CS 498ABD: Algorithms for Big Data

Limited independence and Hashing

Lecture 05/06 September 8 and 10, 2020

Pseudorandomness

Randomized algorithms rely on independent random bits

Psuedorandomness: when can we *avoid* or *limit* number of random bits?

- Motivated by fundamental theoretical questions and applications
- Applications: hashing, cryptography, streaming, simulations, derandomization, ...

• A large topic in TCS with many connections to mathematics. This course: need *t*-wise independent variables and hashing

Part I

Pairwise and *t*-wise independent random variables

Definition

Discrete random variables X_1, X_2, \ldots, X_n from a range B are independent if for all $b_1, b_2, \ldots, b_n \in B$

$$\Pr[X_1 = b_1, X_2 = b_2, \dots, X_n = b_n] = \prod_{i=1}^n \Pr[X_i = b_i].$$

Uniformly distributed if $\Pr[X_i = b] = 1/|B|$ for all $i, b \in B$.

Definition

Discrete random variables X_1, X_2, \ldots, X_n from a range B are independent if for all $b_1, b_2, \ldots, b_n \in B$

$$\Pr[X_1 = b_1, X_2 = b_2, \dots, X_n = b_n] = \prod_{i=1}^n \Pr[X_i = b_i].$$

Uniformly distributed if $\Pr[X_i = b] = 1/|B|$ for all $i, b \in B$.

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are **pairwise** independent if for all $1 \le i < j \le n$ and for all $b, b' \in B$,

$$\Pr[X_i = b, X_j = b'] = \Pr[X_i = b] \cdot \Pr[X_j = b'].$$

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are **pairwise** independent if for all $1 \le i < j \le n$ and for all $b, b' \in B$,

$$\Pr[X_i = b, X_j = b'] = \Pr[X_i = b] \cdot \Pr[X_j = b'].$$

If X_1, X_2, \ldots, X_n are independent than they are pairwise independent but converse is not necessarily true

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are **pairwise** independent if for all $1 \le i < j \le n$ and for all $b, b' \in B$,

$$\Pr[X_i = b, X_j = b'] = \Pr[X_i = b] \cdot \Pr[X_j = b'].$$

If X_1, X_2, \ldots, X_n are independent than they are pairwise independent but converse is not necessarily true

Example: X_1, X_2 are independent bits (variables from $\{0, 1\}$) and $X_3 = X_1 \oplus X_2$. X_1, X_2, X_3 are pairwise independent but not independent.

t-wise independence

Generalizing pairwise independence:

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are t-wise independent for integer t > 1 $X_{i_1}, X_{i_2}, \ldots, X_{i_t}$ are independent for any $i_1 \neq i_2 \neq \ldots \neq i_t \in \{1, 2, \ldots, n\}$.

As t increases the variables become more and more independent. If t = n the variables are independent.

Motivation for pairwise/*t*-wise independence from streaming

Want *n* uniformly distr random variables X_1, X_2, \ldots, X_n , say bits But cannot store *n* bits because *n* is too large.

Achievable:

- storage of O(log n) random bits
- given *i* where $1 \le i \le n$ can generate X_i in $O(\log n)$ time
- X_1, X_2, \ldots, X_n are pairwise independent and uniform
- Hence, with small storage, can generate *n* random variables "on the fly". In several applications, pairwise independence (or generalizations) suffice

Generating pairwise independent bits

Assume for simplicity $n = 2^k - 1$ (otherwise consider nearest power of 2). Hence $k = O(\log n)$

- Let Y_1, Y_2, \ldots, Y_k be independent bits
- For any $S \subset \{1, 2, \dots, k\}$, $S \neq \emptyset$, define $X_S = \bigoplus_{i \in S} Y_i$
- $2^k 1$ random variables X_s

Generating pairwise independent bits

Assume for simplicity $n = 2^k - 1$ (otherwise consider nearest power of 2). Hence $k = O(\log n)$

- Let Y_1, Y_2, \ldots, Y_k be independent bits
- For any $S \subset \{1, 2, \dots, k\}$, $S \neq \emptyset$, define $X_S = \bigoplus_{i \in S} Y_i$
- $2^k 1$ random variables X_s

