
A Constructor-Based Reachability Logic for
Rewrite Theories

Stephen Skeirik, Andrei Stefanescu and José Meseguer

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

Abstract. Reachability logic has been applied to K rewrite-rule-based
language definitions as a language-generic logic of programs to verify a
wide range of sophisticated programs in conventional languages. Here
we study how reachability logic can be made not just language-generic,
but also rewrite-theory-generic, so that we can verify both conventional
programs based on their rewriting logic operational semantics and dis-
tributed system designs specified as rewrite theories. A theory-generic
reachability logic is presented and proved sound for a wide class of rewrite
theories. Particular attention is given to increasing the logic’s automation
by means of constructor-based semantic unification, matching, narrow-
ing, and satisfiability procedures. The relationships to Hoare logic and
LTL are discussed, new methods for proving invariants of possibly never
terminating distributed systems are developed, and experiments with a
prototype implementation illustrating the new methods are presented.
Keywords: reachability and rewriting logics, deductive verification.

1 Introduction

The main past applications of reachability logic have been as a language-generic
logic of programs [1,2,3]. In these applications, a K specification of a language’s
operational semantics by means of rewrite rules is assumed as the language’s
“golden semantic standard,” and then a correct-by-construction reachability
logic for a language so defined is automatically obtained [3]. This method has
been shown effective in proving a wide range of properties of programs in real
programming languages specified within the K Framework.

Although the original foundations of reachability logic are very general [2,3],
such foundations do not provide a straightforward answer to the following non-
trivial questions: (1) Could a reachability logic be developed to verify not just
conventional programs, but also distributed system designs and algorithms for-
malized as rewrite theories in rewriting logic [4,5]? And (2) if so, what would be
the most natural way to conceive such a rewrite-theory-generic logic? Since K
specifications are just conditional rewrite theories [6], a satisfactory answer to
questions (1)–(2) would move the verification game from the level of verifying
code to that of verifying both code and distributed system designs. Since the cost
of design errors can be several orders of magnitude higher than that of coding
errors, questions (1) and (2) are of practical software engineering interest.



2 S. Skeirik, A, Stefanescu and J. Meseguer

Although a first step towards a reachability logic for rewrite theories has
been taken in [7], as explained in Section 7 and below, that first step still leaves
several important questions open. The most burning one is: how can we prove
invariants of a distributed system? Since invariants are the most basic safety
properties, support for proving invariants is a sine qua non requirement. As
explained below and in Section 4.1, if we apply the standard foundations of
reachability logic—so that the logic’s transition relation is instantiated to the
given theory’s rewrite relation—the whole enterprise collapses before what we
call the invariant paradox : we cannot verify in this manner any invariants of a
never-terminating system such as, for example, a mutual exclusion protocol.

A second, important open question is how to best take advantage of the
wealth of equational reasoning techniques such as matching, unification, and
narrowing modulo an equational theory pΣ,Eq, e.g., [8,9,10,11,12,13,14,15], as
well as recent results on decidable satisfiability (and validity) of quantifier-free
formulas in initial algebras, e.g., [16,17,18,19,20,21,22,23,24,25,26] to automate
as much as possible reachability logic deduction. In this regard, the very general
foundations of standard reachability logic—which assume any Σ-algebra A with
a first-order-definable transition relation—provide no help at all for automation.
As shown in this work and its prototype implementation, if we assume instead
that the model in question is the initial reachability model TR of a rewrite theory
R satisfying reasonable assumptions, large parts of the verification effort can be
automated.

A third important issue is simplicity. Reachability logic has eight inference
rules [2,3]. Could a reachability logic for rewrite theories be simpler? The main
goal of this work is to tackle head on these three open questions to provide
a general reachability logic and a prototype tool suitable for reasoning about
properties of both distributed systems and programs based on their rewriting
logic semantics.

What all this really means requires some further explanations about both
rewriting logic and reachability logic. Rewriting logic is a system specification
logic ideally suited for specifying concurrent systems. Instead, reachability logic
is a property specification logic, were reachability properties of concurrent sys-
tems previously specified as rewrite theories can be defined and reasoned about.
The pair pRewriting Logic,Reachability Logicq is what is called a tandem in [27],
where the left-side logic is used to specify the systems of interest, and the right-
side logic to specify and verify relevant properties of those systems. The point of
a well-designed tandem is that the property specification logic systematically ex-
ploits many features of the system specification logic to increase the effectiveness
of verification. This is exactly what the constructor-based version of reachability
logic we present here does by exploiting features of rewriting logic.

1.1 Rewriting Logic in a Nutshell

A distributed system can be designed and modeled as a rewrite theory R “

pΣ,E,Rq [4,5] in the following way: (i) the distributed system’s states are mod-
eled as elements of the initial algebra TΣ{E associated to the equational theory



A Constructor-Based Reachability Logic for Rewrite Theories 3

pΣ,Eq with function symbols Σ and equations E; and (ii) the system’s concur-
rent transitions are modeled by rewrite rules R, which are applied modulo E.
Let us consider the QLOCK [28] mutual exclusion protocol, explained in detail
in Section 2 and used later as a running example. QLOCK allows an unbounded
number of processes, which can be identified by numbers. Such processes can be
in one of three states: “normal” (doing their own thing), “waiting” for a resource,
and “critical,” i.e., using the resource. Waiting processes enqueue their identi-
fier at the end of a waiting queue (a list), and can become critical when their
name appears at the head of the queue. A QLOCK state can be represented as
a tuple ă n | w | c | q ą where n, resp. w, resp. c, denotes the set of identifiers
for normal, resp. waiting, resp. critical processes, and q is the waiting queue.
QLOCK can be naturally modeled as a rewrite theory R “ pΣ,E,Rq where Σ
contains operators to build natural numbers, multisets of natural numbers, like
n, w, and c, and lists of natural numbers like q, plus the above tupling opera-
tor. The equations E include axioms such as the associativity-commutativity of
multiset union, and the associativity of list concatenation, and identity axioms
for H and nil . QLOCK’s behavior is specified by a set R of five rewrite rules.
For example, the rule w2c below specifies how a waiting process i can pass from
waiting to critical

w2c : ă n | w i | c | i ; q ą Ñ ă n | w | c i | i ; q ą .

