CS 498ABD: Algorithms for Big Data

Probabilistic Counting and Morris Counter

Lecture 04 September 3, 2020

Streaming model

- The input consists of *m* objects/items/tokens *e*₁, *e*₂, ..., *e*_m that are seen one by one by the algorithm.
- The algorithm has "limited" memory say for B tokens where B < m (often $B \ll m$) and hence cannot store all the input
- Want to compute interesting functions over input

Simplest streaming question: how many events in the stream?

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires $\lceil \log n \rceil = \Theta(\log n)$ bits to be able to count up to *n* events.

(We will use *n* for length of stream for this lecture)

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires $\lceil \log n \rceil = \Theta(\log n)$ bits to be able to count up to *n* events.

(We will use *n* for length of stream for this lecture) **Question:** can we do better?

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires $\lceil \log n \rceil = \Theta(\log n)$ bits to be able to count up to *n* events.

(We will use *n* for length of stream for this lecture) **Question:** can we do better? Not deterministically.

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires $\lceil \log n \rceil = \Theta(\log n)$ bits to be able to count up to *n* events.

(We will use *n* for length of stream for this lecture) **Question:** can we do better? Not deterministically.

Yes, with randomization.

"Counting large numbers of events in small registers" by Rober Morris (Bell Labs), Communications of the ACM (CACM), 1978

Probabilistic Counting Algorithm

```
\begin{array}{l} \underline{PROBABILISTICCOUNTING:} \\ \pmb{X} \leftarrow \pmb{0} \\ \\ \text{While (a new event arrives)} \\ \text{Toss a biased coin that is heads with probability } 1/2^{\pmb{X}} \\ \text{If (coin turns up heads)} \\ \quad \pmb{X} \leftarrow \pmb{X} + 1 \\ \text{endWhile} \\ \text{Output } 2^{\pmb{X}} - 1 \text{ as the estimate for the length of the stream.} \end{array}
```

Probabilistic Counting Algorithm

Intuition: X keeps track of $\log n$ in a probabilistic sense. Hence requires $O(\log \log n)$ bits

Probabilistic Counting Algorithm

 $\begin{array}{l} \underline{\mathrm{PROBABILISTICCOUNTING:}} \\ \pmb{X} \leftarrow \pmb{0} \\ \\ \mathrm{While} \ (a \ new \ event \ arrives) \\ \mathrm{Toss} \ a \ biased \ coin \ that \ is \ heads \ with \ probability \ \pmb{1/2^{X}} \\ \mathrm{If} \ (coin \ turns \ up \ heads) \\ \qquad \pmb{X} \leftarrow \pmb{X} + 1 \\ \mathrm{endWhile} \\ \mathrm{Output} \ \pmb{2^{X}} - \pmb{1} \ \mathrm{as} \ \mathrm{the} \ \mathrm{estimate} \ \mathrm{for} \ \mathrm{the} \ \mathrm{length} \ \mathrm{of} \ \mathrm{the} \ \mathrm{stream}. \end{array}$

Intuition: X keeps track of $\log n$ in a probabilistic sense. Hence requires $O(\log \log n)$ bits

Theorem

Let $Y = 2^{X}$. Then E[Y] - 1 = n, the number of events seen.

$\log n vs \log \log n$

Morris's motivation:

- Had 8 bit registers. Can count only up to 2⁸ = 256 events using deterministic counter. Had many counters for keeping track of different events and using 16 bits (2 registers) was infeasible.
- If only $\log \log n$ bits then can count to $2^{2^8} = 2^{256}$ events! In practice overhead due to error control etc. Morris reports counting up to 130,000 events using 8 bits while controlling error.
- See 2 page paper for more details.

Analysis of Expectation

Induction on *n*. For $i \ge 0$, let X_i be the counter value after *i* events. Let $Y_i = 2^{X_i}$. Both are random variables.

