
CS 498ABD: Algorithms for Big Data

Limited independence and
Hashing
Lecture 05/06
September 8 and 10, 2020

Chandra (UIUC) CS498ABD 1 Fall 2020 1 / 42

Pseudorandomness

Randomized algorithms rely on independent random bits

Psuedorandomness: when can we avoid or limit number of random
bits?

Motivated by fundamental theoretical questions and applications

Applications: hashing, cryptography, streaming, simulations,
derandomization, . . .

A large topic in TCS with many connections to mathematics.

This course: need t-wise independent variables and hashing

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 42

Part I

Pairwise and t-wise independent
random variables

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 42

Pairwise independent random variables

Definition

Discrete random variables X1,X2, . . . ,Xn from a range B are
independent if for all b1, b2, . . . , bn ∈ B

Pr[X1 = b1,X2 = b2, . . . ,Xn = bn] =
n∏

i=1

Pr[Xi = bi] .

Uniformly distributed if Pr[Xi = b] = 1/|B| for all i , b ∈ B.

Definition

Random variables X1,X2, . . . ,Xn from a range B are pairwise
independent if for all 1 ≤ i < j ≤ n and for all b, b′ ∈ B,

Pr[Xi = b,Xj = b′] = Pr[Xi = b] · Pr[Xj = b′] .

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 42

Pairwise independent random variables

Definition

Discrete random variables X1,X2, . . . ,Xn from a range B are
independent if for all b1, b2, . . . , bn ∈ B

Pr[X1 = b1,X2 = b2, . . . ,Xn = bn] =
n∏

i=1

Pr[Xi = bi] .

Uniformly distributed if Pr[Xi = b] = 1/|B| for all i , b ∈ B.

Definition

Random variables X1,X2, . . . ,Xn from a range B are pairwise
independent if for all 1 ≤ i < j ≤ n and for all b, b′ ∈ B,

Pr[Xi = b,Xj = b′] = Pr[Xi = b] · Pr[Xj = b′] .

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 42

Pairwise independent random variables

Definition

Random variables X1,X2, . . . ,Xn from a range B are pairwise
independent if for all 1 ≤ i < j ≤ n and for all b, b′ ∈ B,

Pr[Xi = b,Xj = b′] = Pr[Xi = b] · Pr[Xj = b′] .

If X1,X2, . . . ,Xn are independent than they are pairwise
independent but converse is not necessarily true

Example: X1,X2 are independent bits (variables from {0, 1}) and
X3 = X1 ⊕ X2. X1,X2,X3 are pairwise independent but not
independent.

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 42

Pairwise independent random variables

Definition

Random variables X1,X2, . . . ,Xn from a range B are pairwise
independent if for all 1 ≤ i < j ≤ n and for all b, b′ ∈ B,

Pr[Xi = b,Xj = b′] = Pr[Xi = b] · Pr[Xj = b′] .

If X1,X2, . . . ,Xn are independent than they are pairwise
independent but converse is not necessarily true

Example: X1,X2 are independent bits (variables from {0, 1}) and
X3 = X1 ⊕ X2. X1,X2,X3 are pairwise independent but not
independent.

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 42

t-wise independence

Generalizing pairwise independence:

Definition

Random variables X1,X2, . . . ,Xn from a range B are t-wise
independent for integer t > 1 Xi1,Xi2, . . . ,Xit are independent for
any i1 6= i2 6= . . . 6= it ∈ {1, 2, . . . , n}.

As t increases the variables become more and more independent. If
t = n the variables are independent.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 42

Motivation for pairwise/t-wise
independence from streaming

Want n uniformly distr random variables X1,X2, . . . ,Xn, say bits
But cannot store n bits because n is too large.

Achievable:

storage of O(log n) random bits

given i where 1 ≤ i ≤ n can generate Xi in O(log n) time

X1,X2, . . . ,Xn are pairwise independent and uniform

Hence, with small storage, can generate n random variables “on
the fly”. In several applications, pairwise independence (or
generalizations) suffice

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 42

Generating pairwise independent bits

Assume for simplicity n = 2k − 1 (otherwise consider nearest power
of 2). Hence k = O(log n)

Let Y1,Y2, . . . ,Yk be independent bits

For any S ⊂ {1, 2, . . . , k}, S 6= ∅, define XS = ⊕i∈SYi

2k − 1 random variables XS

Claim: If S 6= T then XS and XT are independent

Proof.

