CS 498ABD: Algorithms for Big Data

Probabilistic Inequalities and Examples

Lecture 3
September 1, 2020

Outline

Probabilistic Inequalities

Markov's Inequality

Chebyshev's Inequality

Bernstein-Chernoff-Hoeffding bounds

Some examples

Motivation

- Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.
- We proved that $\mathbf{E}[Q] \leq 2n \ln n$.
- But we want to know more because expectation is only one basic piece of information. For instance what is Pr[Q ≥ 10n ln n]? What is Var[Q]?
- Of course we would like to know the full distribution of Q but it is not feasible in many cases because Q is the outcome of a non-trivial algorithm.
- Even when we know the full distribution we don't want complex formulas but nice simple closed forms that help us understand the behaviour of a random variable in intuitive ways.

Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Let X be the random variable that counts the number of 1s.

Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Let X be the random variable that counts the number of 1s.

X has the well known Binomial distribution with p = 1/2:

$$\Pr[X=k] = \binom{n}{k} \frac{1}{2^n}.$$

$$E[X] = n/2$$

$$Var[X] = n/4$$

Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Let X be the random variable that counts the number of 1s.

X has the well known Binomial distribution with p = 1/2:

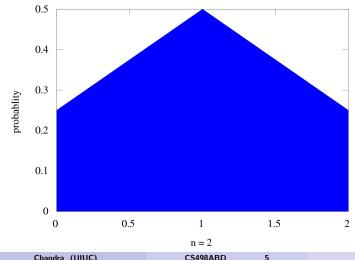
$$\Pr[X=k] = \binom{n}{k} \frac{1}{2^n}.$$

$$E[X] = n/2$$

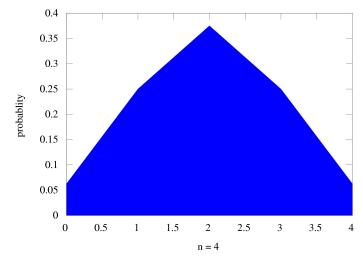
$$Var[X] = n/4$$

Despite knowing the exact distribution it is hard to grasp how \boldsymbol{X} behaves without some analysis of binomial coefficients etc. Let's plot.

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.

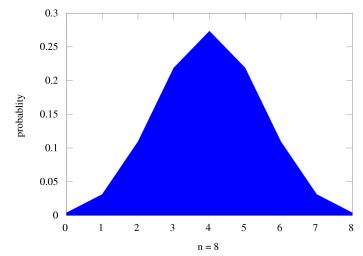


Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.



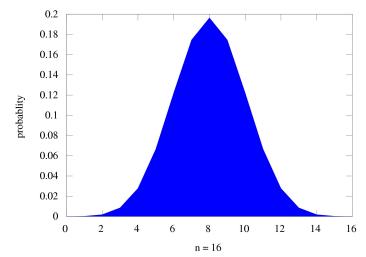
Chandra (UIUC)

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.



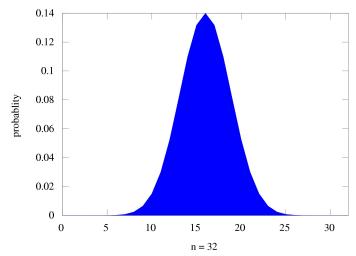
Chandra (UIUC)

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.



Chandra (UIUC)

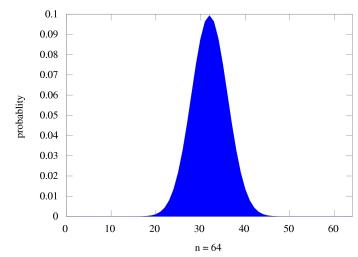
Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.



Chandra (UIUC)

CS498ABD

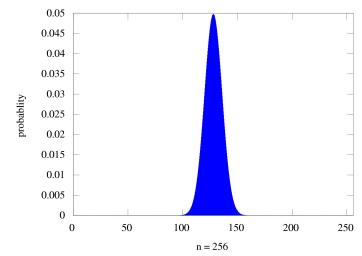
Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.



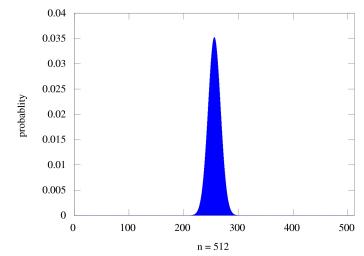
Chandra (UIUC)

CS498ABD

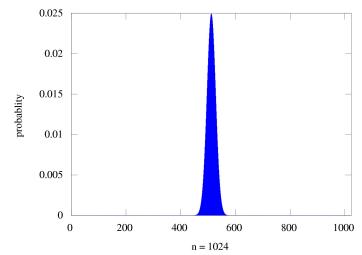
Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.