Claim: If $S \neq T$ then X_S and X_T are independent

Generating pairwise independent bits

Assume for simplicity $n = 2^k - 1$ (otherwise consider nearest power of 2). Hence $k = O(\log n)$

- Let Y_1, Y_2, \ldots, Y_k be independent bits
- For any $S \subset \{1, 2, \dots, k\}$, $S \neq \emptyset$, define $X_S = \bigoplus_{i \in S} Y_i$
- $2^k 1$ random variables X_S
- **Claim:** If $S \neq T$ then X_S and X_T are independent

Proof.

 X_S and X_T are both uniformaly distributed over $\{0, 1\}$. Suppose $S - T \neq \emptyset$. Even knowing all outcomes of variables in T the variables in S - T are independent and hence $\Pr[X_S = 0 \mid T] = 1/2$ and hence X_S is independent of X_T . If $S \subset T$ then apply same argument to T - S.

Pairwise independent variables with larger range

Suppose we want *n* pairwise independent random variables in range $\{0, 1, 2, ..., m-1\}$ where $m = 2^k - 1$ for some *k*

Pairwise independent variables with larger range

Suppose we want *n* pairwise independent random variables in range $\{0, 1, 2, ..., m-1\}$ where $m = 2^k - 1$ for some *k*

- Now each X_i needs to be a log m bit string
- Use preceding construction for each bit independently
- Requires O(log m log n) bits total
- Can in fact do $O(\log n + \log m)$ bits

Assume n = m = p where p is a prime number

Want p pairwise random variables distributed uniformly in $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$

Assume n = m = p where p is a prime number

Want p pairwise random variables distributed uniformly in $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$

- Choose a, b ∈ {0, 1, 2, ..., p − 1} uniformly and independently at random. Requires 2 [log p] random bits
- For $0 \le i \le p-1$ set $X_i = ai + b \mod p$
- Note that one needs to store only a, b, p and can generate X_i efficiently on the fly from i

Assume n = m = p where p is a prime number

Want p pairwise random variables distributed uniformly in $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$

- Choose a, b ∈ {0, 1, 2, ..., p − 1} uniformly and independently at random. Requires 2 [log p] random bits
- For $0 \le i \le p-1$ set $X_i = ai + b \mod p$
- Note that one needs to store only a, b, p and can generate X_i efficiently on the fly from i

Exercise: Prove that each X_i is uniformly distributed in \mathbb{Z}_p . **Claim:** For $i \neq j$, X_i and X_j are independent.

Claim: For $i \neq j$, X_i and X_j are independent.

Some math required:

Z_p is a field for any prime p. That is {0,1,2,..., p − 1} forms a commutative group under addition mod p (easy). And more importantly {1,2,..., p − 1} forms a commutative group under multiplication.

Some math required...

Lemma (LemmaUnique)

Let **p** be a prime number,

- x: an integer number in $\{1, \ldots, p-1\}$.
- \implies There exists a unique y s.t. $xy = 1 \mod p$.

In other words: For every element there is a unique inverse.

 $\implies \mathbb{Z}_p = \{0, 1, \dots, p-1\}$ when working modulo p is a *field*.

Proof of LemmaUnique

Claim

Let p be a prime number. For any $x, y, z \in \{1, ..., p-1\}$ s.t. $y \neq z$, we have that $xy \mod p \neq xz \mod p$.

Proof.

Assume for the sake of contradiction $xy \mod p = xz \mod p$.

$$\begin{aligned} x(y-z) &= 0 \mod p \\ \implies p \text{ divides } x(y-z) \\ \implies p \text{ divides } y-z \\ \implies y-z = 0 \\ \implies y = z. \end{aligned}$$

And that is a contradiction.

Proof of LemmaUnique

Lemma (LemmaUnique)

Let **p** be a prime number,

- x: an integer number in $\{1, \ldots, p-1\}$.
- \implies There exists a unique y s.t. $xy = 1 \mod p$.

Proof.

By the above claim if $xy = 1 \mod p$ and $xz = 1 \mod p$ then y = z. Hence uniqueness follows.