XS and XT are both uniformaly distributed over {0, 1}. Suppose
S − T 6= ∅. Even knowing all outcomes of variables in T the
variables in S − T are independent and hence
Pr[XS = 0 | T] = 1/2 and hence XS is independent of XT . If
S ⊂ T then apply same argument to T − S .

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 42

Generating pairwise independent bits

Assume for simplicity n = 2k − 1 (otherwise consider nearest power
of 2). Hence k = O(log n)

Let Y1,Y2, . . . ,Yk be independent bits

For any S ⊂ {1, 2, . . . , k}, S 6= ∅, define XS = ⊕i∈SYi

2k − 1 random variables XS

Claim: If S 6= T then XS and XT are independent

Proof.

XS and XT are both uniformaly distributed over {0, 1}. Suppose
S − T 6= ∅. Even knowing all outcomes of variables in T the
variables in S − T are independent and hence
Pr[XS = 0 | T] = 1/2 and hence XS is independent of XT . If
S ⊂ T then apply same argument to T − S .

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 42

Generating pairwise independent bits

Assume for simplicity n = 2k − 1 (otherwise consider nearest power
of 2). Hence k = O(log n)

Let Y1,Y2, . . . ,Yk be independent bits

For any S ⊂ {1, 2, . . . , k}, S 6= ∅, define XS = ⊕i∈SYi

2k − 1 random variables XS

Claim: If S 6= T then XS and XT are independent

Proof.

XS and XT are both uniformaly distributed over {0, 1}. Suppose
S − T 6= ∅. Even knowing all outcomes of variables in T the
variables in S − T are independent and hence
Pr[XS = 0 | T] = 1/2 and hence XS is independent of XT . If
S ⊂ T then apply same argument to T − S .

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 42

Pairwise independent variables with larger
range

Suppose we want n pairwise independent random variables in range
{0, 1, 2, . . . ,m − 1} where m = 2k − 1 for some k

Now each Xi needs to be a log m bit string

Use preceding construction for each bit independently

Requires O(log m log n) bits total

Can in fact do O(log n + log m) bits

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 42

Pairwise independent variables with larger
range

Suppose we want n pairwise independent random variables in range
{0, 1, 2, . . . ,m − 1} where m = 2k − 1 for some k

Now each Xi needs to be a log m bit string

Use preceding construction for each bit independently

Requires O(log m log n) bits total

Can in fact do O(log n + log m) bits

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 42

Using prime numbers and fields

Assume n = m = p where p is a prime number

Want p pairwise random variables distributed uniformly in
Zp = {0, 1, 2, . . . , p − 1}

Choose a, b ∈ {0, 1, 2, . . . , p − 1} uniformly and
independently at random. Requires 2dlog pe random bits

For 0 ≤ i ≤ p − 1 set Xi = ai + b mod p
Note that one needs to store only a, b, p and can generate Xi
efficiently on the fly from i

Exercise: Prove that each Xi is uniformly distributed in Zp.
Claim: For i 6= j , Xi and Xj are independent.

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 42

Using prime numbers and fields

Assume n = m = p where p is a prime number

Want p pairwise random variables distributed uniformly in
Zp = {0, 1, 2, . . . , p − 1}

Choose a, b ∈ {0, 1, 2, . . . , p − 1} uniformly and
independently at random. Requires 2dlog pe random bits

For 0 ≤ i ≤ p − 1 set Xi = ai + b mod p
Note that one needs to store only a, b, p and can generate Xi
efficiently on the fly from i

Exercise: Prove that each Xi is uniformly distributed in Zp.
Claim: For i 6= j , Xi and Xj are independent.

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 42

Using prime numbers and fields

Assume n = m = p where p is a prime number

Want p pairwise random variables distributed uniformly in
Zp = {0, 1, 2, . . . , p − 1}

Choose a, b ∈ {0, 1, 2, . . . , p − 1} uniformly and
independently at random. Requires 2dlog pe random bits

For 0 ≤ i ≤ p − 1 set Xi = ai + b mod p
Note that one needs to store only a, b, p and can generate Xi
efficiently on the fly from i

Exercise: Prove that each Xi is uniformly distributed in Zp.
Claim: For i 6= j , Xi and Xj are independent.

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 42

Using prime numbers and fields

Claim: For i 6= j , Xi and Xj are independent.

Some math required:

Zp is a field for any prime p. That is {0, 1, 2, . . . , p − 1}
forms a commutative group under addition mod p (easy). And
more importantly {1, 2, . . . , p − 1} forms a commutative
group under multiplication.