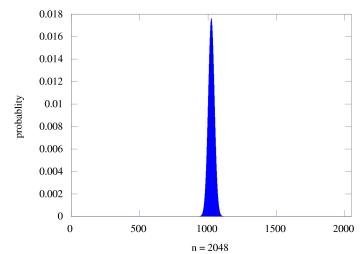
Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.



Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.



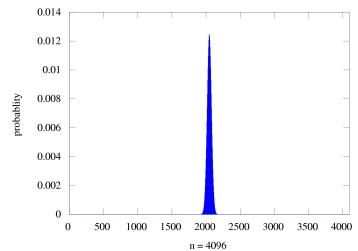
Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.



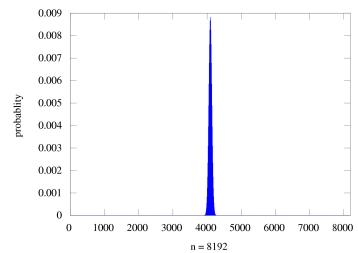
Chandra (UIUC)

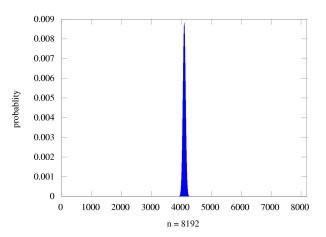
CS498ABD

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.



Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.





This is known as **concentration of measure**.

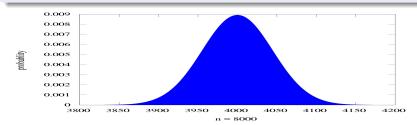
This is a related to the **law of large numbers** and *Chernoff bounds*

Side note...

Law of large numbers (weakest form)...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution looks like (converges to) the normal/Gaussian distribution.



Part I

Inequalities

Randomized QuickSort

- Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.
- We proved that $\mathbf{E}[Q] \leq 2n \ln n$.
- What is $Pr[Q \ge 10n \ln n]$?

Question: Can we say anything interesting knowing just the expectation?

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) and let $\mu = E[X]$. For any t > 0, $\Pr[X \ge t\mu] \le 1/t$. Equivalently, for any a > 0, $\Pr[X \ge a] \le \frac{\mu}{a}$.

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) and let $\mu = \mathsf{E}[X]$. For any t > 0, $\Pr[X \ge t\mu] \le 1/t$. Equivalently, for any a > 0, $\Pr[X \ge a] \le \frac{\mu}{a}$.

Meaningful only when t > 1. Example: $Pr[X \ge 3\mu] \le 1/3$.

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) and let $\mu = \mathsf{E}[X]$. For any t > 0, $\Pr[X \ge t\mu] \le 1/t$. Equivalently, for any a > 0, $\Pr[X \ge a] \le \frac{\mu}{a}$.

Meaningful only when t > 1. Example: $\Pr[X \ge 3\mu] \le 1/3$. Proof?

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) and let $\mu = \mathsf{E}[X]$. For any t > 0, $\Pr[X \ge t\mu] \le 1/t$. Equivalently, for any a > 0, $\Pr[X \ge a] \le \frac{\mu}{a}$.

Meaningful only when t > 1. Example: $\Pr[X \ge 3\mu] \le 1/3$. Proof? Simple averaging argument.

Split range of X into two disjoint intervals $I_1 = [0, t\mu)$ and $I_2 = [t\mu, \infty)$. This is because X is non-negative.

If $\Pr[X \in I_2] > 1/t$ then $\mathsf{E}[X] > (1/t)(t\mu) > \mu$ a contradiction!

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) and let $\mu = \mathsf{E}[X]$. For any t > 0, $\Pr[X \ge t\mu] \le 1/t$. Equivalently, for any a > 0, $\Pr[X \ge a] \le \frac{\mu}{a}$.

