CS 498ABD: Algorithms for Big Data

Introduction to Randomized Algorithms: QuickSort

Lecture 2 August 27, 2020

Outline

Today

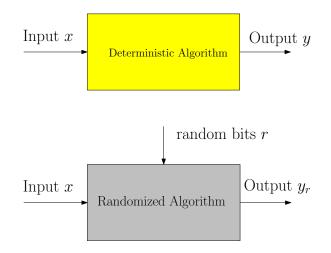
- Randomized Algorithms Two types
 - Las Vegas
 - Monte Carlo
- Randomized Quick Sort

Part I

Introduction to Randomized Algorithms

Randomized Algorithms

Randomized Algorithms



Example: Randomized QuickSort

QuickSort ?

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- In the subarrays, and concatenate them.

Randomized QuickSort

- **1** Pick a pivot element **uniformly at random** from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- **③** Recursively sort the subarrays, and concatenate them.

Example: Randomized Quicksort

Recall: QuickSort can take $\Omega(n^2)$ time to sort array of size *n*.

Example: Randomized Quicksort

Recall: **QuickSort** can take $\Omega(n^2)$ time to sort array of size *n*.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Example: Randomized Quicksort

Recall: **QuickSort** can take $\Omega(n^2)$ time to sort array of size *n*.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Deterministic algorithm:

- Multiply A and B and check if equal to C.
- ² Running time? $O(n^3)$ by straight forward approach. $O(n^{2.37})$ with fast matrix multiplication (complicated and impractical).

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- **2** Return the answer of the equality ABr = Cr.
- In Running time?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- **2** Return the answer of the equality ABr = Cr.
- 3 Running time? $O(n^2)!$

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- **2** Return the answer of the equality ABr = Cr.
- 3 Running time? $O(n^2)!$

Theorem

If AB = C then the algorithm will always say YES. If $AB \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1/2^{100}$.

Why randomized algorithms?

- Many many applications in algorithms, data structures and computer science!
- In some cases only known algorithms are randomized or randomness is provably necessary.
- Often randomized algorithms are (much) simpler and/or more efficient.
- Several deep connections to mathematics, physics etc.
- 5 ...
- Lots of fun!

Average case analysis vs Randomized algorithms

Average case analysis:

- Fix a deterministic algorithm.
- Assume inputs comes from a probability distribution.
- Analyze the algorithm's *average* performance over the distribution over inputs.

Randomized algorithms:

- Algorithm uses random bits in addition to input.
- Analyze algorithms average performance over the given input where the average is over the random bits that the algorithm uses.
- On each input behaviour of algorithm is random. Analyze worst-case over all inputs of the (average) performance.

Chandra ((UIUC)

Types of Randomized Algorithms

Typically one encounters the following types:

Las Vegas randomized algorithms: for a given input x output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.

Types of Randomized Algorithms

Typically one encounters the following types:

- Las Vegas randomized algorithms: for a given input x output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.
- Onte Carlo randomized algorithms: for a given input x the running time is deterministic but the output is random; correct with some probability. In this case we are interested in analyzing the probability of the correct output (and also the running time).
- Algorithms whose running time and output may both be random.

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :

- Let Q(x) be the time for Q to run on input x of length |x|.
- Worst-case analysis: run time on worst input for a given size *n*.

$$T_{wc}(n) = \max_{x:|x|=n} Q(x).$$

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :

- Let Q(x) be the time for Q to run on input x of length |x|.
- Worst-case analysis: run time on worst input for a given size *n*.

$$T_{wc}(n) = \max_{x:|x|=n} Q(x).$$

Randomized algorithm R for a problem Π :

- Let R(x) be the time for Q to run on input x of length |x|.
- **2** R(x) is a random variable: depends on random bits used by R.
- **Solution** E[R(x)] is the expected running time for R on x
- Worst-case analysis: expected time on worst input of size n

$$T_{rand-wc}(n) = \max_{x:|x|=n} \mathbf{E}[R(x)].$$

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π :

- Let M(x) be the time for M to run on input x of length |x|. For Monte Carlo, assumption is that run time is deterministic.
- 2 Let $\Pr[x]$ be the probability that M is correct on x.
- **O** Pr[x] is a random variable: depends on random bits used by M.
- Worst-case analysis: success probability on worst input

$$P_{rand-wc}(n) = \min_{x:|x|=n} \Pr[x].$$

Part II

Randomized Quick Sort

Randomized QuickSort

Randomized QuickSort

- Pick a pivot element *uniformly at random* from the array.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- In the subarrays, and concatenate them.
- **1** array: 16, 12, 14, 20, 5, 3, 18, 19, 1

What events to count?