Analysis of Expectation

Induction on *n*. For $i \ge 0$, let X_i be the counter value after *i* events. Let $Y_i = 2^{X_i}$. Both are random variables.

Base case: n = 0, 1 easy to check: $X_i, Y_i - 1$ deterministically equal to 0, 1.

Analysis of Expectation

$$E[Y_n] = E[2^{X_n}] = \sum_{j=0}^{\infty} 2^j \Pr[X_n = j]$$

= $\sum_{j=0}^{\infty} 2^j \left(\Pr[X_{n-1} = j] \cdot (1 - \frac{1}{2^j}) + \Pr[X_{n-1} = j - 1] \cdot \frac{1}{2^{j-1}} \right)$
= $\sum_{j=0}^{\infty} 2^j \Pr[X_{n-1} = j]$
+ $\sum_{j=0}^{\infty} (2 \Pr[X_{n-1} = j - 1] - \Pr[X_{n-1} = j])$
= $E[Y_{n-1}] + 1$ (by applying induction)
= $n + 1$

Jensen's Inequality

Definition

A real-valued function $f : \mathbb{R} \to \mathbb{R}$ is *convex* if $f((a+b)/2) \leq (f(a) + f(b))/2$ for all a, b. Equivalently, $f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda)f(b)$ for all $\lambda \in [0, 1]$.

Jensen's Inequality

Definition

A real-valued function $f : \mathbb{R} \to \mathbb{R}$ is *convex* if $f((a+b)/2) \leq (f(a) + f(b))/2$ for all a, b. Equivalently, $f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda)f(b)$ for all $\lambda \in [0, 1]$.

Theorem (Jensen's inequality)

Let Z be random variable with $E[Z] < \infty$. If f is convex then $f(E[Z]) \leq E[f(Z)]$.

Implication for counter size

We have $Y_n = 2^{X_n}$. The function $f(z) = 2^z$ is convex. Hence

 $2^{\mathbb{E}[X_n]} \leq \mathbb{E}[Y_n] \leq n+1$

which implies

 $\mathsf{E}[X_n] \leq \log(n+1)$

Hence expected number of bits in counter is $\lceil \log \log(n+1) \rceil$.

Variance calculation

Question: Is the random variable Y_n well behaved even though expectation is right? What is its variance? Is it concentrated around expectation?

Variance calculation

Question: Is the random variable Y_n well behaved even though expectation is right? What is its variance? Is it concentrated around expectation?

Lemma $E[Y_n^2] = \frac{3}{2}n^2 + \frac{3}{2}n + 1$ and hence $Var[Y_n] = n(n-1)/2$.

Variance analysis

Analyze $\mathbf{E}[Y_n^2]$ via induction. Base cases: n = 0, 1 are easy to verify since Y_n is deterministic.

$$E[Y_n^2] = E[2^{2X_n}] = \sum_{j \ge 0} 2^{2j} \cdot \Pr[X_n = j]$$

$$= \sum_{j \ge 0} 2^{2j} \cdot \left(\Pr[X_{n-1} = j](1 - \frac{1}{2^j}) + \Pr[X_{n-1} = j - 1]\frac{1}{2^{j-1}}\right)$$

$$= \sum_{j \ge 0} 2^{2j} \cdot \Pr[X_{n-1} = j]$$

$$+ \sum_{j \ge 0} \left(-2^j \Pr[X_{n-1} = j - 1] + 42^{j-1} \Pr[X_{n-1} = j - 1]\right)$$

$$= E[Y_{n-1}^2] + 3E[Y_{n-1}]$$

$$= \frac{3}{2}(n-1)^2 + \frac{3}{2}(n-1) + 1 + 3n = \frac{3}{2}n^2 + \frac{3}{2}n + 1.$$
Chandra (UUC)
$$CS498ABD = 11$$
Fail 2020 11/18

Error analysis via Chebyshev inequality

We have $\mathbb{E}[Y_n] = n$ and $Var(Y_n) = n(n-1)/2$ implies $\sigma_{Y_n} = \sqrt{n(n-1)/2} \le n$.