1.2 Reachability Logic in a Nutshell

Reachability logic allows us to reason about the reachability properties of a con-
current system specified by rewrite theoryR. The constructor-based reachability
logic we present in this paper is theory generic in the precise sense that, as we
explain in Section 5, its inference rules do not depend at all on the given the-
ory R: the reachability properties of any rewrite theory R in a wide class of
so-called suitable theories can be reasoned about in our logic using the same
inference rules. Such genericity is not enjoyed by other verification logics. For
example, Hoare logic is not language generic: a different inference system must
be hand-crafted and proved sound with respect to an operational semantics for
each different programming language L.

A reachability formula has the form AÑf B, where A and B are state pred-
icates. Consider the easier to explain case where the formula has no parameters,
i.e., varspAqXvarspBq “ H. We interpret such a formula in the initial reachabil-
ity model TR of a rewrite theory R “ pΣ,E,Rq, whose states are E-equivalence
classes rus of ground Σ-terms, and where a state transition rus ÑR rvs holds iff
R $ uÑ v according to the rewriting logic inference system [4,5] (computation
= deduction). As a first approximation, A Ñf B is a Hoare logic partial cor-
rectness assertion of the form1 tAuRtBu, but with the slight twist that B need
not hold on a terminating state, but just somewhere along the way. Therefore,
B should not necessarily be called a “postcondition,” but, more generally a mid-
condition. More precisely, AÑf B holds in TR iff for each state ru0s satisfying

1 The notation tAuRtBu, and the relation to Hoare logic are explained in Section 4.2.



4 S. Skeirik, A, Stefanescu and J. Meseguer

A and each terminating sequence ru0s ÑR ru1s . . . ÑR run´1s ÑR runs, i.e.,
Eu pun ÑR uq, there is a j, 0 ď j ď n, such that rujs satisfies B. A key question
is how to choose a good language of state predicates like A and B. Here is where
the potential for increasing the logic’s automation resides.

As an example of state predicates A and B with parameters, i.e., varspAq X
varspBq ‰ H, consider a counter system, whose states are built using a state
constructor x y : Nat Ñ State. The rewrite theory specifying the counter’s be-
havior has two rewrite rules: xn ` 1y Ñ xny, and xn ` 1y Ñ xn ` 1 ` 1y, i.e.,
a non-zero counter can increase or decrease by one unit. For n,m variables of
sort Nat, consider the reachability formula xn ` 1y | n ` 1 ą m Ñf xmy | J,
which is parametric on m. This reachability formula uses a so-called constrained
constructor pattern xn` 1y | n` 1 ą m to specify its precondition, and another
xmy | J specifying its midcondition. It states that, on all terminating paths, a
non-zero counter of the form xn`1y will pass through all states of the form xmy
such that m ă n ` 1 on its way to the terminating state x0y. For this formula
to have the desired semantics, the value of variable m occurring in its precon-
dition and its midcondition must of course be the same. We can reduce the
parameterized case to the unparameterized one by considering this parametric
formula as the infinitary conjunction of all the unparameterized instances where
the parameter m has been instantiated to a concrete number. Correct deductive
reasoning about parameterized reachability formulas requires special handling
of parameters.

We call our proposed logic constructor-based because our choice is to make A
and B positive (only _ and ^) Boolean combinations of what we call constrained
constructor patterns of the form u | ϕ, where u is a constructor term2 and ϕ a
quantifier-free (QF) Σ-formula. The state predicate u | ϕ holds for a state ru1s P
TΣ{E iff there is a ground substitution ρ such that ru1s “ ruρs and TΣ{E |ù ϕρ.
This is crucially important, because the initial algebra of constructor terms is
typically much simpler than the initial pΣ,Eq-algebra TΣ{E , and this can be
systematically exploited for matching, unification, narrowing, and satisfiability
purposes to automate large portions of reachability logic’s inference system.

1.3 The Invariant Paradox

This is all very well, but how can we prove invariants in such a reachability logic?
For example, we would like to prove that for QLOCK a mutual exclusion invari-
ant holds. But, paradoxically, we cannot! The simple reason is that QLOCK, like
many other protocols, never terminates, that is, has no terminating sequences
whatsoever. But this has the ludicrous trivial consequence that QLOCK’s ini-
tial reachability model TR vacuously satisfies all reachability formulas AÑf B.
This of course means that it is in fact impossible to prove any invariants using
reachability logic in TR. But it does not mean that it is impossible using some
other reachability model. In Section 4.1 we give a systematic solution to this

2 That is, a term in a subsignature Ω Ď Σ such that each ground Σ-term is equal
modulo E to a ground Ω-term.



A Constructor-Based Reachability Logic for Rewrite Theories 5

paradox by means of a simple theory transformation allowing us to prove any
invariant in the original initial reachability model TR by proving an equivalent
reachability formula in the initial reachability model of the transformed theory.