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 42

Some math required...

Lemma (LemmaUnique)

Let p be a prime number,
x : an integer number in {1, . . . , p − 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

In other words: For every element there is a unique inverse.
=⇒ Zp = {0, 1, . . . , p − 1} when working modulo p is a field.

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 42

Proof of LemmaUnique

Claim

Let p be a prime number. For any x, y , z ∈ {1, . . . , p − 1} s.t.
y 6= z , we have that xy mod p 6= xz mod p.

Proof.

Assume for the sake of contradiction xy mod p = xz mod p.

x(y − z) = 0 mod p
=⇒ p divides x(y − z)

=⇒ p divides y − z
=⇒ y − z = 0

=⇒ y = z.

And that is a contradiction.

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 42

Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,
x : an integer number in {1, . . . , p − 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

Proof.

By the above claim if xy = 1 mod p and xz = 1 mod p then
y = z . Hence uniqueness follows.

Existence. For any x ∈ {1, . . . , p − 1} we have that
{x ∗ 1 mod p, x ∗ 2 mod p, . . . , x ∗ (p − 1) mod p} =
{1, 2, . . . , p − 1}.
=⇒ There exists a number y ∈ {1, . . . , p − 1} such that
xy = 1 mod p.

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 42

Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,
x : an integer number in {1, . . . , p − 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

Proof.

By the above claim if xy = 1 mod p and xz = 1 mod p then
y = z . Hence uniqueness follows.

Existence. For any x ∈ {1, . . . , p − 1} we have that
{x ∗ 1 mod p, x ∗ 2 mod p, . . . , x ∗ (p − 1) mod p} =
{1, 2, . . . , p − 1}.
=⇒ There exists a number y ∈ {1, . . . , p − 1} such that
xy = 1 mod p.

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 42

Proof of pairwise independence

Lemma

If i 6= j then for each
(r , s) ∈ Zp×Zp there is exactly one pair (a, b) ∈ Zp×Zp such that

ai + b mod p = r and aj + b mod p = s .

Proof.

Solve the two equations:

ai + b = r mod p and aj + b = s mod p

We get a = r−s
i−j mod p and b = r − ax mod p.

One-to-one correspondence between (a, b) and (r , s)

⇒ if (a, b) is uniformly at random from Zp × Zp then (r , s) is
uniformly at random from Zp × Zp. Xi ,Xj independent.

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 42

Proof of pairwise independence

Lemma

If i 6= j then for each
(r , s) ∈ Zp×Zp there is exactly one pair (a, b) ∈ Zp×Zp such that

ai + b mod p = r and aj + b mod p = s .

Proof.

Solve the two equations:

ai + b = r mod p and aj + b = s mod p

We get a = r−s
i−j mod p and b = r − ax mod p.

One-to-one correspondence between (a, b) and (r , s)
⇒ if (a, b) is uniformly at random from Zp × Zp then (r , s) is
uniformly at random from Zp × Zp. Xi ,Xj independent.

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 42

Pairwise independence for n,m powers of 2

We saw how to create n pairwise independent random variables when
n = m = p where p is a prime number. We want n,m arbitrary.
Easy to assume n is power of 2 (discard the unnecessary rvs) but
harder if m is not power of 2. Here we only consider powers of 2.

n > m is the more difficult case and also relevant.

The following is a fundamental theorem on finite fields.

Theorem

Every finite field F has order pk for some prime p and some integer
k ≥ 1. For every prime p and integer k ≥ 1 there is a finite field F
of order pk and is unique up to isomorphism.

We will assume n and m are powers of 2. From above can assume
we have a field F of size n = 2k .

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 42

Pairwise independence for n,m powers of 2

We have a field F of size n = 2k .

Generate n pairwise independent random variables from [n] to [n] by
picking random a, b ∈ F and setting Xi = ai + b (operations in F).
From previous proof (we only used that Zp is a field) Xi are pairwise
independent.

Now Xi ∈ [n]. Truncate Xi to [m] by dropping the most significant
log n − log m bits. Resulting variables are still pairwise independent
(both n,m being powers of 2 useful here).

Need to only store a, b, n and can generate Xi = ai + b. Skipping
details on computational aspects of F which are closely tied to the
proof of the theorem on fields.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 42

t-wise independence

Generalizing pairwise independence:

Definition

Random variables X1,X2, . . . ,Xn from a range B are t-wise
independent for integer t > 1 Xi1,Xi2, . . . ,Xit are independent for
any i1 6= i2 6= . . . 6= it ∈ {1, 2, . . . , n}.