Proof:

$$\begin{split} \mathsf{E}[X] &= \sum_{\omega \in \Omega} X(\omega) \, \mathsf{Pr}[\omega] \\ &= \sum_{\omega, \ 0 \leq X(\omega) < a} X(\omega) \, \mathsf{Pr}[\omega] + \sum_{\omega, \ X(\omega) \geq a} X(\omega) \, \mathsf{Pr}[\omega] \\ &\geq \sum_{\omega \in \Omega, \ X(\omega) \geq a} X(\omega) \, \mathsf{Pr}[\omega] \\ &\geq a \sum_{\omega \in \Omega, \ X(\omega) \geq a} \mathsf{Pr}[\omega] \\ &= a \, \mathsf{Pr}[X \geq a] \end{split}$$

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) and let $\mu = \operatorname{E}[X]$. For any a > 0, $\Pr[X \ge a] \le \frac{\mu}{a}$. Equivalently, for any t > 0, $\Pr[X \ge t\mu] \le 1/t$.

Proof:

$$E[X] = \int_0^\infty z f_X(z) dz$$

$$\geq \int_a^\infty z f_X(z) dz$$

$$\geq a \int_a^\infty f_X(z) dz$$

$$= a \Pr[X \geq a]$$

Randomized QuickSort

- Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.
- We proved that $\mathbf{E}[Q] \leq 2n \ln n$.

Question: What is $Pr[Q \ge 10n \ln n]$?

By Markov's inequality at most 1/5.

Chebyshev's Inequality: Variance

Variance

Given a random variable X over probability space (Ω, \Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally, $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

Derivation

$$Var(X) = E[Y]$$

Define $Y = (X - E[X])^2 = X^2 - 2X E[X] + E[X]^2$.

$$Var(X) = E[Y]$$

= $E[X^2] - 2E[X]E[X] + E[X]^2$
= $E[X^2] - E[X]^2$

Chebyshev's Inequality: Variance

Independence

Random variables \boldsymbol{X} and \boldsymbol{Y} are called mutually independent if

$$\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$$

Lemma

If X and Y are independent random variables then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Chebyshev's Inequality: Variance

Independence

Random variables X and Y are called mutually independent if $\forall x, y \in \mathbb{R}$, $\Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$

Lemma

If X and Y are independent random variables then Var(X + Y) = Var(X) + Var(Y).

Lemma

If X and Y are mutually independent, then E[XY] = E[X]E[Y].

Chebyshev's Inequality

If $VarX < \infty$, for any $a \ge 0$, $\Pr[|X - \mathsf{E}[X]| \ge a] \le \frac{Var(X)}{a^2}$

Chebyshev's Inequality

If
$$VarX < \infty$$
, for any $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$

Proof.

 $Y = (X - E[X])^2$ is a non-negative random variable. Apply Markov's Inequality to Y for a^2 .

$$\Pr[Y \ge a^2] \le \mathbb{E}^{|Y|/a^2} \Leftrightarrow \Pr[(X - \mathbb{E}[X])^2 \ge a^2] \le \frac{Var(X)}{a^2}$$
$$\Leftrightarrow \Pr[|X - \mathbb{E}[X]| \ge a] \le \frac{Var(X)}{a^2}$$

Chebyshev's Inequality

If $VarX < \infty$, for any $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$

Proof.

 $Y = (X - E[X])^2$ is a non-negative random variable. Apply Markov's Inequality to Y for a^2 .

$$\Pr[Y \ge a^2] \le \mathbb{E}^{|Y|/a^2} \Leftrightarrow \Pr[(X - \mathbb{E}[X])^2 \ge a^2] \le \frac{Var(X)/a^2}{\Leftrightarrow} \Pr[|X - \mathbb{E}[X]| \ge a] \le \frac{Var(X)/a^2}{a^2}$$

 $Pr[X \le E[X] - a] \le Var(X)/a^2$ AND $Pr[X > E[X] + a] \le Var(X)/a^2$

Chandra (UIUC) CS498ABD 16 Fall 2020

16 / 44

Chebyshev's Inequality

Given $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$ equivalently for any t > 0, $\Pr[|X - E[X]| \ge t\sigma_X] \le \frac{1}{t^2}$ where $\sigma_X = \sqrt{Var(X)}$ is the standard deviation of X.

- Start at origin **0**. At each step move left one unit with probability **1/2** and move right with probability **1/2**.
- After *n* steps how far from the origin?

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 44

- Start at origin 0. At each step move left one unit with probability 1/2 and move right with probability 1/2.
- After *n* steps how far from the origin?

At time i let X_i be -1 if move to left and 1 if move to right.

 Y_n position at time n

$$Y_n = \sum_{i=1}^n X_i$$

- Start at origin 0. At each step move left one unit with probability 1/2 and move right with probability 1/2.
- After *n* steps how far from the origin?