Proof of LemmaUnique

Lemma (LemmaUnique)

Let **p** be a prime number,

x: an integer number in $\{1, \ldots, p-1\}$.

 \implies There exists a unique y s.t. $xy = 1 \mod p$.

Proof.

By the above claim if $xy = 1 \mod p$ and $xz = 1 \mod p$ then y = z. Hence uniqueness follows.

Existence. For any $x \in \{1, \dots, p-1\}$ we have that $\{x * 1 \mod p, x * 2 \mod p, \dots, x * (p-1) \mod p\} = \{1, 2, \dots, p-1\}.$ \implies There exists a number $y \in \{1, \dots, p-1\}$ such that $xy = 1 \mod p$.

Proof of pairwise independence

Lemma

If $i \neq j$ then for each $(r, s) \in \mathbb{Z}_p \times \mathbb{Z}_p$ there is exactly **one** pair $(a, b) \in \mathbb{Z}_p \times \mathbb{Z}_p$ such that $ai + b \mod p = r$ and $aj + b \mod p = s$.

Proof.

Solve the two equations:

$ai + b = r \mod p$ and $aj + b = s$	mod p
--------------------------------------	-------

We get $a = \frac{r-s}{i-i} \mod p$ and $b = r - ax \mod p$.

One-to-one correspondence between (a, b) and (r, s)

Proof of pairwise independence

Lemma

If $i \neq j$ then for each $(r, s) \in \mathbb{Z}_p \times \mathbb{Z}_p$ there is exactly **one** pair $(a, b) \in \mathbb{Z}_p \times \mathbb{Z}_p$ such that $ai + b \mod p = r$ and $aj + b \mod p = s$.

Proof.

Solve the two equations:

ai + b = r	mod p	and	aj + b = s	mod p

We get $a = \frac{r-s}{i-i} \mod p$ and $b = r - ax \mod p$.

One-to-one correspondence between (a, b) and (r, s) \Rightarrow if (a, b) is uniformly at random from $\mathbb{Z}_p \times \mathbb{Z}_p$ then (r, s) is uniformly at random from $\mathbb{Z}_p \times \mathbb{Z}_p$. X_i, X_j independent.

Chandra (UIUC)	CS498ABD	15	Fall 2020	15 / 42
----------------	----------	----	-----------	---------

Pairwise independence for n, m powers of 2

We saw how to create *n* pairwise independent random variables when n = m = p where *p* is a prime number. We want *n*, *m* arbitrary. Easy to assume *n* is power of 2 (discard the unnecessary rvs) but harder if *m* is not power of 2. Here we only consider powers of 2.

n > m is the more difficult case and also relevant.

The following is a fundamental theorem on finite fields.

Theorem

Every finite field \mathbb{F} has order p^k for some prime p and some integer $k \ge 1$. For every prime p and integer $k \ge 1$ there is a finite field \mathbb{F} of order p^k and is unique up to isomorphism.

We will assume *n* and *m* are powers of **2**. From above can assume we have a field \mathbb{F} of size $n = 2^k$.

Chandra (UIUC)	CS498ABD	16	Fall 2020	16 / 42
----------------	----------	----	-----------	---------

Pairwise independence for n, m powers of 2

We have a field \mathbb{F} of size $n = 2^k$.

Generate *n* pairwise independent random variables from [*n*] to [*n*] by picking random $a, b \in \mathbb{F}$ and setting $X_i = ai + b$ (operations in \mathbb{F}). From previous proof (we only used that \mathbb{Z}_p is a field) X_i are pairwise independent.

Now $X_i \in [n]$. Truncate X_i to [m] by dropping the most significant $\log n - \log m$ bits. Resulting variables are still pairwise independent (both n, m being powers of 2 useful here).

Need to only store a, b, n and can generate $X_i = ai + b$. Skipping details on computational aspects of \mathbb{F} which are closely tied to the proof of the theorem on fields.

t-wise independence

Generalizing pairwise independence:

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are t-wise independent for integer t > 1 $X_{i_1}, X_{i_2}, \ldots, X_{i_t}$ are independent for any $i_1 \neq i_2 \neq \ldots \neq i_t \in \{1, 2, \ldots, n\}$.