As t increases the variables become more and more independent. If
t = n the variables are independent.

Fact: For any n,m one can create n random t-wise independent
random variables from the range [m] using O(t(log n + log m))
true random bits. Can store only bits and generate the variables on
the fly in O(tpolylog(m + n)) time.

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 42

t-wise independence

Construction using polynomials

Let F be a field

Pick t random (with replacement) numbers from F:
a0, a1, . . . , at−1

For each i ∈ [|F|] set Xi = a0 + a1i + a2i 2 + . . . + at−1i t−1

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 42

Pairwise Independence and Chebyshev’s
Inequality

Chebyshev’s Inequality

For a ≥ 0, Pr[|X − E[X] | ≥ a] ≤ Var(X)
a2 equivalently for any

t > 0, Pr[|X − E[X] | ≥ tσX] ≤ 1
t2 where σX =

√
Var(X) is

the standard deviation of X .

Suppose X = X1 + X2 + . . . + Xn.
If X1,X2, . . . ,Xn are independent then Var(X) =

∑
i Var(Xi).

Recall application to random walk on line

Lemma

Suppose X =
∑

i Xi and X1,X2, . . . ,Xn are pairwise independent,
then Var(X) =

∑
i Var(Xi).

Chandra (UIUC) CS498ABD 20 Fall 2020 20 / 42

Pairwise Independence and Chebyshev’s
Inequality

Chebyshev’s Inequality

For a ≥ 0, Pr[|X − E[X] | ≥ a] ≤ Var(X)
a2 equivalently for any

t > 0, Pr[|X − E[X] | ≥ tσX] ≤ 1
t2 where σX =

√
Var(X) is

the standard deviation of X .

Suppose X = X1 + X2 + . . . + Xn.
If X1,X2, . . . ,Xn are independent then Var(X) =

∑
i Var(Xi).

Recall application to random walk on line

Lemma

Suppose X =
∑

i Xi and X1,X2, . . . ,Xn are pairwise independent,
then Var(X) =

∑
i Var(Xi).

Chandra (UIUC) CS498ABD 20 Fall 2020 20 / 42

Part II

Hashing

Chandra (UIUC) CS498ABD 21 Fall 2020 21 / 42

Balls and Bins and Load Balancing

Suppose we want to distribute jobs to machines in a simple way to
achieve load balancing.

Throwing each new job into a random machine is a simple,
distributed, oblivious strategy with many benefits

Balls and bins is simple mathematical model to analyze the core
principles

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 42

Balls and Bins → Hashing

Hashing:

Want a “function” h : U → B.

Want h to behave like a “random function”. That is for any
distinct x1, x2, . . . , xn ∈ U we have h(x1), h(x2), . . . , h(xn)
to be uniformly distributed over B and independent.

But want h to be efficiently computable and stored in small
memory

Many applications: hash tables as dictionary data structure,
cryptography/security, pseudorandomness, . . .

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 42

Balls and Bins → Hashing

Hashing:

Want a “function” h : U → B.

Want h to behave like a “random function”. That is for any
distinct x1, x2, . . . , xn ∈ U we have h(x1), h(x2), . . . , h(xn)
to be uniformly distributed over B and independent.

But want h to be efficiently computable and stored in small
memory

Many applications: hash tables as dictionary data structure,
cryptography/security, pseudorandomness, . . .

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 42

Dictionary Data Structure

1 U : universe of keys : numbers, strings, images, etc.

2 Data structure to store a subset S ⊆ U
3 Operations:

1 Search/look up: given x ∈ U is x ∈ S?
2 Insert: given x 6∈ S add x to S .
3 Delete: given x ∈ S delete x from S

4 Static structure: S given in advance or changes very
infrequently, main operations are lookups.

5 Dynamic structure: S changes rapidly so inserts and deletes as
important as lookups.

Chandra (UIUC) CS498ABD 24 Fall 2020 24 / 42

Dictionary Data Structure

Standard dictionary data structures such binary search trees rely
on universe U being a total order and hence can be compared

Comparison based data structures take Θ(log n) comparisons
when storing n items from U and typically require pointer based
data structure

All objects represented in computers are essentially strings so
technically one can use a comparison based data structure always

Disadvantages of comparison based data structures:

Comparisons are expensive for many objects
Dynamic memory allocation and pointers

Hashing based dictionaries:

O(1) expected time operations
Depending on implementation, can avoid pointers

Chandra (UIUC) CS498ABD 25 Fall 2020 25 / 42

Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|. Several techniques to handle
them.