1.4 Paper Outline and Main Contributions

Section 2 gathers preliminaries. Section 3 greatly increases the logic’s potential
for automation by making state predicates constructor-based. Reachability logic
itself is introduced in Section 4. A systematic methodology to prove invariants
by means of reachability formulas is developed in Section 4.1. The semantic
relations of reachability logic to Hoare logic and to LTL are explained in Section
4.2. Rewriting logic’s inference system, with just three inference rules (plus some
auxiliary rules), and the proof of its soundness are presented in Section 5. A proof
of concept of our approach is given by means of a prototype tool implemented
in the Maude rewriting logic system and a suite of experiments verifying various
properties of distributed system designs and imperative programs in Section 6.
Related work and conclusions are discussed in Section 7. Proofs are relegated to
Appendix A. The tool’s command grammar is specified in detail in Appendix B.

Comparison with [29]. This work makes the following additional contributions
to those in the earlier conference paper [29]:

1. A much fuller treatment of all aspects is given, including considerably more
detailed explanations of many topics and detailed proofs of all results.

2. Furthermore, a substantial collection of new definitions and, above all, new
results is presented and, for results, proved (10 lemmas, 6 theorems and 2
corollaries, versus 3 lemmas, 5 theorems and 1 corollary in [29]).

3. All important concepts, and, above all, those regarding reachability logic
itself, its formulas, its inference system, how it can be applied to concrete
applications, and how such formulas can be proved in practice using our
prototype tool are explained and illustrated in detail using a substantial
collection of examples.

4. Section 3, that defines our language of pattern predicates for specifying state
properties, has been quite substantially expanded. In particular, the treat-
ment of, and symbolic operation with, parametric pattern predicates, which
are crucial for proving many properties, including parametric invariants, is
much more extensive and thorough than in [29].

5. Section 5 on reachability logic’s inference system has been improved in many
ways, including: (i) decomposing one of the inference rules into two for in-
creased flexibility; (ii) extending the applicability conditions of the inference
rules, so that they can apply to a wider range of specifications; (iii) adding
an automatic check to detect invalid formulas; and (iv) expanding both the
generality and the repertoire of auxiliary rules.

6. Section 6 on the logic’s implementation and experiments has been substan-
tially extended in various ways. First of all, the prototype implementation
itself has been substantially advanced, and various new commands have been



6 S. Skeirik, A, Stefanescu and J. Meseguer

added. Second, detailed examples illustrating the use of these various com-
mands have been given. Finally, a summary of a substantial suite of examples
with various measures of proof complexity and degree of automation has been
included. One important difference with the smaller suite of examples in [29],
is that before only examples where inductive validity of formulas could be
decided by variant satisfiability [30,31] could be handled. Instead, now verifi-
cation of properties for fully general rewrite theories —provided they satisfy
the fairly mild requirements imposed by the logic and its inference system—
can be handled by the tool. This is illustrated by several of the examples in
the new suite.

2 Order-Sorted Algebra and Rewriting Logic

We present some preliminaries on order-sorted algebra and rewriting logic. The
material is adapted from [32,26,5]. The presentation is self-contained.

2.1 Many-Sorted and Order-Sorted Algebras

Definition 1 (Many-Sorted Signature). A many-sorted (MS) signature is
a pair pS,Σq, where S is called a set of sorts, and Σ is called a set of function
symbols, which are typed with sorts in S. In more detail, Σ is a S˚ ˆ S-indexed
family of sets Σ “ tΣw,supw,sqPS˚ˆS. Notationally, if f P Σs1...sn,s we then
display f as f : s1 . . . sn Ñ s. To abbreviate notation we sometimes write Σ “

pS,Σq, leaving the set S of sorts implicit.

Definition 2 (Many-Sorted Algebra). Given a many-sorted signature Σ “

pS,Σq, a Σ-algebra is an S-indexed set A “ tAsusPS together with an interpre-
tation of each f : s1 . . . sn Ñ s in Σ as a function Af : As1 ˆ . . . Asn Ñ As. For
ε the empty word in S˚, a symbol a P Σε,s is called a constant symbol and is
interpreted in A as a constant element Aa P As. There is no requirement that
if pw, sq ­“ pw1, s1q then Σw,s X Σw1,s1 “ H. To avoid confusion in such a case,
if f P Σw,s X Σw1,s1 we then write Af :wÑs and Af :w1Ñs1 for the corresponding
interpretations in A, instead of the (now ambiguous) Af .

Given Σ-algebras A and B, a Σ-homomophism is an S-indexed family of
functions h “ ths : As Ñ BsusPS such that: (i) for each s P S and constant
symbol a P Σε,s, hspAaq “ Ba, and (ii) for each f : s1 . . . sn Ñ s in Σ and each
pa1, . . . , anq P As1 ˆ . . . Asn , hspAf pa1, . . . , anqq “ Bf phs1pa1q, . . . , hsnpanqq.

Definition 3 (OS Signature). An order-sorted (OS) signature is a triple Σ “

pS,ď, Σq with pS,ďq a poset and pS,Σq a many-sorted signature. pS “ S{”ď, the
quotient of S under the equivalence relation ”ď “ pď Y ěq

`, is called the set of
connected components of pS,ďq. The order ď and equivalence ”ď are extended
to sequences of the same length in the usual way, i.e., s11 . . . s

1
n ď s1 . . . sn iff

s1i ď si, 1 ď i ď n. Σ is called sensible if for any two f : w Ñ s, f : w1 Ñ s1 P Σ,
with w and w1 of same length, we have w ”ď w1 ñ s ”ď s1. A many-sorted



A Constructor-Based Reachability Logic for Rewrite Theories 7

signature Σ is the special case of an order-sorted signature where the poset pS,ďq
is discrete, i.e., s ď s1 iff s “ s1.