At time i let X_i be -1 if move to left and 1 if move to right.

$$Y_n$$
 position at time n

$$Y_n = \sum_{i=1}^n X_i$$

$$\mathsf{E}[Y_n] = 0$$
 and $Var(Y_n) = \sum_{i=1}^n Var(X_i) = n$

- Start at origin 0. At each step move left one unit with probability 1/2 and move right with probability 1/2.
- After *n* steps how far from the origin?

At time i let X_i be -1 if move to left and 1 if move to right.

 Y_n position at time n

$$Y_n = \sum_{i=1}^n X_i$$

$$\mathsf{E}[Y_n] = 0$$
 and $Var(Y_n) = \sum_{i=1}^n Var(X_i) = n$

By Chebyshev:
$$\Pr[|Y_n| \geq t\sqrt{n}] \leq 1/t^2$$

Chernoff Bound: Motivation

In many applications we are interested in **X** which is sum of *independent* and *bounded* random variables.

$$X = \sum_{i=1}^k X_i$$
 where $X_i \in [0,1]$ or $[-1,1]$ (normalizing)

Chebyshev not strong enough. For random walk on line one can prove

$$\Pr[|Y_n| \ge t\sqrt{n}] \le 2\exp(-t^2/2)$$

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 44

Chernoff Bound: Non-negative case

Lemma

Let X_1, \ldots, X_k be k independent binary random variables such that, for each $i \in [k]$, $E[X_i] = Pr[X_i = 1] = p_i$. Let $X = \sum_{i=1}^k X_i$. Then $E[X] = \sum_i p_i$.

Chandra (UIUC) CS498ABD 20 Fall 2020 20 / 44

Chernoff Bound: Non-negative case

Lemma

Let X_1, \ldots, X_k be k independent binary random variables such that, for each $i \in [k]$, $E[X_i] = Pr[X_i = 1] = p_i$. Let $X = \sum_{i=1}^k X_i$. Then $E[X] = \sum_i p_i$.

• Upper tail bound: For any $\mu \geq \mathsf{E}[X]$ and any $\delta > 0$,

$$\mathsf{Pr}[X \geq (1+\delta)\mu] \leq (rac{e^{\delta}}{(1+\delta)^{(1+\delta)}})^{\mu}$$

ullet Lower tail bound: For any $0<\mu<{ t E}[X]$ and any $0<\delta<1$,

$$\Pr[X \leq (1-\delta)\mu] \leq (\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}})^{\mu}$$

Chernoff Bound: Non-negative case, simplifying

When $0 < \delta < 1$ an important regime of interest we can simplify.

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1, k]$, X_i equals 1 with probability p_i , and 0 with probability $(1 - p_i)$. Let $X = \sum_{i=1}^k X_i$ and $\mu = E[X] = \sum_i p_i$. For any $0 < \delta < 1$, it holds that:

- Hence by union bound: $\Pr[|X \mu| \ge \delta \mu] \le 2e^{-\frac{\delta^2 \mu}{3}}$

Chandra (UIUC) CS498ABD 21 Fall 2020 21 / 44

Chernoff Bound: Non-negative case

Important: non-negative case bound depends only on μ , not on k.

Regimes of interest for δ for upper tail.

•
$$0 \le \delta < 1$$
: $\Pr[X \ge (1 + \delta)\mu] \le e^{-\frac{\delta^2}{3} \cdot \mu}$

- $\delta \geq 1$: $\Pr[X \geq (1+\delta)\mu] \leq e^{-\frac{\delta}{3} \cdot \mu}$ (useful when δ is close to a small constant)
- $\delta \geq 1$: $\Pr[X \geq (1+\delta)\mu] \leq e^{-\frac{(1+\delta)\ln(1+\delta)}{4}\cdot \mu}$ (useful when δ is large)

Chernoff Bound: general

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1, k]$, $X_i \in [-1, 1]$.

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 44

Chernoff Bound: general

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1, k]$, $X_i \in [-1, 1]$. Let $X = \sum_{i=1}^k X_i$. For any a > 0,

$$\Pr[|X - \mathsf{E}[X]| \ge a] \le 2\exp(\frac{-a^2}{2n}).$$

When variables are not positive the bound depends on n while in the non-negative case there is no dependence on n (dimension-free)

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 44

Chernoff Bound: general

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1, k]$, $X_i \in [-1, 1]$. Let $X = \sum_{i=1}^k X_i$. For any a > 0,

$$\Pr[|X - \mathsf{E}[X]| \ge a] \le 2\exp(\frac{-a^2}{2n}).$$

When variables are not positive the bound depends on n while in the non-negative case there is no dependence on n (dimension-free) Applying to random walk:

$$\Pr[|Y_n| \ge t\sqrt{n}] \le 2exp(-t^2/2).$$

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 44

Extensions and variations

Hoeffding extension: Theorems hold as long as X_i is bounded — variables do not have to be $\{0,1\}$.