Chandra (UIUC) CS498ABD 26 Fall 2020 26 / 42

Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|. Several techniques to handle
them.

Chandra (UIUC) CS498ABD 26 Fall 2020 26 / 42

Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|. Several techniques to handle
them.

Chandra (UIUC) CS498ABD 26 Fall 2020 26 / 42

Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|. Several techniques to handle
them.

Chandra (UIUC) CS498ABD 26 Fall 2020 26 / 42

Handling Collisions: Chaining

Collision: h(x) = h(y) for some x 6= y .

Chaining/Open hashing to handle collisions:
1 For each slot i store all items hashed to slot i in a linked list.

T [i] points to the linked list
2 Lookup: to find if y ∈ U is in T , check the linked list at

T [h(y)]. Time proportion to size of linked list.

y

s

f

Chain length determines time for operations. Ideally want O(1).
Chandra (UIUC) CS498ABD 27 Fall 2020 27 / 42

Hash Functions

Parameters: N = |U| (very large), m = |T |, n = |S|
Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N ≥ m2, then for any hash function h : U → T there exists
i < m such that at least N/m ≥ m elements of U get hashed to
slot i .

Any S containing all of these is a very very bad set for h!
Such a bad set may lead to O(m) lookup time!

In practice:

Dictionary applications: choose a simple hash function and hope
that worst-case bad sets do not arise

Crypto applications: create “hard” and “complex” function very
carefully which makes finding collisions difficult

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 42

Hash Functions

Parameters: N = |U| (very large), m = |T |, n = |S|
Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N ≥ m2, then for any hash function h : U → T there exists
i < m such that at least N/m ≥ m elements of U get hashed to
slot i . Any S containing all of these is a very very bad set for h!

Such a bad set may lead to O(m) lookup time!

In practice:

Dictionary applications: choose a simple hash function and hope
that worst-case bad sets do not arise

Crypto applications: create “hard” and “complex” function very
carefully which makes finding collisions difficult

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 42

Hash Functions

Parameters: N = |U| (very large), m = |T |, n = |S|
Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N ≥ m2, then for any hash function h : U → T there exists
i < m such that at least N/m ≥ m elements of U get hashed to
slot i . Any S containing all of these is a very very bad set for h!

Such a bad set may lead to O(m) lookup time!

In practice:

Dictionary applications: choose a simple hash function and hope
that worst-case bad sets do not arise

Crypto applications: create “hard” and “complex” function very
carefully which makes finding collisions difficult

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 42

Hash Functions

Parameters: N = |U| (very large), m = |T |, n = |S|
Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N ≥ m2, then for any hash function h : U → T there exists
i < m such that at least N/m ≥ m elements of U get hashed to
slot i . Any S containing all of these is a very very bad set for h!

Such a bad set may lead to O(m) lookup time!

In practice:

Dictionary applications: choose a simple hash function and hope
that worst-case bad sets do not arise

Crypto applications: create “hard” and “complex” function very
carefully which makes finding collisions difficult

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 42

Hashing from a theoretical point of view

Consider a family H of hash functions with good properties and
choose h randomly from H
Guarantees: small # collisions in expectation for any given S .

H should allow efficient sampling.

Each h ∈ H should be efficient to evaluate and require small
memory to store.

In other worse a hash function is a “pseudorandom” function

Chandra (UIUC) CS498ABD 29 Fall 2020 29 / 42

Strongly Universal Hashing

Question: What are good properties of H in distributing data?

1 Uniform: Consider any element x ∈ U . Then if h ∈ H is
picked randomly then x should go into a random slot in T . In
other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.

2 (2)-Strongly Universal: Consider any two distinct elements
x, y ∈ U . Then if h ∈ H is picked randomly then h(x) and
h(y) should be independent random variables.

Note: Fix x ∈ U . h(x) is a random variable with range
{0, 1, 2, . . . ,m − 1}. Strong universal hash family implies that the
variables h(x), x ∈ S are uniform and pairwise independent random
variables.

Chandra (UIUC) CS498ABD 30 Fall 2020 30 / 42

Strongly Universal Hashing

Question: What are good properties of H in distributing data?

1 Uniform: Consider any element x ∈ U . Then if h ∈ H is
picked randomly then x should go into a random slot in T . In
other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.