For connected components rs1s, . . . , rsns, rss P pS

f
rs1s...rsns
rss “ tf : s11 . . . s

1
n Ñ s1 P Σ | s1i P rsis, 1 ď i ď n, s1 P rssu

denotes the family of “subsort polymorphic” operators f . 2

Definition 4 (OS Algebra). For Σ “ pS,ď, Σq an OS signature, an order-
sorted Σ-algebra A is a many-sorted pS,Σq-algebra A such that:

– whenever s ď s1, then we have As Ď As1 , and

– whenever f : w Ñ s, f : w1 Ñ s1 P f
rs1s...rsns
rss and a P AwXAw

1

, then we have

Af :wÑspaq “ Af :w1Ñs1paq, where As1...sn “ As1 ˆ . . .ˆAsn .

An order-sorted Σ-homomorphism h : A Ñ B is a many-sorted pS,Σq-
homomorphism such that for s, s1 P S, whenever rss “ rs1s and a P AsXAs1 , then
we have hspaq “ hs1paq. A Σ-isomorphism h : A Ñ B is a Σ-homomorphism
h : A Ñ B such that: (i) for each s P S the map hs : As Ñ Bs is bijective, and
(ii) h´1 : B Ñ A is also a Σ-homomorphism. This defines a category OSAlgΣ.
2

Theorem 1 (Initiality). [32] The category OSAlgΣ has an initial algebra.
Furthermore, if Σ is sensible, then the term algebra TΣ with:

– if a : εÑ s then a P TΣ,s (ε denotes the empty string),
– if t P TΣ,s and s ď s1 then t P TΣ,s1 ,
– if f : s1 . . . sn Ñ s and ti P TΣ,si for 1 ď i ď n, then fpt1, . . . , tnq P TΣ,s,

is initial, i.e., there is a unique Σ-homomorphism from it to each Σ-algebra.

For any algebra A and rss P pS, Arss denotes the set Arss “
Ť

s1PrssAs1 . We let

TΣ (ambiguously) denote: (i) the term algebra; (ii) its underlying S-sorted set;
and (iii) the set TΣ “

Ť

sPS TΣ,s. An OS signature Σ is said to have non-empty
sorts iff for each s P S, TΣ,s ­“ H. An OS signature Σ is called preregular [33]
iff for each t P TΣ the set ts P S | t P TΣ,su has a least element, denoted lsptq.
We will assume throughout that Σ has non-empty sorts and is preregular.

An S-sorted set X “ tXsusPS of variables, satisfies s ­“ s1 ñ Xs XXs1 “ H,
and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣpXq, is the initial Σ-algebra for the signature
ΣpXq obtained by adding to Σ the variables X as extra constants. Since a ΣpXq-
algebra is just a pair pA,αq, with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α P rXÑAs, the ΣpXq-initiality of
TΣpXq can be expressed as the following theorem:

Theorem 2 (Freeness Theorem). If Σ is sensible, for each A P OSAlgΣ
and α P rXÑAs, there exists a unique Σ-homomorphism, α : TΣpXq Ñ A
extending α, i.e., such that for each s P S and x P Xs we have xαs “ αspxq.



8 S. Skeirik, A, Stefanescu and J. Meseguer

In particular, when A “ TΣpY q, an interpretation of the constants in X, i.e.,
an S-sorted function σ P rXÑTΣpY qs is called a substitution, and its unique
homomorphic extension σ : TΣpXq Ñ TΣpY q is also called a substitution. Define
dompσq “ tx P X | x ­“ xσu, and ranpσq “

Ť

xPdompσq varspxσq. Given variables

Z, the substitution σ|Z agrees with σ on Z and is the identity elsewhere.

2.2 Order-Sorted First-Order Logic

The first-order language of equational Σ-formulas is defined in the usual way:
its atoms are Σ-equations t “ t1, where t, t1 P TΣpXqrss for some rss P pS
and each Xs is assumed countably infinite. The set FormpΣq of equational
Σ-formulas3 is then inductively built from atoms by: conjunction (^), dis-
junction (_), negation ( ), and universal (@x1 :s1, . . . , xn :sn) and existential
(Dx1:s1, . . . , xn:sn) quantification with distinct sorted variables x1:s1, . . . , xn:sn,
with s1, . . . , sn P S (by convention, for H the empty set of variables and ϕ
a formula, we define p@Hq ϕ ” pDHq ϕ ” ϕ). A literal  pt “ t1q is de-
noted t ­“ t1. Given a Σ-algebra A, a formula ϕ P FormpΣq, and an assign-
ment α P rYÑAs, where Y Ě fvarspϕq, with fvarspϕq the free variables of ϕ,
the satisfaction relation A,α |ù ϕ is defined inductively as usual: for atoms,
A,α |ù t “ t1 iff tα “ t1α; for Boolean connectives it is the corresponding
Boolean combination of the satisfaction relations for subformulas; and for quan-
tifiers: A,α |ù p@x1:s1, . . . , xn:snq ϕ (resp. A,α |ù pDx1:s1, . . . , xn:snq ϕ) holds iff
for all pa1, . . . , anq P As1ˆ. . .ˆAsn (resp. for some pa1, . . . , anq P As1ˆ. . .ˆAsn)
we have A,αrx1 :s1 :“ a1, . . . , xn :sn :“ ans |ù ϕ, where if α P rYÑAs, then
αrx1:s1 :“ a1, . . . , xn:sn :“ ans P rpY Y tx1:s1, . . . , xn:snuqÑAs and is such that
for y:s P pY ztx1:s1, . . . , xn:snuq, αrx1:s1 :“ a1, . . . , xn:sn :“ anspy:sq “ αpy:sq,
and αrx1 :s1 :“ a1, . . . , xn :sn :“ anspxi :siq “ ai, 1 ď i ď n. We say that ϕ is
valid in A (resp. is satisfiable in A) iff A,H |ù p@Y q ϕ (resp. A,H |ù pDY q ϕ),
where Y “ fvarspϕq and H P rHÑAs denotes the empty S-sorted assignment of
values in A to the empty S-sorted family H of variables. The notation A |ù ϕ
abbreviates validity of ϕ in A. More generally, a set of formulas Γ Ď FormpΣq is
called valid in A, denoted A |ù Γ , iff A |ù ϕ for each ϕ P Γ . For a subsignature
Ω Ď Σ and A P OSAlgΣ , the reduct A|Ω P OSAlgΩ agrees with A in the
interpretation of all sorts and operations in Ω and discards everything in ΣzΩ.
If ϕ P FormpΩq we have the equivalence A |ù ϕ ô A|Ω |ù ϕ.