- ullet For non-negative $X_i \in [0,1]$
- ullet For general $X_i \in [-1,1]$

Averaging version: Bound $X = \frac{1}{k} (\sum_{i=1}^{k} X_i)$ instead of the sum. Use variable Y = kX and bound on Y.

Scaling variables: If X_i is in [0, B] use $Y_i = X_i/B$.

Shifting variables: If $X_i \in [a_i, b_i]$ where $b_i - a_i$ is small consider $Y_i = X_i - a_i$.

Many variations and generalization. See pointers on course webpage.

Part II

Balls and Bins

Chandra (UIUC) CS498ABD 25 Fall 2020 25 / 44

Balls and Bins

- m balls and n bins
- Each ball thrown independently and uniformly in a bin
- Want to understand properties of bin loads
- Fundamental problem with many applications

Chandra (UIUC) CS498ABD 26 Fall 2020 26 / 44

Balls and Bins

- m balls and n bins
- Each ball thrown independently and uniformly in a bin
- Want to understand properties of bin loads
- Fundamental problem with many applications
- Z_{ij} indicator for ball i falling into bin j
- $X_j = \sum_{i=1}^m Z_{ij}$ is number of balls in bin j
- $\sum_{j=1}^{n} Z_{ij} = 1$ deterministically
- $E[Z_{ij}] = 1/n$ for all i, j, and hence $E[X_j] = m/n$ for each bin j

Chandra (UIUC) CS498ABD 26 Fall 2020 26 / 44

Question: Suppose we throw n balls into n bins. What is the expectation of the maximum load?

Chandra (UIUC) CS498ABD 27 Fall 2020 27 / 44

Question: Suppose we throw n balls into n bins. What is the expectation of the maximum load?

Theorem

Let $Y = \max_{j=1}^{n} X_j$ be the maximum load. Then

 $Pr[Y > 10 \ln n / \ln \ln n] < 1/n^2$ (high probability) and hence $E[Y] = O(\ln n / \ln \ln n)$.

One can also show that $\mathbf{E}[Y] = \Theta(\ln n / \ln \ln n)$.

Chandra (UIUC) CS498ABD 27 Fall 2020 27 / 44

Question: Suppose we throw n balls into n bins. What is the expectation of the maximum load?

Theorem

Let $Y = \max_{i=1}^{n} X_i$ be the maximum load. Then

 $Pr[Y > 10 \ln n / \ln \ln n] < 1/n^2$ (high probability) and hence $E[Y] = O(\ln n / \ln \ln n)$.

One can also show that $\mathbf{E}[Y] = \Theta(\ln n / \ln \ln n)$.

Proof technique: combine Chernoff bound and union bound which is powerful and general template

Focus on bin 1 without loss of generality since bins are symmetric. Simplifying notation $X = \sum_i Z_i$ where X is load of bin 1 and Z_i is indicator of ball i falling in bin.

• Want to know $Pr[X \ge 12 \ln n / \ln \ln n]$

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 44

Focus on bin 1 without loss of generality since bins are symmetric. Simplifying notation $X = \sum_i Z_i$ where X is load of bin 1 and Z_i is indicator of ball i falling in bin.

- Want to know $Pr[X \ge 12 \ln n / \ln \ln n]$
- $\mu = E[X] = 1$
- $(1 + \delta) = 12 \ln n / \ln \ln n$. We are in large δ setting
- Apply the Chernoff upper tail bound (with simplification) :

$$\Pr[X \geq (1+\delta)\mu] \leq e^{-rac{(1+\delta)\ln(1+\delta)}{4}\cdot\mu}$$

Focus on bin 1 without loss of generality since bins are symmetric. Simplifying notation $X = \sum_i Z_i$ where X is load of bin 1 and Z_i is indicator of ball i falling in bin.