2 (2)-Strongly Universal: Consider any two distinct elements
x, y ∈ U . Then if h ∈ H is picked randomly then h(x) and
h(y) should be independent random variables.

Note: Fix x ∈ U . h(x) is a random variable with range
{0, 1, 2, . . . ,m − 1}. Strong universal hash family implies that the
variables h(x), x ∈ S are uniform and pairwise independent random
variables.

Chandra (UIUC) CS498ABD 30 Fall 2020 30 / 42

Strongly Universal Hashing

Question: What are good properties of H in distributing data?

1 Uniform: Consider any element x ∈ U . Then if h ∈ H is
picked randomly then x should go into a random slot in T . In
other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.

2 (2)-Strongly Universal: Consider any two distinct elements
x, y ∈ U . Then if h ∈ H is picked randomly then h(x) and
h(y) should be independent random variables.

Note: Fix x ∈ U . h(x) is a random variable with range
{0, 1, 2, . . . ,m − 1}. Strong universal hash family implies that the
variables h(x), x ∈ S are uniform and pairwise independent random
variables.

Chandra (UIUC) CS498ABD 30 Fall 2020 30 / 42

Strongly Universal Hashing

Question: What are good properties of H in distributing data?

1 Uniform: Consider any element x ∈ U . Then if h ∈ H is
picked randomly then x should go into a random slot in T . In
other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.

2 (2)-Strongly Universal: Consider any two distinct elements
x, y ∈ U . Then if h ∈ H is picked randomly then h(x) and
h(y) should be independent random variables.

Note: Fix x ∈ U . h(x) is a random variable with range
{0, 1, 2, . . . ,m − 1}. Strong universal hash family implies that the
variables h(x), x ∈ S are uniform and pairwise independent random
variables.

Chandra (UIUC) CS498ABD 30 Fall 2020 30 / 42

Universal Hashing

Question: What are good properties of H in distributing data?

(2)-Universal: Consider any two distinct elements x, y ∈ U .
Then if h ∈ H is picked randomly then the probability of a
collision between x and y should be at most 1/m. In other
words Pr[h(x) = h(y)] ≤ 1/m.

Note: we do not insist on uniformity.

Chandra (UIUC) CS498ABD 31 Fall 2020 31 / 42

(Strongly) Universal Hashing

Definition

A family of hash functions H is (2-)strongly universal if for all
distinct x, y ∈ U , h(x) and h(y) are independent for h chosen
uniformly at random from H, and for all x , h(x) is uniformly
distributed.

Definition

A family of hash functions H is (2-)universal if for all distinct
x, y ∈ U , Prh∼H[h(x) = h(y)] ≤ 1/m where m is the table size.

Generalizes to t-strongly universal and t-universal families. Need
property for any tuple of t items.

Chandra (UIUC) CS498ABD 32 Fall 2020 32 / 42

(Strongly) Universal Hashing

Definition

A family of hash functions H is (2-)strongly universal if for all
distinct x, y ∈ U , h(x) and h(y) are independent for h chosen
uniformly at random from H, and for all x , h(x) is uniformly
distributed.

Definition

A family of hash functions H is (2-)universal if for all distinct
x, y ∈ U , Prh∼H[h(x) = h(y)] ≤ 1/m where m is the table size.

Generalizes to t-strongly universal and t-universal families. Need
property for any tuple of t items.

Chandra (UIUC) CS498ABD 32 Fall 2020 32 / 42

Analyzing Universal Hashing

Question: Fixing set S , what is the expected time to look up x ∈ S
when h is picked uniformly at random from H?

1 `(x) : the size of the list at T [h(x)]. We want E[`(x)]

2 For y ∈ S let Dy = 1 if h(y) = h(x), else 0.
`(x) =

∑
y∈S Dy

E[`(x)] =
∑

y∈S E[Dy] =
∑

y∈S Pr [h(x) = h(y)]

≤ 1 +
∑

y∈S,y 6=x
1
m (H is a universal hash family)

≤ 1 + (|S| − 1)/m ≤ 2 if |S| ≤ m

Chandra (UIUC) CS498ABD 33 Fall 2020 33 / 42

Analyzing Universal Hashing

Question: Fixing set S , what is the expected time to look up x ∈ S
when h is picked uniformly at random from H?

