Z) \le \frac{1}{h} \frac{1}{(k+1)^2}$.

Choosing
$$h = 1/(\eta \epsilon^2)$$
 and using Chebyshev:
 $\Pr\left[|Z - \frac{1}{k+1}| \ge \frac{\epsilon}{k+1}\right] \le \eta.$

- Run basic estimator independently and in parallel h times to obtain X₁, X₂,..., X_h
- 2 Let $Z = \frac{1}{h}X_i$
- 3 Output $\frac{1}{Z} 1$

Claim:
$$E[Z] = \frac{1}{(k+1)}$$
 and $Var(Z) \leq \frac{1}{h} \frac{1}{(k+1)^2}$

Choosing
$$h = 1/(\eta \epsilon^2)$$
 and using Chebyshev:
 $\Pr\left[|Z - \frac{1}{k+1}| \ge \frac{\epsilon}{k+1}\right] \le \eta.$

Hence $\Pr\left[\left|\left(\frac{1}{z}-1\right)-k\right|\right] \geq O(\epsilon)k \leq \eta$.

- Run basic estimator independently and in parallel h times to obtain X₁, X₂, ..., X_h
- 2 Let $Z = \frac{1}{h}X_i$
- 3 Output $\frac{1}{Z} 1$
- Claim: $E[Z] = \frac{1}{(k+1)}$ and $Var(Z) \le \frac{1}{h} \frac{1}{(k+1)^2}$.

Choosing
$$h = 1/(\eta \epsilon^2)$$
 and using Chebyshev:
 $\Pr\left[|Z - \frac{1}{k+1}| \ge \frac{\epsilon}{k+1}\right] \le \eta$.

Hence $\Pr\left[\left|\left(\frac{1}{Z}-1\right)-k\right|\right] \geq O(\epsilon)k \leq \eta$.

Repeat $O(\log 1/\delta)$ times and output median. Error probability $< \delta$.

Algorithm via regular hashing

Do not have idealized hash function.

- Use $h: [n] \rightarrow [N]$ for appropriate choice of N
- Use pairwise independent hash family \mathcal{H} so that random $h \in \mathcal{H}$ can be stored in small space and computation can be done in small memory and fast

Several variants of idea with different trade offs between

- memory
- time to process each new element of the stream
- approximation quality and probability of success