- Want to know $Pr[X \ge 12 \ln n / \ln \ln n]$
- $\mu = E[X] = 1$
- $(1 + \delta) = 12 \ln n / \ln \ln n$. We are in large δ setting
- Apply the Chernoff upper tail bound (with simplification) :

$$\Pr[X \geq (1+\delta)\mu] \leq e^{-\frac{(1+\delta)\ln(1+\delta)}{4}\cdot\mu}$$

• Calculate/simplify and see that $Pr[X \ge 12 \ln n / \ln \ln n] \le 1/n^3$

- For each bin j, $Pr[X_i \ge 12 \ln n / \ln \ln n] < 1/n^3$
- Let A_i be event that $X_i > 12 \ln n / \ln \ln n$
- By union bound

$$\Pr[\cup_j A_j] \leq \sum_j \Pr[A_j] \leq n \cdot 1/n^3 \leq 1/n^2.$$

• Hence, with probability at least $(1 - 1/n^2)$ no bin has load more than $12 \ln n / \ln \ln n$.

Chandra (UIUC) CS498ABD 29 Fall 2020 29 / 44

- For each bin j, $\Pr[X_j \ge 12 \ln n / \ln \ln n] \le 1/n^3$
- Let A_i be event that $X_i \geq 12 \ln n / \ln \ln n$
- By union bound

$$\Pr[\cup_j A_j] \leq \sum_j \Pr[A_j] \leq n \cdot 1/n^3 \leq 1/n^2.$$

- Hence, with probability at least $(1 1/n^2)$ no bin has load more than $12 \ln n / \ln \ln n$.
- Let $Y = \max_j X_j$. $Y \le n$. Hence

$$E[Y] \le (1 - 1/n^2)(12 \ln n / \ln \ln n) + (1/n^2)n.$$

Chandra (UIUC) CS498ABD 29 Fall 2020 29 / 44

From a ball's perspective

Consider a ball *i*. How many other balls fall into the same bin as *i*?

Chandra (UIUC) CS498ABD 30 Fall 2020 30 / 44

From a ball's perspective

Consider a ball *i*. How many other balls fall into the same bin as *i*?

- Ball i is thrown first wlog. And lands in some bin j.
- Then the other n-1 balls are thrown.
- Now bin j is fixed. Hence expected load on bin j is (1 1/n).
- What is variance? What is a high probability bound?

Part III

Approximate Median

Chandra (UIUC) CS498ABD 31 Fall 2020 31 / 44

- Input: n distinct numbers a_1, a_2, \ldots, a_n and $0 < \epsilon < 1/2$
- Output: A number x from input such that $(1 \epsilon)n/2 \le rank(x) \le (1 + \epsilon)n/2$

Chandra (UIUC) CS498ABD 32 Fall 2020 32 / 44

- Input: n distinct numbers a_1, a_2, \ldots, a_n and $0 < \epsilon < 1/2$
- Output: A number x from input such that $(1 \epsilon)n/2 \le rank(x) \le (1 + \epsilon)n/2$

Algorithm:

- Sample with replacement k numbers from a_1, a_2, \ldots, a_n
- Output median of the sampled numbers

- Input: n distinct numbers a_1, a_2, \ldots, a_n and $0 < \epsilon < 1/2$
- Output: A number x from input such that $(1 \epsilon)n/2 \le rank(x) \le (1 + \epsilon)n/2$

Algorithm:

- Sample with replacement k numbers from a_1, a_2, \ldots, a_n
- Output median of the sampled numbers

Theorem

For any $0 < \epsilon < 1/2$ and $0 < \delta < 1$, if $k = \Omega(\frac{1}{\epsilon^2} \log(1/\delta))$, the algorithm outputs an ϵ -approximate median with probability at least $(1 - \delta)$.

- Let S be random sample chosen by algorithm
- Imagine sorting the numbers
- Split numbers into L (left), M (middle), and R (right)
- $M = \{y \mid (1 \epsilon)n/2 \le rank(y) \le (1 + \epsilon)n/2\}$
- Algorithm makes a mistake only if $|S \cap L| \ge k/2$ or $|S \cap R| \ge k/2$. Otherwise it will output a number from M.

- Let S be random sample chosen by algorithm
- Imagine sorting the numbers
- Split numbers into L (left), M (middle), and R (right)
- $M = \{y \mid (1 \epsilon)n/2 \le rank(y) \le (1 + \epsilon)n/2\}$
- Algorithm makes a mistake only if $|S \cap L| \ge k/2$ or $|S \cap R| \ge k/2$. Otherwise it will output a number from M.