As t increases the variables become more and more independent. If t = n the variables are independent.

Fact: For any n, m one can create n random t-wise independent random variables from the range [m] using $O(t(\log n + \log m))$ true random bits. Can store only bits and generate the variables on the fly in $O(t \operatorname{polylog}(m + n))$ time.

t-wise independence

Construction using polynomials

- Let \mathbb{F} be a field
- Pick *t* random (with replacement) numbers from \mathbb{F} : $a_0, a_1, \ldots, a_{t-1}$
- For each $i \in [|\mathbb{F}|]$ set $X_i = a_0 + a_1 i + a_2 i^2 + \ldots + a_{t-1} i^{t-1}$

Pairwise Independence and Chebyshev's Inequality

Chebyshev's Inequality

For $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$ equivalently for any t > 0, $\Pr[|X - E[X]| \ge t\sigma_X] \le \frac{1}{t^2}$ where $\sigma_X = \sqrt{Var(X)}$ is the standard deviation of X.

Suppose $X = X_1 + X_2 + \ldots + X_n$. If X_1, X_2, \ldots, X_n are independent then $Var(X) = \sum_i Var(X_i)$. Recall application to random walk on line

Pairwise Independence and Chebyshev's Inequality

Chebyshev's Inequality

For $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$ equivalently for any t > 0, $\Pr[|X - E[X]| \ge t\sigma_X] \le \frac{1}{t^2}$ where $\sigma_X = \sqrt{Var(X)}$ is the standard deviation of X.

Suppose $X = X_1 + X_2 + ... + X_n$. If $X_1, X_2, ..., X_n$ are independent then $Var(X) = \sum_i Var(X_i)$. Recall application to random walk on line

Lemma

Suppose $X = \sum_{i} X_{i}$ and $X_{1}, X_{2}, \dots, X_{n}$ are pairwise independent, then $Var(X) = \sum_{i} Var(X_{i})$.

Part II

Hashing

Chandra (UIUC)

Balls and Bins and Load Balancing

Suppose we want to distribute jobs to machines in a simple way to achieve load balancing.

Throwing each new job into a random machine is a simple, distributed, oblivious strategy with many benefits

Balls and bins is simple mathematical model to analyze the core principles

Balls and Bins \rightarrow Hashing

Hashing:

- Want a "function" $h: \mathcal{U} \to B$.
- Want h to behave like a "random function". That is for any distinct $x_1, x_2, \ldots, x_n \in \mathcal{U}$ we have $h(x_1), h(x_2), \ldots, h(x_n)$ to be uniformly distributed over B and independent.
- But want *h* to be efficiently computable and stored in small memory

Balls and Bins \rightarrow Hashing

Hashing:

- Want a "function" $h: \mathcal{U} \to B$.
- Want h to behave like a "random function". That is for any distinct x₁, x₂,..., x_n ∈ U we have h(x₁), h(x₂),..., h(x_n) to be uniformly distributed over B and independent.
- But want *h* to be efficiently computable and stored in small memory

Many applications: hash tables as dictionary data structure, cryptography/security, pseudorandomness, ...

Dictionary Data Structure

- **1** \mathcal{U} : universe of keys : numbers, strings, images, etc.
- ② Data structure to store a subset $S \subseteq \mathcal{U}$
- **Operations:**
 - **O** Search/look up: given $x \in \mathcal{U}$ is $x \in S$?
 - **2** Insert: given $x \not\in S$ add x to S.
 - **3 Delete**: given $x \in S$ delete x from S
- Static structure: *S* given in advance or changes very infrequently, main operations are lookups.
- Oynamic structure: S changes rapidly so inserts and deletes as important as lookups.