An OS equational theory is a pair T “ pΣ,Eq, with E a set of (possibly
conditional) Σ-equations. OSAlgpΣ,Eq denotes the full subcategory of OSAlgΣ
with objects those A P OSAlgΣ such that A |ù E, called the pΣ,Eq-algebras.
OSAlgpΣ,Eq has an initial algebra TΣ{E [32]. Given T “ pΣ,Eq and ϕ P

FormpΣq, we call ϕ T -valid, written E |ù ϕ, iff A |ù ϕ for all A P OSAlgpΣ,Eq.
We call ϕ T -satisfiable iff there exists A P OSAlgpΣ,Eq with ϕ satisfiable in
A. Note that ϕ is T -valid iff  ϕ is T -unsatisfiable. The inference system in

3 There is no real loss of generality in assuming that all atomic formulas are equations:
predicates can be specified by equational formulas using additional function symbols
of an added sort Pred . See Section 2.5 for a simple example.



A Constructor-Based Reachability Logic for Rewrite Theories 9

[32] is sound and complete for OS equational deduction, i.e., for any OS equa-
tional theory pΣ,Eq, and Σ-equation u “ v we have an equivalence E $ u “
v ô E |ù u “ v. Deducibility E $ u “ v is abbreviated as u “E v,
called E-equality. An E-unifier of a system of Σ-equations, i.e., of a conjunction
φ “ u1 “ v1 ^ . . . ^ un “ vn of Σ-equations, is a substitution σ such that
uiσ “E viσ, 1 ď i ď n. An E-unification algorithm for pΣ,Eq is an algorithm
generating a complete set of E-unifiers Unif Epφq for any system of Σ equations
φ, where “complete” means that for any E-unifier σ of φ there is a τ P Unif Epφq
and a substitution ρ such that σ “E pτρq|dompσqYdompτq, where “E here means
that for any variable x we have xσ “E xpτρq|dompσqYdompτq. The algorithm is
finitary if it always terminates with a finite set Unif Epφq for any φ.

Given a set of equations B used for deduction modulo B, a preregular OS
signature Σ is called B-preregular4 iff for each u “ v P B and substitutions ρ,
lspuρq “ lspvρq.

2.3 Rewriting Logic

We now recall some basic concepts about rewriting logic. The survey in [5] gives
a fuller account. The key purpose of a rewrite theory R is to axiomatize a
distributed system, so that concurrent computation is modeled as concurrent
rewriting with the rules of R modulo the equations E of R.

Recall the notation for term positions, subterms, and term replacement from
[35]: (i) positions in a term viewed as a tree are marked by strings p P N˚
specifying a path from the root, (ii) t|p denotes the subterm of term t at position
p, and (iii) trusp denotes the result of replacing subterm t|p at position p by u.

Definition 5 (Rewrite Theory). A rewrite theory R “ pΣ,E Y B,Rq is
a 3-tuple with pΣ,E Y Bq an OS equational theory and R a set of (possibly
conditional) Σ-rewrite rules, i.e., sequents l Ñ r if φ, with l, r P TΣpXqrss for

some rss P pS, and φ a quantifier-free Σ-formula.5

We further assume that:

1. Each equation u “ v P B is unconditional, regular, i.e., varspuq “ varspvq,
and linear, i.e., there are no repeated variables in u, and no repeated variables
in v. Furthermore, Σ is B-preregular (in the broader sense of Footnote 4).

4 If B “ B0ZU , with B0 associativity and/or commutativity axioms, and U identity
axioms, the B-preregularity notion can be broadened by requiring only that: (i) Σ
is preregular; (ii) Σ is B0-preregular in the standard sense that lspuρq “ lspvρq for
all u “ v P B0 and substitutions ρ; and (iii) the axioms U oriented as rules ~U
are sort-decreasing in the sense of Definition 5 below. Maude automatically checks
B-preregularity of an OS signature Σ in this broader sense [34].

5 Usually, φ is assumed to be a conjunction of Σ-equations. We give here this more
general definition for three reasons: (i) often, using equationally-defined equality pred-
icates [36], a quantifier-free formula can be transformed into a conjunction of equal-
ities; (ii) the more general notion is particularly useful for symbolic methods; and
(iii) the semantics for this more general notion has been studied in detail in [37].



10 S. Skeirik, A, Stefanescu and J. Meseguer

2. The (possibly conditional) equations E, when oriented as rewrite rules ~E “
tu Ñ v if ψ | u “ v if ψ P Eu, are convergent modulo B, that is,
sort-decreasing, strictly coherent, confluent, and operationally terminating
as rewrite rules modulo B [38].