Lemma

$$\Pr[|S \cap L| \ge k/2] \le \delta/2 \text{ if } k \ge \frac{10}{\epsilon^2} \log(1/\delta).$$

Analysis

- Let $Y = |S \cap L|$? What is E[Y]?
- $Y = \sum_{i=1}^{k} X_i$ where X_i is indicator of sample i falling in L. Hence $\mathbf{E}[Y] = k(1 - \epsilon)/2$
- Use Chernoff bound: $\Pr[Y \ge k/2] \le \delta/2$ if $k \ge \frac{10}{\epsilon^2} \log(1/\delta)$.

Chandra (UIUC) CS498ABD 34 Fall 2020 34 / 44

Analysis continued

- $\Pr[|S \cap L| \ge k/2] \le \delta/2$ if $k \ge \frac{10}{\epsilon^2} \log(1/\delta)$.
- By symmetry: $\Pr[|S \cap R| \ge k/2] \le \delta/2$ if $k \ge \frac{10}{\epsilon^2} \log(1/\delta)$.
- By union bound at most δ probability that $|S \cap L| \ge k/2$ or $|S \cap R| \ge k/2$.
- Hence with $(1-\delta)$ probability median of S is an ϵ -approximate median

Chandra (UIUC) CS498ABD 35 Fall 2020 35 / 44

Part IV

Randomized QuickSort (Contd.)

Chandra (UIUC) CS498ABD 36 Fall 2020 36 / 44

Randomized QuickSort: Recall

Input: Array **A** of **n** numbers. **Output:** Numbers in sorted order.

Randomized QuickSort

- 1 Pick a pivot element uniformly at random from A.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- 3 Recursively sort the subarrays, and concatenate them.

Chandra (UIUC) CS498ABD 37 Fall 2020 37 / 44

Randomized QuickSort: Recall

Input: Array **A** of **n** numbers. **Output:** Numbers in sorted order.

Randomized QuickSort

- 1 Pick a pivot element uniformly at random from A.
- 2 Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Randomized QuickSort: Recall

Input: Array **A** of **n** numbers. **Output:** Numbers in sorted order.

Randomized QuickSort

- 1 Pick a pivot element uniformly at random from A.
- 2 Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- 3 Recursively sort the subarrays, and concatenate them.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Question: With what probability it takes $O(n \log n)$ time?

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

Chandra (UIUC) CS498ABD 38 Fall 2020 38 / 44

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) < 32n \ln n] > 1 - 1/n^3$.

If n = 100 then this gives $Pr[Q(A) < 32n \ln n] > 0.99999$.

Chandra (UIUC) CS498ABD 38 Fall 2020 38 / 44

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) < 32n \ln n] > 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion < 32 ln n with high probability. Which will imply the result.

Chandra (UIUC) CS498ABD 39 Fall 2020 39 / 44

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion \leq **32 In** n with high probability. Which will imply the result.
 - Focus on a fixed element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - 2 By union bound, any of the *n* elements participates in > 32 In *n* levels with probability at most

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion \leq 32 In n with high probability. Which will imply the result.
 - Focus on a fixed element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - 2 By union bound, any of the n elements participates in $> 32 \ln n$ levels with probability at most $1/n^3$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion \leq 32 In n with high probability. Which will imply the result.
 - Focus on a fixed element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - 2 By union bound, any of the n elements participates in $> 32 \ln n$ levels with probability at most $1/n^3$.

Useful lemma

Lemma

Consider $h = 32 \ln n$ for n sufficiently large integer. Consider h independent unbiased coin tosses X_1, X_2, \ldots, X_h and let A be the event that there are less than $4 \ln n$ heads. Then $\Pr[A] \leq 1/n^4$.

Chandra (UIUC) CS498ABD 40 Fall 2020 40 / 44

Useful lemma

Lemma

Consider $h = 32 \ln n$ for n sufficiently large integer. Consider h independent unbiased coin tosses X_1, X_2, \ldots, X_h and let A be the event that there are less than $4 \ln n$ heads. Then $\Pr[A] < 1/n^4$.

Apply Chernoff bound (lower tail).

Chandra (UIUC) CS498ABD 40 Fall 2020 40 / 44

Useful lemma

Lemma

Consider $h = 32 \ln n$ for n sufficiently large integer. Consider h independent unbiased coin tosses X_1, X_2, \ldots, X_h and let A be the event that there are less than $4 \ln n$ heads. Then $\Pr[A] \leq 1/n^4$.

Apply Chernoff bound (lower tail).