Dictionary Data Structure

- Standard dictionary data structures such binary search trees rely on universe U being a total order and hence can be compared
- Comparison based data structures take Θ(log n) comparisons when storing n items from U and typically require pointer based data structure
- All objects represented in computers are essentially strings so technically one can use a comparison based data structure always
- Disadvantages of comparison based data structures:
 - Comparisons are expensive for many objects
 - Dynamic memory allocation and pointers
- Hashing based dictionaries:
 - O(1) expected time operations
 - Depending on implementation, can avoid pointers

Hash Table data structure:

- A (hash) table/array T of size m (the table size).
- **2** A hash function $h: \mathcal{U} \to \{0, \ldots, m-1\}$.
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Hash Table data structure:

- A (hash) table/array T of size m (the table size).
- **2** A hash function $h: \mathcal{U} \to \{0, \ldots, m-1\}$.
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Hash Table data structure:

- A (hash) table/array T of size m (the table size).
- **2** A hash function $h: \mathcal{U} \to \{0, \ldots, m-1\}$.
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- Each element x ∈ S hashes to a distinct slot in T. Store x in slot h(x)
- **2** Lookup: Given $y \in U$ check if T[h(y)] = y. O(1) time!

Hash Table data structure:

- A (hash) table/array T of size m (the table size).
- **2** A hash function $h: \mathcal{U} \to \{0, \ldots, m-1\}$.
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- Each element x ∈ S hashes to a distinct slot in T. Store x in slot h(x)
- **2** Lookup: Given $y \in U$ check if T[h(y)] = y. O(1) time!

Collisions unavoidable if $|\mathcal{T}| < |\mathcal{U}|$. Several techniques to handle them.

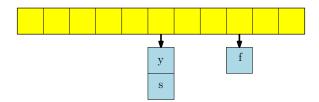
Chandra (UIUC)

Handling Collisions: Chaining

Collision: h(x) = h(y) for some $x \neq y$.

Chaining/Open hashing to handle collisions:

- For each slot *i* store all items hashed to slot *i* in a linked list. *T*[*i*] points to the linked list
- **2** Lookup: to find if $y \in \mathcal{U}$ is in \mathcal{T} , check the linked list at $\mathcal{T}[h(y)]$. Time proportion to size of linked list.



Chain length determines time for operations. Ideally want O(1).

Chandra (UIUC)	CS498ABD	27	Fall 2020	27 / 42

Parameters: $N = |\mathcal{U}|$ (very large), $m = |\mathcal{T}|$, n = |S|Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot i.

Parameters: $N = |\mathcal{U}|$ (very large), $m = |\mathcal{T}|$, n = |S|Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot *i*. Any *S* containing all of these is a **very very bad set for** *h*!

Parameters: $N = |\mathcal{U}|$ (very large), $m = |\mathcal{T}|$, n = |S|Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot *i*. Any *S* containing all of these is a **very very bad set for** *h*! Such a bad set may lead to O(m) lookup time!

Parameters: $N = |\mathcal{U}|$ (very large), $m = |\mathcal{T}|$, n = |S|Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot *i*. Any *S* containing all of these is a **very very bad set for** *h*! Such a bad set may lead to O(m) lookup time!

In practice:

- Dictionary applications: choose a simple hash function and hope that worst-case bad sets do not arise
- Crypto applications: create "hard" and "complex" function very carefully which makes finding collisions difficult

Hashing from a theoretical point of view

- Consider a family *H* of hash functions with *good properties* and choose *h* randomly from *H*
- Guarantees: small # collisions in expectation for any given **S**.
- \mathcal{H} should allow efficient sampling.
- Each *h* ∈ *H* should be efficient to evaluate and require small memory to store.

In other worse a hash function is a "pseudorandom" function

Question: What are good properties of \mathcal{H} in distributing data?

Question: What are good properties of \mathcal{H} in distributing data?

Uniform: Consider any element x ∈ U. Then if h ∈ H is picked randomly then x should go into a random slot in T. In other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.

Question: What are good properties of \mathcal{H} in distributing data?

- Uniform: Consider any element x ∈ U. Then if h ∈ H is picked randomly then x should go into a random slot in T. In other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.
- (2)-Strongly Universal: Consider any two distinct elements x, y ∈ U. Then if h ∈ H is picked randomly then h(x) and h(y) should be independent random variables.

Question: What are good properties of \mathcal{H} in distributing data?