• Number of Comparisions.

What events to count?

• Number of Comparisions.

What is the probability space?

• All the coin tosses at all levels and parts of recursion.

What events to count?

• Number of Comparisions.

What is the probability space?

• All the coin tosses at all levels and parts of recursion.

Too Big!!

What events to count?

• Number of Comparisions.

What is the probability space?

• All the coin tosses at all levels and parts of recursion.

Too Big!!

What random variables to define? What are the events of the algorithm?

- Given array A of size n, let Q(A) be number of comparisons of randomized QuickSort on A.
- **2** Note that Q(A) is a random variable.
- Let Aⁱ_{left} and Aⁱ_{right} be the left and right arrays obtained if rank i element chosen as pivot.

Let X_i be indicator random variable, which is set to 1 if pivot is of rank i in A, else zero.

$$Q(A) = n + \sum_{i=1}^{n} X_i \cdot \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i)\right).$$

- Given array A of size n, let Q(A) be number of comparisons of randomized QuickSort on A.
- **2** Note that Q(A) is a random variable.
- Let Aⁱ_{left} and Aⁱ_{right} be the left and right arrays obtained if rank i element chosen as pivot.

Let X_i be indicator random variable, which is set to 1 if pivot is of rank i in A, else zero.

$$Q(A) = n + \sum_{i=1}^{n} X_i \cdot \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i)\right).$$

Since each element of **A** has probability exactly of 1/n of being chosen:

 $E[X_i] = Pr[pivot has rank i] = 1/n.$

Chandra (UIUC)	CS498ABD	17	Fall 2020	17 / 33

Independence of Random Variables

Lemma

Random variables X_i is independent of random variables $Q(A_{left}^i)$ as well as $Q(A_{right}^i)$, i.e.

$$\mathbf{E} \begin{bmatrix} X_i \cdot Q(A_{left}^i) \end{bmatrix} = \mathbf{E} \begin{bmatrix} X_i \end{bmatrix} \mathbf{E} \begin{bmatrix} Q(A_{left}^i) \end{bmatrix}$$
$$\mathbf{E} \begin{bmatrix} X_i \cdot Q(A_{right}^i) \end{bmatrix} = \mathbf{E} \begin{bmatrix} X_i \end{bmatrix} \mathbf{E} \begin{bmatrix} Q(A_{right}^i) \end{bmatrix}$$

Proof.

This is because the algorithm, while recursing on $Q(A_{\text{left}}^i)$ and $Q(A_{\text{right}}^i)$ uses new random coin tosses that are independent of the coin tosses used to decide the first pivot. Only the latter decides value of X_i .

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} X_i \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right)$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} X_i \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right)$$

By linearity of expectation, and independence random variables:

$$\mathsf{E}\Big[Q(\mathsf{A})\Big] = n + \sum_{i=1}^{n} \mathsf{E}[X_i]\Big(\mathsf{E}\Big[Q(\mathsf{A}^i_{\mathsf{left}})\Big] + \mathsf{E}\Big[Q(\mathsf{A}^i_{\mathsf{right}})\Big]\Big)\,.$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized **QuickSort** on arrays of size *n*.