1 `(x) : the size of the list at T [h(x)]. We want E[`(x)]

2 For y ∈ S let Dy = 1 if h(y) = h(x), else 0.
`(x) =

∑
y∈S Dy

E[`(x)] =
∑

y∈S E[Dy] =
∑

y∈S Pr [h(x) = h(y)]

≤ 1 +
∑

y∈S,y 6=x
1
m (H is a universal hash family)

≤ 1 + (|S| − 1)/m ≤ 2 if |S| ≤ m

Chandra (UIUC) CS498ABD 33 Fall 2020 33 / 42

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

1 O(1) expected time also holds for insertion.

2 Analysis assumes static set S but holds as long as S is a set
formed with at most O(m) insertions and deletions.

3 Worst-case: look up time can be large! How large? In principle
Ω(n) time but if H has good properties then O(

√
n) or

O(log n/ log log n) with high probability.

Chandra (UIUC) CS498ABD 34 Fall 2020 34 / 42

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

1 O(1) expected time also holds for insertion.

2 Analysis assumes static set S but holds as long as S is a set
formed with at most O(m) insertions and deletions.

3 Worst-case: look up time can be large! How large? In principle
Ω(n) time but if H has good properties then O(

√
n) or

O(log n/ log log n) with high probability.

Chandra (UIUC) CS498ABD 34 Fall 2020 34 / 42

Universal Hash Family

Universal: H such that Pr[h(x) = h(y)] = 1/m.

All functions

H : Set of all possible functions h : U → {0, . . . ,m − 1}.
Universal.

|H| = m|U|

representing h requires |U| log m – Not O(1)!

We need compactly representable universal family.

Chandra (UIUC) CS498ABD 35 Fall 2020 35 / 42

Universal Hash Family

Universal: H such that Pr[h(x) = h(y)] = 1/m.

All functions

H : Set of all possible functions h : U → {0, . . . ,m − 1}.
Universal.

|H| = m|U|

representing h requires |U| log m – Not O(1)!

We need compactly representable universal family.

Chandra (UIUC) CS498ABD 35 Fall 2020 35 / 42

Universal Hash Family

Universal: H such that Pr[h(x) = h(y)] = 1/m.

All functions

H : Set of all possible functions h : U → {0, . . . ,m − 1}.
Universal.

|H| = m|U|

representing h requires |U| log m – Not O(1)!

We need compactly representable universal family.

Chandra (UIUC) CS498ABD 35 Fall 2020 35 / 42

Compact Stongly Universal Hash Family

Similar to construction of N pairwise independent random variables
with range [m].

The function is given by the algorithm to construct Xi given i .

Can do with O(log N) bits of storage since N ≥ m in hashing
application.

Chandra (UIUC) CS498ABD 36 Fall 2020 36 / 42

A Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|. Assumption m ≤ N .

1 Choose a prime number p ≥ N . Zp = {0, 1, . . . , p − 1} is a
field.

2 For a, b ∈ Zp, a 6= 0, define the hash function ha,b as
ha,b(x) = ((ax + b) mod p) mod m.

3 Let H = {ha,b | a, b ∈ Zp, a 6= 0}. Note that
|H| = p(p − 1).

Theorem

H is a universal hash family.

Comments:
1 Hash family is of small size, easy to sample from.
2 Easy to store a hash function (a, b have to be stored) and

evaluate it.

Chandra (UIUC) CS498ABD 37 Fall 2020 37 / 42

A Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|. Assumption m ≤ N .

1 Choose a prime number p ≥ N . Zp = {0, 1, . . . , p − 1} is a
field.

2 For a, b ∈ Zp, a 6= 0, define the hash function ha,b as
ha,b(x) = ((ax + b) mod p) mod m.

3 Let H = {ha,b | a, b ∈ Zp, a 6= 0}. Note that
|H| = p(p − 1).

Theorem

H is a universal hash family.

Comments:
1 Hash family is of small size, easy to sample from.
2 Easy to store a hash function (a, b have to be stored) and

evaluate it.

Chandra (UIUC) CS498ABD 37 Fall 2020 37 / 42

A Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|. Assumption m ≤ N .

1 Choose a prime number p ≥ N . Zp = {0, 1, . . . , p − 1} is a
field.

2 For a, b ∈ Zp, a 6= 0, define the hash function ha,b as
ha,b(x) = ((ax + b) mod p) mod m.

3 Let H = {ha,b | a, b ∈ Zp, a 6= 0}. Note that
|H| = p(p − 1).

Theorem

H is a universal hash family.