- Uniform: Consider any element x ∈ U. Then if h ∈ H is picked randomly then x should go into a random slot in T. In other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.
- (2)-Strongly Universal: Consider any two distinct elements x, y ∈ U. Then if h ∈ H is picked randomly then h(x) and h(y) should be independent random variables.

Note: Fix $x \in \mathcal{U}$. h(x) is a random variable with range $\{0, 1, 2, \ldots, m-1\}$. Strong universal hash family implies that the variables $h(x), x \in S$ are uniform and pairwise independent random variables.

Universal Hashing

Question: What are good properties of \mathcal{H} in distributing data?

 (2)-Universal: Consider any two distinct elements x, y ∈ U. Then if h ∈ H is picked randomly then the probability of a collision between x and y should be at most 1/m. In other words Pr[h(x) = h(y)] ≤ 1/m.

Note: we do not insist on uniformity.

Definition

A family of hash functions \mathcal{H} is (2-)**strongly universal** if for all distinct $x, y \in \mathcal{U}$, h(x) and h(y) are independent for h chosen uniformly at random from \mathcal{H} , and for all x, h(x) is uniformly distributed.

Definition

A family of hash functions \mathcal{H} is (2-)**universal** if for all distinct $x, y \in \mathcal{U}$, $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \leq 1/m$ where *m* is the table size.

Definition

A family of hash functions \mathcal{H} is (2-)**strongly universal** if for all distinct $x, y \in \mathcal{U}$, h(x) and h(y) are independent for h chosen uniformly at random from \mathcal{H} , and for all x, h(x) is uniformly distributed.

Definition

A family of hash functions \mathcal{H} is (2-)**universal** if for all distinct $x, y \in \mathcal{U}$, $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \leq 1/m$ where *m* is the table size.

Generalizes to t-strongly universal and t-universal families. Need property for any tuple of t items.

Question: Fixing set *S*, what is the *expected* time to look up $x \in S$ when *h* is picked uniformly at random from \mathcal{H} ?

- $\ell(x)$: the size of the list at T[h(x)]. We want $E[\ell(x)]$
- For $y \in S$ let $D_y = 1$ if h(y) = h(x), else 0. $\ell(x) = \sum_{y \in S} D_y$

Question: Fixing set *S*, what is the *expected* time to look up $x \in S$ when *h* is picked uniformly at random from \mathcal{H} ?

- $\ell(x)$: the size of the list at T[h(x)]. We want $E[\ell(x)]$
- Solution For $y \in S$ let $D_y = 1$ if h(y) = h(x), else 0. $\ell(x) = \sum_{y \in S} D_y$
- $$\begin{split} \mathsf{E}[\ell(x)] &= \sum_{y \in S} \mathsf{E}[D_y] = \sum_{y \in S} \Pr[h(x) = h(y)] \\ &\leq 1 + \sum_{y \in S, y \neq x} \frac{1}{m} \quad (\mathcal{H} \text{ is a universal hash family}) \\ &\leq 1 + (|S| 1)/m \leq 2 \quad \text{if } |S| \leq m \end{split}$$

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

Answer: O(n/m).

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

- O(1) expected time also holds for insertion.
- Analysis assumes static set S but holds as long as S is a set formed with at most O(m) insertions and deletions.
- Worst-case: look up time can be large! How large? In principle Ω(n) time but if H has good properties then O(√n) or O(log n/ log log n) with high probability.

Universal Hash Family

Universal: \mathcal{H} such that $\Pr[h(x) = h(y)] = 1/m$.

All functions

- \mathcal{H} : Set of all possible functions $h: \mathcal{U} \to \{0, \dots, m-1\}$.
 - Universal.

Universal Hash Family

Universal: \mathcal{H} such that $\Pr[h(x) = h(y)] = 1/m$.

All functions

- \mathcal{H} : Set of all possible functions $h: \mathcal{U} \to \{0, \dots, m-1\}$.
 - Universal.
 - $|\mathcal{H}| = m^{|\mathcal{U}|}$
 - representing *h* requires $|\mathcal{U}| \log m \text{Not } O(1)!$

Universal Hash Family

Universal: \mathcal{H} such that $\Pr[h(x) = h(y)] = 1/m$.