3. The rules R are ground coherent with the equations E modulo B [39].

We refer to [5,38,39,40,37] for more details, but give here an intuitive high-
level explanation of what the above conditions mean in practice. Conditions
(1)–(2) ensure that the initial pΣ,EYBq-algebra TΣ{EYB is isomorphic to the
canonical term algebra CΣ{E,B , whose elements are B-equivalence classes of
~E,B-irreducible ground Σ-terms.

Define the one-step R,B-rewrite relation t ÑR,B t1 between ground terms

as follows. For t, t1 P TΣrss , rss P
pS, t ÑR,B t1 holds iff there is a rewrite rule

l Ñ r if φ P R, a ground substitution σ P rYÑTΣs with Y the rule’s variables,
and a term position p in t such that t|p “B lσ, t1 “ trrσsp, and TΣ{EYB |ù φσ.
Let us explain convergence in more detail: (i) sort-decreasingness means that
whenever tÑ~E,B u, the least sort of u is smaller than or equal to the least sort

of t; (ii) strict-B-coherence means that if t Ñ~E,B u and t “B t1, then there is

a rewrite step t1 Ñ~E,B u1 such that u “B u1; intuitively, this gives the effect
of rewriting in B-equivalence classes; confluence modulo B means that for each
term t, if we have sequences t Ñ˚

~E,B
u and t Ñ˚

~E,B
v, then there are sequences

u Ñ˚
~E,B

w and v Ñ˚
~E,B

w1 such that w “B w1; operational termination modulo

B means that: (a) there are no infinite sequences of rewrites with Ñ~E,B , and

(b) if the equations E are conditional, all attempts to evaluate a condition to
perform a rewrite terminate in finite time with either success or failure. All
together, convergence means that for any term t there is an ~E,B-irreducible
term, denoted t!~E,B and abbreviated to t!, which is obtained from t by rewriting
with Ñ~E,B until termination that is unique up to B-equality and is called t’s
canonical form, or, equivalently, its normal form. It also means that for any
terms t, t1 we have t “EYB t1 iff t! “B t1! (Church-Rosser Property). In the

context of (1)–(2), condition (3) ensures that “computing ~E,B-canonical forms
before performing R,B-rewriting” is a complete strategy. That is, if t ÑR,B t1

and u “ t!~E,B , i.e., tÑ˚
~E,B

u with u in ~E,B-canonical form (abbreviated in what

follows to u “ t!), then there exists a u1 such that u ÑR,B u1 and t1! “B u1!.
Note that varsprq Ď varsplq is nowhere assumed for rules l Ñ r if φ P R. This
means that R can specify an open system, in the sense of [41], that interacts
with an external, non-deterministic environment.

Conditions (1)–(3) allow a simple and intuitive description of the initial
reachability model TR [42] of R as the canonical reachability model CR whose
states are the elements of the canonical term algebra CΣ{E,B , and where the
one-step transition relation rus ÑR rvs holds iff u ÑR,B u1 and ru1!s “ rvs.
Specifically, under conditions (1)–(3) we then have an isomorphism of reacha-
bility models [42] TR – CR, where CR has a much simpler description than TR.
Furthermore, if uÑR,B u1 has been performed with a rewrite rule lÑ r if φ P R



A Constructor-Based Reachability Logic for Rewrite Theories 11

and a ground substitution σ P rYÑTΣs, then, assuming B-equality is decidable,
checking whether condition TΣ{EYB |ù φσ holds is decidable by reducing the

terms in φσ to ~E,B-canonical form and checking for B-equality.

The signature Σ on which TΣ{EYB is defined has often a natural decompo-
sition as a disjoint union Σ “ Ω Z∆, where the elements of the canonical term
algebra CΣ{E,B are Ω-terms, whereas the function symbols f P ∆ are viewed

as defined functions which are evaluated away by ~E,B-simplification. Ω (with
same poset of sorts as Σ) is then called a constructor subsignature of Σ.

A decomposition of an order-sorted equational theory pΣ,EYBq is a rewrite

theory pΣ,B, ~Eq such that the rules ~E are convergent modulo B. pΣ,B, ~Eq is
called sufficiently complete with respect to the constructor subsignature Ω (with
same poset of sorts as Σ) iff for each t P TΣ we have: (i) t!~E,B P TΩ , and (ii)

if u P TΩ and u “B v, then v P TΩ . This ensures that for each rusB P CΣ{E,B
we have rusB Ď TΩ . Sufficient completeness is closely related to the notion of a
protecting inclusion of decompositions.

Definition 6 (Protection, Constructor Decomposition). Consider theory

inclusion pΣ0, E0 Y B0q Ď pΣ,E Y Bq where pΣ0, B0, ~E0q and pΣ,B, ~Eq are
respective decompositions of theories pΣ0, E0 Y B0q and pΣ,E Y Bq. We then

say that the decomposition pΣ,B, ~Eq protects pΣ0, B0, ~E0q iff (i) for all t, t1 P
TΣ0

pXq we have: (i) t “B0
t1 ô t “B t1, (ii) t “ t! ~E0,B0

ô t “ t!~E,B, and (iii)

CΣ0{E0,B0
“ CΣ{E,B |Σ0

.

pΩ,BΩ , ~EΩq is a constructor decomposition of pΣ,B, ~Eq iff (i) pΣ,B, ~Eq

protects pΩ,BΩ , ~EΩq, and (ii) pΣ,B, ~Eq is sufficiently complete with respect to
the constructor subsignature Ω. Furthermore, Ω is called a subsignature of free
constructors modulo BΩ iff EΩ “ H, so that CΩ{EΩ ,BΩ “ TΩ{,BΩ .