Comments:
1 Hash family is of small size, easy to sample from.
2 Easy to store a hash function (a, b have to be stored) and

evaluate it.
Chandra (UIUC) CS498ABD 37 Fall 2020 37 / 42

A Compact Universal Hash Family

g(x) = ax + b is uniformly distributed in {0, 1, . . . , p − 1}
but h(x) is not uniformly distributed unless m = p.

Pr[h(x) = i] ≤ 2/m for any i .

Chandra (UIUC) CS498ABD 38 Fall 2020 38 / 42

Bloom Filters

Hashing:

1 To insert x in dictionary store x in table in location h(x)

2 To lookup y in dictionary check contents of location h(y)

Bloom Filter: tradeoff space for false positives

1 Storing items in dictionary expensive in terms of memory,
especially if items are unwieldy objects such a long strings,
images, etc with non-uniform sizes.

2 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

3 To lookup y if bit in location h(y) is 1 say yes, else no.

Chandra (UIUC) CS498ABD 39 Fall 2020 39 / 42

Bloom Filters

Hashing:

1 To insert x in dictionary store x in table in location h(x)

2 To lookup y in dictionary check contents of location h(y)

Bloom Filter: tradeoff space for false positives

1 Storing items in dictionary expensive in terms of memory,
especially if items are unwieldy objects such a long strings,
images, etc with non-uniform sizes.

2 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

3 To lookup y if bit in location h(y) is 1 say yes, else no.

Chandra (UIUC) CS498ABD 39 Fall 2020 39 / 42

Bloom Filters

Bloom Filter: tradeoff space for false positives

1 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

2 To lookup y if bit in location h(y) is 1 say yes, else no

3 No false negatives but false positives possible due to collisions

Reducing false positives:

1 Pick k hash functions h1, h2, . . . , hk independently

2 To insert x , for each i , set bit in location hi(x) in table i to 1

3 To lookup y compute hi(y) for 1 ≤ i ≤ k and say yes only if
each bit in the corresponding location is 1, otherwise say no. If
probability of false positive for one hash function is α < 1 then
with k independent hash function it is αk .

Chandra (UIUC) CS498ABD 40 Fall 2020 40 / 42

Bloom Filters

Bloom Filter: tradeoff space for false positives

1 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

2 To lookup y if bit in location h(y) is 1 say yes, else no

3 No false negatives but false positives possible due to collisions

Reducing false positives:

1 Pick k hash functions h1, h2, . . . , hk independently

2 To insert x , for each i , set bit in location hi(x) in table i to 1

3 To lookup y compute hi(y) for 1 ≤ i ≤ k and say yes only if
each bit in the corresponding location is 1, otherwise say no. If
probability of false positive for one hash function is α < 1 then
with k independent hash function it is αk .

Chandra (UIUC) CS498ABD 40 Fall 2020 40 / 42

Take away points

1 Hashing is a powerful and important technique for dictionaries.
Many practical applications.

2 Randomization fundamental to understanding hashing.

3 Good and efficient hashing possible in theory and practice with
proper definitions (universal, perfect, etc).

4 Related ideas of creating a compact fingerprint/sketch for
objects is very powerful in theory and practice.

Chandra (UIUC) CS498ABD 41 Fall 2020 41 / 42

Practical Issues

Hashing used typically for integers, vectors, strings etc.

Universal hashing is defined for integers. To implement for other
objects need to map objects in some fashion to integers (via
representation)

Practical methods for various important cases such as vectors, strings
are studied extensively. See
http://en.wikipedia.org/wiki/Universal_hashing for some
pointers.

Details on Cuckoo hashing and its advantage over chaining
http://en.wikipedia.org/wiki/Cuckoo_hashing.

Recent important paper bridging theory and practice of hashing.
“The power of simple tabulation hashing” by Mikkel Thorup and
Mihai Patrascu, 2011. See
http://en.wikipedia.org/wiki/Tabulation_hashing

Cryptographic hash functions have a different motivation and
requirements. Consequently they explore different tradeoffs and are
constructed in a different way. See http:

//en.wikipedia.org/wiki/Cryptographic_hash_function

Chandra (UIUC) CS498ABD 42 Fall 2020 42 / 42

http://en.wikipedia.org/wiki/Universal_hashing
http://en.wikipedia.org/wiki/Cuckoo_hashing
http://en.wikipedia.org/wiki/Tabulation_hashing
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function

	Pairwise and t-wise independent random variables
	Hashing
	Universal Hashing