All functions

- \mathcal{H} : Set of all possible functions $h: \mathcal{U} \to \{0, \dots, m-1\}$.
 - Universal.
 - $|\mathcal{H}| = m^{|\mathcal{U}|}$
 - representing *h* requires $|\mathcal{U}| \log m \text{Not } O(1)!$

We need compactly representable universal family.

Compact Stongly Universal Hash Family

Similar to construction of N pairwise independent random variables with range [m].

The function is given by the algorithm to construct X_i given i.

Can do with $O(\log N)$ bits of storage since $N \ge m$ in hashing application.

Parameters: $N = |\mathcal{U}|, m = |\mathcal{T}|, n = |\mathcal{S}|$. Assumption $m \leq N$.

- Choose a prime number p ≥ N. Z_p = {0, 1, ..., p − 1} is a field.
- ② For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p-1)$.

Parameters: $N = |\mathcal{U}|, m = |\mathcal{T}|, n = |\mathcal{S}|$. Assumption $m \leq N$.

- Choose a prime number p ≥ N. Z_p = {0, 1, ..., p − 1} is a field.
- O For $a, b ∈ ℤ_p$, a ≠ 0, define the hash function $h_{a,b}$ as
 $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p-1)$.

Theorem

 ${\cal H}$ is a universal hash family.

Parameters: $N = |\mathcal{U}|, m = |\mathcal{T}|, n = |\mathcal{S}|$. Assumption $m \leq N$.

- Choose a prime number p ≥ N. Z_p = {0, 1, ..., p − 1} is a field.
- **②** For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p-1)$.

Theorem

 ${\cal H}$ is a universal hash family.

Comments:

- Hash family is of small size, easy to sample from.
- Easy to store a hash function (a, b have to be stored) and evaluate it.

Chandra (UIUC)

- g(x) = ax + b is uniformly distributed in {0, 1, ..., p − 1} but h(x) is not uniformly distributed unless m = p.
- $\Pr[h(x) = i] \le 2/m$ for any i.

Hashing:

- To insert x in dictionary store x in table in location h(x)
- 2 To lookup y in dictionary check contents of location h(y)

Hashing:

- To insert x in dictionary store x in table in location h(x)
- 2 To lookup y in dictionary check contents of location h(y)

Bloom Filter: tradeoff space for false positives

- Storing items in dictionary expensive in terms of memory, especially if items are unwieldy objects such a long strings, images, etc with *non-uniform* sizes.
- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- **(3)** To lookup y if bit in location h(y) is **1** say yes, else no.

Bloom Filter: tradeoff space for false positives

- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- 2 To lookup y if bit in location h(y) is 1 say yes, else no
- So false negatives but false positives possible due to collisions

Reducing false positives:

- Pick k hash functions h_1, h_2, \ldots, h_k independently
- 2 To insert x, for each i, set bit in location $h_i(x)$ in table i to 1
- 3 To lookup y compute $h_i(y)$ for $1 \le i \le k$ and say yes only if each bit in the corresponding location is 1, otherwise say no. If probability of false positive for one hash function is $\alpha < 1$ then with k independent hash function it is α^k .

Take away points

- Hashing is a powerful and important technique for dictionaries. Many practical applications.
- 2 Randomization fundamental to understanding hashing.
- 3 Good and efficient hashing possible in theory and practice with proper definitions (universal, perfect, etc).
- Related ideas of creating a compact fingerprint/sketch for objects is very powerful in theory and practice.

Practical Issues

Hashing used typically for integers, vectors, strings etc.

- Universal hashing is defined for integers. To implement for other objects need to map objects in some fashion to integers (via representation)
- Practical methods for various important cases such as vectors, strings are studied extensively. See http://en.wikipedia.org/wiki/Universal_hashing for some pointers.
- Details on Cuckoo hashing and its advantage over chaining http://en.wikipedia.org/wiki/Cuckoo_hashing.
- Recent important paper bridging theory and practice of hashing.
 "The power of simple tabulation hashing" by Mikkel Thorup and Mihai Patrascu, 2011. See http://en.wikipedia.org/wiki/Tabulation_hashing

Chandra (UIUC)