We have, for any A:

Chan

$$Q(A) = n + \sum_{i=1}^{n} X_i \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right)$$

By linearity of expectation, and independence random variables:

$$\mathsf{E}\Big[Q(\mathsf{A})\Big] = n + \sum_{i=1}^{n} \mathsf{E}[X_i]\Big(\mathsf{E}\Big[Q(\mathsf{A}^i_{\mathsf{left}})\Big] + \mathsf{E}\Big[Q(\mathsf{A}^i_{\mathsf{right}})\Big]\Big).$$

$$\Rightarrow \quad \mathsf{E}\Big[Q(A)\Big] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

ndra (UIUC)	CS498ABD	19	Fall 2020	19 / 33

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized **QuickSort** on arrays of size *n*. We derived:

$$\mathsf{E}\Big[Q(A)\Big] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Note that above holds for any A of size n. Therefore

$$\max_{A:|A|=n} \mathsf{E}[Q(A)] = T(n) \le n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i) \right).$$

Solving the Recurrence

$$T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i))$$

with base case T(1) = 0.

Solving the Recurrence

$$T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i))$$

with base case T(1) = 0.

Lemma

 $T(n) = O(n \log n).$

Solving the Recurrence

$$T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i))$$

with base case T(1) = 0.

Lemma

 $T(n) = O(n \log n).$

Proof.

(Guess and) Verify by induction.

Part III

Slick analysis of QuickSort

- Let Q(A) be number of comparisons done on input array A:
 - For $1 \le i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
 - 2 X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij} = 1$ if rank *i* is compared with rank *j* element, otherwise **0**.

Let Q(A) be number of comparisons done on input array A:

- For $1 \le i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij} = 1$ if rank *i* is compared with rank *j* element, otherwise **0**.

$$Q(A) = \sum_{1 \le i < j \le n} X_{ij}$$

and hence by linearity of expectation,

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \leq i < j \leq n} \mathsf{E}\Big[X_{ij}\Big] = \sum_{1 \leq i < j \leq n} \mathsf{Pr}\Big[R_{ij}\Big].$$

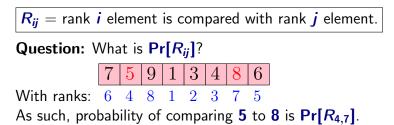
 R_{ij} = rank *i* element is compared with rank *j* element.

Question: What is Pr[R_{ij}]?

 R_{ij} = rank *i* element is compared with rank *j* element.

Question: What is **Pr**[*R*_{*ij*}]?

With ranks: 6 4 8 1 2 3 7 5



 R_{ij} = rank *i* element is compared with rank *j* element.

Question: What is **Pr**[*R*_{ij}]?

With ranks: 6 4 8 1 2 3 7 5

If pivot too small (say 3 [rank 2]). Partition and call recursively:

 7
 5
 9
 1
 3
 7
 5
 9
 4
 8
 6

Decision if to compare 5 to 8 is moved to subproblem.

 R_{ij} = rank *i* element is compared with rank *j* element.

Question: What is **Pr**[*R*_{ij}]?

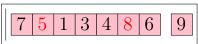
13486

With ranks: $6 \ 4 \ 8 \ 1 \ 2 \ 3 \ 7 \ 5$

If pivot too small (say 3 [rank 2]). Partition and call recursively:

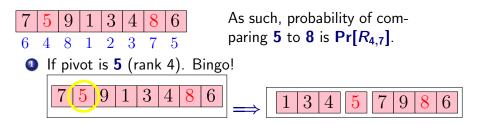
Decision if to compare 5 to 8 is moved to subproblem.

If pivot too large (say 9 [rank 8]):

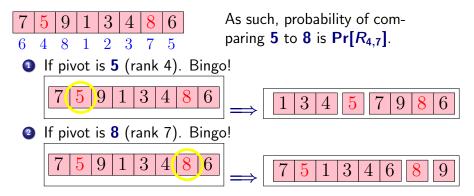


Decision if to compare 5 to 8 moved to subproblem.

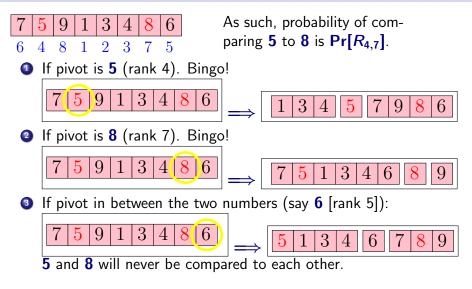
Question: What is Pr[R_{i,i}]?