Initial Algebras and Reachability Models. In this work, we crucially ex-
ploit the relationships between several kinds of initial models induced by various
theories, i.e., initialR-reachability models, initial pΣ,EYBq-algebras, and initial
constructor pΩ,EΩYBΩq-algebras. In particular, these relationships will be sys-
tematically exploited by our state predicates, based on the notion of constrained
constructor pattern (Section 3).

Let us first give an overview of the theories involved and their associated
initial algebras. Assuming convergent theories pΣ,E Y Bq and pΩ,EΩ Y BΩq

such that pΩ,BΩ , ~EΩq is a constructor decomposition of pΣ,B, ~Eq, we obtain
the diagram in Figure 1 below.

In the figure, the map of theory inclusions on the left induces the Ω-isomorphisms
on the right. Indeed, the constructor decomposition ensures that: (i) the unique
Ω-homomorphisms TΩ{EΩYBΩ Ñ TΣ{EYB |Ω , and CΩ{EΩ ,BΩ Ñ CΣ{E,B |Ω guar-
anteed by initiality are both Ω-isomorphisms, and, (ii) furthermore, the Ω-
isomorphism CΩ{EΩ ,BΩ Ñ CΣ{E,B |Ω is actually the identity, so that CΩ{EΩ ,BΩ “
CΣ{E,B |Ω . In particular, this means that for each rtsEYB P TΣ{EYB , the map
rtsEYB ÞÑ rt!~E,BsBΩ is an Ω-isomorphism TΣ{EYB |Ω Ñ CΩ{EΩ ,BΩ , denoted



12 S. Skeirik, A, Stefanescu and J. Meseguer

pΣ,E YBq
� // pΣ,B, ~Eq TΣ{EYB |Ω

!))

– CΣ{E,B |Ω

pΩ,EΩYBΩq
?�

OO

� // pΩ,BΩ , ~EΩq
?�

OO

TΩ{EΩYBΩ

OO

– CΩ{EΩ ,BΩ

OO

Fig. 1. Theory Inclusions (Left) and Initial Algebra Isomorphisms (Right)

as a dotted diagonal arrow on the right diagram. Such a diagonal arrow in-
volves a huge reduction of the, in general very complex, initial algebra TΣ{EYB
to the typically much simpler constructor canonical term algebra CΩ{EΩ ,BΩ .
In many practical cases, such an algebra is so simple that EΩ “ H, so that
CΩ{EΩ ,BΩ “ TΩ{BΩ . Furthermore, for BΩ any combination of associativity
and/or commutativity and/or identity axioms, except associativity without com-
mutativity, satisfiability of quantifier-free Ω-formulas in TΩ{BΩ is decidable [30].
All this means that:

1. to check whether two Σ-terms are E YB-equal, we need only normalize by
Ñ!

~E,B
and check BΩ-equality;

2. checking whether two constructor terms (Ω-terms) are EΩYBΩ-equal only
requires normalizing by Ñ!

~EΩ ,BΩ
and checking BΩ-equality;

3. in the very common case where EΩ “ H and we have a finitary BΩ-
unification algorithm, computing most general unifiers of constructor terms
is decidable by BΩ-unification.

Of course, all this lifts to the level of rewrite theories and their initial reach-
ability models. If R “ pΣ,E Y B,Rq is a rewrite theory satisfying the require-

ments in Definition 5 and, furthermore, pΩ,BΩ , ~EΩq is a constructor decomposi-

tion of pΣ,B, ~Eq, then, the already-defined isomorphism of reachability models
TR – CR is in more detail an isomorphism pTΣ{EYB ,ÑRq – pCΣ{E,B ,ÑRq.
But since CΩ{EΩ ,BΩ “ CΣ{E,B |Ω , the reachability model CR is much simpler
than TR, since its states (and therefore its state predicates) can be specified by
constructor terms.

2.4 Variants and the Finite Variant Property

Given a convergent equational theory pΣ,E Y Bq, a variant [43,14,44] of a Σ-

term t is a pair pu, θq where θ is a substitution, and u is the ~E,B-canonical
form of the term instance tθ. Intuitively, the variants of t are the fully simplified
patterns to which the instances of t can be simplified with the oriented equations
E modulo B. Some simplified instances are of course more general (as patterns)
than others. pΣ,E Y Bq has the finite variant property (FVP) in the Comon-
Delaune sense [43] iff any Σ-term t has a finite set of most general variants. For
example, the addition equations E “ tx ` 0 “ x, x ` spyq “ spx ` yqu are not
FVP, since px`y, idq, pspx`y1q, ty ÞÑ spy1quq, pspspx`y2qq, ty ÞÑ spspy2qquq, . . .,
psnpx`ynq, ty ÞÑ snpynquq, . . ., are all incomparable variants of x`y. Instead, the



A Constructor-Based Reachability Logic for Rewrite Theories 13

Boolean equations G “ tx_J “ J, x_K “ x, x^J “ x, x^K “ Ku are FVP.
For example, the most general variants of x _ y are: px _ y, idq, px, ty ÞÑ Kuq,
and pJ, ty ÞÑ Juq. Let us define these notions more precisely.