- $X_i = 1$ if i is head, 0 otherwise. Let $Y = \sum_{i=1}^h X_i$ is number of heads.
- $\mu = E[Y] = h/2 = 16 \ln n$.
- $Pr[A] = Pr[Y < 4 \ln n] = Pr[Y < \mu/4].$
- By Chernoff bound: $\Pr[Y \le (1 \delta)\mu] \le \exp(-\delta^2\mu/2)$. Using $\delta = 3/4$ we have $\Pr[A] \le \exp(-4.5 \ln n) \le 1/n^{4.5}$.

Chandra (UIUC) CS498ABD 40 Fall 2020 40 / 40

- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$ where k is the last level for s (note k is a random variable). Define $S_\ell = \{s\}$ for all $k \le \ell \le n$ for technical convenience

Chandra (UIUC) CS498ABD 41 Fall 2020 41 / 44

- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$ where k is the last level for s (note k is a random variable). Define $S_\ell = \{s\}$ for all $k \le \ell \le n$ for technical convenience
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.

- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$ where k is the last level for s (note k is a random variable). Define $S_\ell = \{s\}$ for all $k \le \ell \le n$ for technical convenience
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.
- If $\rho = \#$ lucky rounds in first h rounds, then $|S_h| < (3/4)^{\rho} n$.

- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$ where k is the last level for s (note k is a random variable). Define $S_\ell = \{s\}$ for all $k \le \ell \le n$ for technical convenience
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.
- If $\rho = \#$ lucky rounds in first h rounds, then $|S_h| < (3/4)^{\rho} n$.
- If $h > \rho = 4 \ln n$ then $S_h < 1$ implies s done.

- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$ where k is the last level for s (note k is a random variable). Define $S_\ell = \{s\}$ for all $k \le \ell \le n$ for technical convenience
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.
- If $\rho = \#$ lucky rounds in first h rounds, then $|S_h| \leq (3/4)^{\rho} n$.
- If $h \ge \rho = 4 \ln n$ then $S_h \le 1$ implies s done.

Lemma

Fix $h = 32 \ln n$. $|S_h| > 1$ only if less then $4 \ln n$ lucky rounds for s in the first h rounds.

How may rounds before $4 \ln n$ lucky rounds?

- Fix element s and $h = 32 \ln n$.
- $X_i = 1$ if s is lucky in iteration i

Chandra (UIUC) CS498ABD 42 Fall 2020 42 / 44

How may rounds before $4 \ln n$ lucky rounds?

- Fix element s and $h = 32 \ln n$.
- $X_i = 1$ if s is lucky in iteration i
- Observation: X_1, \ldots, X_h are independent variables.
- $\Pr[X_i = 1] = \frac{1}{2}$ Why?

Chandra (UIUC) CS498ABD 42 Fall 2020 42 / 44

How may rounds before $4 \ln n$ lucky rounds?

- Fix element s and $h = 32 \ln n$.
- $X_i = 1$ if s is lucky in iteration i
- Observation: X_1, \ldots, X_h are independent variables.
- $\Pr[X_i = 1] = \frac{1}{2}$ Why?
- Thus s not done after h iterations only if less than $4 \ln n$ lucky rounds in h rounds. Use Lemma to see probability less than $1/n^4$.

Chandra (UIUC) CS498ABD 42 Fall 2020 42 / 44

Randomized QuickSort w.h.p. Analysis

• n input elements. Probability that depth of recursion in **QuickSort** $> 32 \ln n$ is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.

Chandra (UIUC) CS498ABD 43 Fall 2020 43 / 44

Randomized QuickSort w.h.p. Analysis

• n input elements. Probability that depth of recursion in **QuickSort** $> 32 \ln n$ is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.

Theorem

With high probability (i.e., $1 - \frac{1}{n^3}$) the depth of the recursion of **QuickSort** is $\leq 32 \ln n$. Due to n comparisons in each level, with high probability, the running time of **QuickSort** is $O(n \ln n)$.

Chandra (UIUC) CS498ABD 43 Fall 2020 43 / 44

Randomized QuickSort w.h.p. Analysis

• n input elements. Probability that depth of recursion in **QuickSort** $> 32 \ln n$ is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.

Theorem

With high probability (i.e., $1 - \frac{1}{n^3}$) the depth of the recursion of **QuickSort** is $\leq 32 \ln n$. Due to n comparisons in each level, with high probability, the running time of **QuickSort** is $O(n \ln n)$.

Chandra (UIUC) CS498ABD 43 Fall 2020 43 / 44