Question: What is Pr[R_{i,i}]?



Question: What is Pr[R_{i,j}]?



Chandra (
Chantura	0100)

Question: What is Pr[R_{i,i}]?

Conclusion:

R_{*i*,*j*} happens if and only if:

*i*th or *j*th ranked element is the first pivot out of *i*th to *j*th ranked elements.

Digression

Consider the following experiment:

- Every day John decides whether to wear a tie by tossing a biased coin that comes up heads with probability p > 0 (and tails otherwise). He wears a tie if it comes up heads.
- If the coin is heads he tosses an unbiased coin to decide whether to wear a red tie or a blue tie.

Digression

Consider the following experiment:

- Every day John decides whether to wear a tie by tossing a biased coin that comes up heads with probability p > 0 (and tails otherwise). He wears a tie if it comes up heads.
- If the coin is heads he tosses an unbiased coin to decide whether to wear a red tie or a blue tie.

Question: What is the probability that John wore a red tie on the first day he wore a tie?

Question: What is **Pr**[*R*_{*ij*}]?

Question: What is **Pr**[*R*_{*ij*}]?

Lemma	
$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$	

Question: What is **Pr**[*R*_{ij}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...

Continued...

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be sort of A. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$ **Observation:** a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation. **Observation:** Given that pivot is chosen from S the probability that it is a_i or a_j is exactly 2/|S| = 2/(j - i + 1) since the pivot is chosen uniformly at random from the array.

How much is this?

 $H_n = \sum_{i=1}^n \frac{1}{i} \text{ is the } n' \text{th harmonic number}$ (A) $H_n = \Theta(1)$. (B) $H_n = \Theta(\log \log n)$. (C) $H_n = \Theta(\sqrt{\log n})$. (D) $H_n = \Theta(\log n)$. (E) $H_n = \Theta(\log^2 n)$.

And how much is this?

 $T_n = \sum_{i=1}^{n-1} \sum_{j=1}^{n-i} \frac{1}{j}$ is equal to (A) $T_n = \Theta(n)$. (B) $T_n = \Theta(n \log n)$. (C) $T_n = \Theta(n \log^2 n)$. (D) $T_n = \Theta(n^2)$. (E) $T_n = \Theta(n^3)$.

Continued...

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \leq i < j \leq n} \mathsf{E}[X_{ij}] = \sum_{1 \leq i < j \leq n} \mathsf{Pr}[R_{ij}].$$

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Continued...

Lemma

 $\Pr[R_{ij}] = \frac{2}{j-i+1}.$

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \le i < j \le n} \mathsf{Pr}\Big[R_{ij}\Big] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$

Continued...

Lemma

 $\Pr[R_{ij}] = \frac{2}{j-i+1}.$

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{\substack{1 \le i < j \le n}} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E[Q(A)] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathsf{E}\Big[Q(A)\Big] = 2\sum_{i=1}^{n-1}\sum_{i< j}^{n}\frac{1}{j-i+1} \le 2\sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1}\frac{1}{\Delta}$$

Continued...

Lemma

 $\Pr[R_{ij}] = \frac{2}{j-i+1}.$

$$\mathsf{E}\Big[Q(A)\Big] = 2\sum_{i=1}^{n-1}\sum_{i< j}^{n}\frac{1}{j-i+1} \le 2\sum_{i=1}^{n-1}\sum_{\Delta=2}^{n-i+1}\frac{1}{\Delta} \le 2\sum_{i=1}^{n-1}(H_{n-i+1}-1) \le 2\sum_{1\le i< n}H_n$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E[Q(A)] = 2\sum_{i=1}^{n-1}\sum_{i$$

Where do I get random bits?

Question: Are true random bits available in practice?

- Buy them!
- OPUs use physical phenomena to generate random bits.
- Can use pseudo-random bits or semi-random bits from nature. Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.
- In practice pseudo-random generators work quite well in many applications.
- The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can *derandomize* randomized algorithms to obtain deterministic algorithms.