Applying Cheybyshev's inequality:

$\Pr[|Y_n - \mathsf{E}[Y_n]| \ge tn] \le 1/(2t^2).$

Hence constant factor approximation with constant probability (for instance set t = 1/2).

Error analysis via Chebyshev inequality

We have $\mathbb{E}[Y_n] = n$ and $Var(Y_n) = n(n-1)/2$ implies $\sigma_{Y_n} = \sqrt{n(n-1)/2} \le n$.

Applying Cheybyshev's inequality:

$\Pr[|Y_n - \mathsf{E}[Y_n]| \ge tn] \le 1/(2t^2).$

Hence constant factor approximation with constant probability (for instance set t = 1/2). **Question:** Want estimate to be tighter. For any given $\epsilon > 0$ want estimate to have error at most ϵn with say constant probability or with probability at least $(1 - \delta)$ for a given $\delta > 0$.

Part I

Improving Estimators

Probabilistic Estimation

Setting: want to compute some real-value function f of a given input I

Probabilistic estimator: a randomized algorithm that given I outputs a random answer X such that $E[X] \simeq f(I)$. Estimator is *exact* if E[X] = f(I) for all inputs I.

Additive approximation: $|\mathbf{E}[X] - f(I)| \le \epsilon$

Multiplicative approximation: $(1 - \epsilon)f(l) \le E[X] \le (1 + \epsilon)f(l)$

Probabilistic Estimation

Setting: want to compute some real-value function f of a given input I

Probabilistic estimator: a randomized algorithm that given I outputs a random answer X such that $E[X] \simeq f(I)$. Estimator is *exact* if E[X] = f(I) for all inputs I.

Additive approximation: $|\mathbf{E}[X] - f(I)| \le \epsilon$

Multiplicative approximation: $(1 - \epsilon)f(l) \le E[X] \le (1 + \epsilon)f(l)$

Question: Estimator only gives expectation. Bound on *Var*[*X*] allows Chebyshev. Sometimes Chernoff applies. How do we improve estimator?

Chandra (UIUC)

- Run h parallel copies of algorithm with *independent* randomness
- Let $Y^{(1)}, Y^{(2)}, \dots, Y^{(h)}$ be estimators from the h parallel copies
- Output $Z = \frac{1}{h} \sum_{i=1}^{h} Y^{(i)}$

- Run *h* parallel copies of algorithm with *independent* randomness
- Let Y⁽¹⁾, Y⁽²⁾, ..., Y^(h) be estimators from the h parallel copies
- Output $Z = \frac{1}{h} \sum_{i=1}^{h} Y^{(i)}$

Claim: $E[Z_n] = n$ and $Var(Z_n) = \frac{1}{h}(n(n-1)/2)$.

- Run *h* parallel copies of algorithm with *independent* randomness
- Let Y⁽¹⁾, Y⁽²⁾, ..., Y^(h) be estimators from the h parallel copies
- Output $Z = \frac{1}{h} \sum_{i=1}^{h} Y^{(i)}$

Claim: $E[Z_n] = n$ and $Var(Z_n) = \frac{1}{h}(n(n-1)/2)$.

Choose $h = \frac{2}{\epsilon^2}$. Then applying Cheybyshev's inequality

 $\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le 1/4.$

- Run h parallel copies of algorithm with *independent* randomness
- Let Y⁽¹⁾, Y⁽²⁾, ..., Y^(h) be estimators from the h parallel copies
- Output $Z = \frac{1}{h} \sum_{i=1}^{h} Y^{(i)}$

Claim: $E[Z_n] = n$ and $Var(Z_n) = \frac{1}{h}(n(n-1)/2)$.

