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Streaming model

The input consists of m objects/items/tokens e1, e2, . . . , em
that are seen one by one by the algorithm.

The algorithm has “limited” memory say for B tokens where
B < m (often B ⌧ m) and hence cannot store all the input

Want to compute interesting functions over input
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Counting problem

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires
dlog ne = ⇥(log n) bits to be able to count up to n events.

(We will use n for length of stream for this lecture)
Question: can we do better? Not deterministically.

Yes, with randomization.
“Counting large numbers of events in small registers” by Rober
Morris (Bell Labs), Communications of the ACM (CACM), 1978
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Probabilistic Counting Algorithm

ProbabilisticCounting:
X  0

While (a new event arrives)

Toss a biased coin that is heads with probability 1/2X

If (coin turns up heads)

X  X + 1

endWhile

Output 2
X � 1 as the estimate for the length of the stream.

Intuition: X keeps track of log n in a probabilistic sense. Hence
requires O(log log n) bits

Theorem

Let Y = 2
X . Then E[Y ]� 1 = n, the number of events seen.
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log n vs log log n

Morris’s motivation:

Had 8 bit registers. Can count only up to 2
8
= 256 events using

deterministic counter. Had many counters for keeping track of
di↵erent events and using 16 bits (2 registers) was infeasible.

If only log log n bits then can count to 2
28

= 2
256 events! In

practice overhead due to error control etc. Morris reports
counting up to 130,000 events using 8 bits while controlling
error.

See 2 page paper for more details.
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Analysis of Expectation

Induction on n. For i � 0, let Xi be the counter value after i events.
Let Yi = 2

Xi . Both are random variables.

Base case: n = 0, 1 easy to check: Xi ,Yi � 1 deterministically
equal to 0, 1.
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Analysis of Expectation

E[Yn] = E

h
2
Xn
i
=

1X

j=0

2
j
Pr[Xn = j ]

=

1X

j=0

2
j
✓
Pr[Xn�1 = j ] · (1�

1

2j ) + Pr[Xn�1 = j � 1] ·
1

2j�1

◆

=

1X

j=0

2
j
Pr[Xn�1 = j ]

+

1X

j=0

(2 Pr[Xn�1 = j � 1]� Pr[Xn�1 = j ])

= E[Yn�1] + 1 (by applying induction)

= n + 1
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Jensen’s Inequality

Definition

A real-valued function f : R! R is convex if
f ((a + b)/2)  (f (a) + f (b))/2 for all a, b. Equivalently,
f (�a + (1� �)b)  �f (a) + (1� �)f (b) for all � 2 [0, 1].

Theorem (Jensen’s inequality)

Let Z be random variable with E[Z ] <1. If f is convex then
f (E[Z ])  E[f (Z)].
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Implication for counter size

We have Yn = 2
Xn . The function f (z) = 2

z is convex. Hence

2
E[Xn]  E[Yn]  n + 1

which implies
E[Xn]  log(n + 1)

Hence expected number of bits in counter is dlog log(n + 1))e.
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Variance calculation

Question: Is the random variable Yn well behaved even though
expectation is right? What is its variance? Is it concentrated around
expectation?

Lemma

E

⇥
Y

2

n

⇤
=

3

2
n
2
+

3

2
n + 1 and hence Var [Yn] = n(n � 1)/2.
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Variance analysis

Analyze E

⇥
Y

2

n

⇤
via induction.

Base cases: n = 0, 1 are easy to verify since Yn is deterministic.

E [Y 2

n ] = E [2
2Xn ] =

X

j�0

2
2j · Pr[Xn = j ]

=

X

j�0

2
2j ·

✓
Pr[Xn�1 = j ](1�

1

2j ) + Pr[Xn�1 = j � 1]
1

2j�1

◆

=

X

j�0

2
2j · Pr[Xn�1 = j ]

+

X

j�0

⇣
�2j

Pr[Xn�1 = j � 1] + 42
j�1

Pr[Xn�1 = j � 1]

⌘

= E [Y 2

n�1
] + 3E [Yn�1]

=
3

2
(n � 1)

2
+

3

2
(n � 1) + 1 + 3n =

3

2
n2

+
3

2
n + 1.
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Error analysis via Chebyshev inequality

We have E[Yn] = n and Var(Yn) = n(n � 1)/2 implies
�Yn =

p
n(n � 1)/2  n.

Applying Cheybyshev’s inequality:

Pr[|Yn � E[Yn] | � tn]  1/(2t2).

Hence constant factor approximation with constant probability (for
instance set t = 1/2).

Question: Want estimate to be tighter. For any given ✏ > 0 want
estimate to have error at most ✏n with say constant probability or
with probability at least (1� �) for a given � > 0.
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Part I

Improving Estimators
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Probabilistic Estimation

Setting: want to compute some real-value function f of a given
input I

Probabilistic estimator: a randomized algorithm that given I

outputs a random answer X such that E[X ] ' f (I ). Estimator is
exact if E[X ] = f (I ) for all inputs I .

Additive approximation: |E[X ]� f (I )|  ✏

Multiplicative approximation:

(1� ✏)f (I )  E[X ]  (1 + ✏)f (I )

Question: Estimator only gives expectation. Bound on Var [X ]

allows Chebyshev. Sometimes Cherno↵ applies. How do we improve
estimator?
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Variance reduction via averaging

Run h parallel copies of algorithm with independent randomness

Let Y
(1),Y (2), . . . ,Y (h) be estimators from the h parallel

copies

Output Z =
1

h

Ph
i=1

Y
(i)

Claim: E[Zn] = n and Var(Zn) =
1

h (n(n � 1)/2).

Choose h =
2

✏2
. Then applying Cheybyshev’s inequality

Pr[|Zn � E[Zn] | � ✏n]  1/4.

To run h copies need O(
1

✏2
log log n) bits for the counters.
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Error reduction via median trick

We have:
Pr[|Zn � E[Zn] | � ✏n]  1/4.

Want:
Pr[|Zn � E[Zn] | � ✏n]  �

for some given parameter �.

Can set h =
1

2✏2�
and apply Chebyshev. Better dependence on �?

Idea: Repeat independently c log(1/�) times for some constant c .
We know that with probability (1� �) one of the counters will be
✏n close to n. Why? Which one should we pick?

Algorithm: Output median of Z
(1),Z (2), . . . ,Z (`).
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Error reduction via median trick

Let Z
0 be median of the ` = c log(1/�) independent estimators.

Lemma

Pr[|Z 0 � n| � ✏n]  �.

Let Ai be event that estimate Z
(i) is bad: that is,

|Z (i) � n| > ✏n. Pr[Ai ] < 1/4. Hence expected number of
bad estimates is `/4.

For median estimate to be bad, more than half of Ai ’s have to
be bad.

Using Cherno↵ bounds: probability of bad median is at most
2
�c0` for some constant c

0.
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Summarizing

Using variance reduction and median trick: with
O(

1

✏2
log(1/�) log log n) bits one can maintain a (1� ✏)-factor

estimate of the number of events with probability (1� �). This is a
generic scheme that we will repeatedly use.

For counter one can do (much) better by changing algorithm and
better analysis. See homework and references in notes.
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