Choose $h = \frac{2}{\epsilon^2}$. Then applying Cheybyshev's inequality

 $\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le 1/4.$

To run *h* copies need $O(\frac{1}{\epsilon^2} \log \log n)$ bits for the counters.

We have:

$$\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le 1/4.$$

Want:

$\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le \delta$

for some given parameter δ .

We have:

$$\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le 1/4.$$

Want:

 $\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le \delta$

for some given parameter δ .

Can set $h = \frac{1}{2\epsilon^2 \delta}$ and apply Chebyshev. Better dependence on δ ?

We have:

$$\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le 1/4.$$

Want:

 $\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le \delta$

for some given parameter δ .

Can set $h = \frac{1}{2\epsilon^2 \delta}$ and apply Chebyshev. Better dependence on δ ?

Idea: Repeat independently $c \log(1/\delta)$ times for some constant c. We know that with probability $(1 - \delta)$ one of the counters will be ϵn close to n. Why?

We have:

$$\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le 1/4.$$

Want:

 $\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le \delta$

for some given parameter δ .

Can set $h = \frac{1}{2\epsilon^2 \delta}$ and apply Chebyshev. Better dependence on δ ?

Idea: Repeat independently $c \log(1/\delta)$ times for some constant c. We know that with probability $(1 - \delta)$ one of the counters will be ϵn close to n. Why? Which one should we pick?

We have:

$$\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le 1/4.$$

Want:

 $\Pr[|Z_n - \mathsf{E}[Z_n]| \ge \epsilon n] \le \delta$

for some given parameter δ .

Can set $h = \frac{1}{2\epsilon^2 \delta}$ and apply Chebyshev. Better dependence on δ ?

Idea: Repeat independently $c \log(1/\delta)$ times for some constant c. We know that with probability $(1 - \delta)$ one of the counters will be ϵn close to n. Why? Which one should we pick?

Algorithm: Output median of $Z^{(1)}, Z^{(2)}, \ldots, Z^{(\ell)}$.

Chandra (UIUC)

Let Z' be median of the $\ell = c \log(1/\delta)$ independent estimators.

Lemma	
$\Pr[Z'-n \ge \epsilon n] \le \delta.$	

Let Z' be median of the $\ell = c \log(1/\delta)$ independent estimators.

• Let A_i be event that estimate $Z^{(i)}$ is *bad*: that is, $|Z^{(i)} - n| > \epsilon n$. $\Pr[A_i] < 1/4$. Hence expected number of bad estimates is $\ell/4$.

Let Z' be median of the $\ell = c \log(1/\delta)$ independent estimators.

$\begin{array}{l} \text{Lemma} \\ \Pr[|Z' - n| \ge \epsilon n] \le \delta. \end{array}$

- Let A_i be event that estimate $Z^{(i)}$ is *bad*: that is, $|Z^{(i)} - n| > \epsilon n$. $\Pr[A_i] < 1/4$. Hence expected number of bad estimates is $\ell/4$.
- For median estimate to be bad, more than half of *A_i*'s have to be bad.

Let Z' be median of the $\ell = c \log(1/\delta)$ independent estimators.

Lemma $\Pr[|Z' - n| \ge \epsilon n] \le \delta.$

- Let A_i be event that estimate $Z^{(i)}$ is *bad*: that is, $|Z^{(i)} - n| > \epsilon n$. $\Pr[A_i] < 1/4$. Hence expected number of bad estimates is $\ell/4$.
- For median estimate to be bad, more than half of *A_i*'s have to be bad.
- Using Chernoff bounds: probability of bad median is at most 2^{-c'ℓ} for some constant c'.

Summarizing

Using variance reduction and median trick: with $O(\frac{1}{\epsilon^2} \log(1/\delta) \log \log n)$ bits one can maintain a $(1 - \epsilon)$ -factor estimate of the number of events with probability $(1 - \delta)$. This is a generic scheme that we will repeatedly use.

For counter one can do (much) better by changing algorithm and better analysis. See homework and references in notes.