Definition 7 (Variants, FVP). Given a decomposition R “ pΣ,B, ~Eq and a
Σ-term t, a variant [43,14] of t is a pair pu, θq such that: (i) u “B ptθq!~E,B, (ii)

dompθq “ varsptq, and (iii) θ “ θ!~E,B, that is, xθ “ pxθq!~E,B for all variables

x. pu, θq is called a ground variant iff, furthermore, u P TΣ. Note that if pu, θq
is a ground variant of some t, then rusB P CΣ{~E,B. Given variants pu, θq and

pv, γq of t, pu, θq is called more general than pv, γq, denoted pu, θq ĚB pv, γq,
iff there is a substitution ρ such that: (i) pθρq|varsptq “B γ, and (ii) uρ “B v.
Let JtK~E,B “ tpui, θiq | i P Iu denote a complete set of variants of t, that is, a

set of variants such that for any variant pv, γq of t there is an i P I, such that

pui, θiq ĚB pv, γq. A decomposition R “ pΣ,B, ~Eq of pΣ,E Z Bq has the finite
variant property [43] (FVP) iff for each Σ-term t there is a finite complete set
of variants JtK~E,B “ tpu1, θ1q, . . . , pun, θnqu.

If B has a finitary unification algorithm and R “ pΣ,B, ~Eq is FVP, then
for any term t the finite set JtK~E,B of its variants can be computed by folding

variant narrowing [14]. Maude 2.7.1 supports the computation of JtK~E,B for B

a combination of associative and/or commutative and/or identity axioms.

FVP theories pΣ,B, ~Eq are important for automating important aspects of
reachability logic deduction because: (i) if B has a finitary unification algo-
rithm, then B Y E also has a finitary unification algorithm; and (ii) if, further-

more, pΣ,B, ~Eq has a constructor decomposition pΩ,BΩ , ~EΩq, then, under a
reasonable requirement on TΩ{EΩYBΩ called OS-compactness [30], satisfiability
of quantifier-free formulas in the initial algebra TΣ{EYB is decidable [30,31]. See
Section 6 for examples of rewrite theories where verification of their reachability
logic properties was made easier by exploiting the fact that their equational part
was FVP.

2.5 A Running Example

Consider the following rewrite theory R “ pΣ,E Y B,Rq modeling a dynamic
version of the QLOCK mutual exclusion protocol [28], where pΣ,Bq defines the
protocol’s states, involving natural numbers, lists, and multisets over natural
numbers. Σ has sorts S “ tNat ,List ,MSet ,NeMSet ,Conf ,State,Predu with
subsorts Nat ă List and Nat ă NeMSet ă MSet and also the set of operators
F “ t0 : Ñ Nat , s : Nat Ñ Nat , nil : Ñ List , ; : List List Ñ List , H :
Ñ MSet , : MSet MSet Ñ MSet , : NeMSet NeMSet Ñ NeMSet , | | | :
MSet MSet MSet List Ñ Conf , ă ą : Conf Ñ State, tt : Ñ Pred , ff :
Ñ Pred , dupl : MSet Ñ Pred , dupl : NeMSet Ñ Predu, where any under-
scores denote operator argument placement. The axioms B are the associativity-
commutativity of the multiset union with identity H, and the associativity of
list concatenation ; with identity nil . The equations in E are duplps u uq “ tt



14 S. Skeirik, A, Stefanescu and J. Meseguer

and duplpHq “ ff , They define the dupl predicate by detecting a duplicated
non-empty multiset u in the multiset s u u (where s could be empty). dupl is
false for the empty multiset, and is not true (but not explicitly defined to be
false) in all other cases not covered by the equation duplps u uq “ tt . The states
of QLOCK are B-equivalence classes of ground terms of sort State.

QLOCK [28] is a mutual exclusion protocol where the number of processes is
unbounded. Furthermore, in the dynamic version of QLOCK presented below,
such a number can grow or shrink. Each process is identified by a number. The
system configuration has three sets of processes (normal, waiting, and critical)
plus a waiting queue. To ensure mutual exclusion, a normal process must first
register its name at the end of the waiting queue. When its name appears at
the front of the queue, it is allowed to enter the critical section. The first three
rewrite rules in R below specify how a normal process i first transitions to a
waiting process, then to a critical process, and back to normal. The last two
rules in R specify how a process can dynamically join or exit the system.

n2w : ă n i | w | c | q ą Ñ ă n | w i | c | q ; i ą
w2c : ă n | w i | c | i ; q ą Ñ ă n | w | c i | i ; q ą
c2n : ă n | w | c i | i ; q ą Ñ ă n i | w | c | q ą

join : ă n | w | c | q ą Ñ ă n i | w | c | q ą if φ
exit : ă n i | w | c | q ą Ñ ă n | w | c | q ą

where φ ” duplpn iw cq ‰ tt , i is a number, n, w , and c are, respectively, normal,
waiting, and critical process identifier sets, and q is a queue of process identifiers.
It is easy to check that pΣ,EYBq satisfies the finite variant property—it has only
a single predicate dupl—and that R “ pΣ,E YB,Rq satisfies sub-requirements
(1)–(3) of Definition 5. Note that join makes QLOCK an open system in the
sense explained above.

3 Constrained Constructor Pattern Predicates

Given an OS equational theory pΣ,EYBq, the atomic state predicates appearing
in the constructor-based reachability logic formulas of Section 4 will be pairs
u | ϕ, called constrained constructor patterns, with u a term in a subsignature
Ω Ď Σ of constructors, and ϕ a quantifier-free Σ-formula. Intuitively, u | ϕ is
a pattern describing the set of states that are EΩ Y BΩ-equal to ground terms
of the form uρ for ρ a ground constructor substitution such that TΣ{EYB |ù ϕρ.
Therefore, u | ϕ can be used as a symbolic description of a, typically infinite, set
of states in the canonical reachability model CR of a rewrite theory R.

We are now ready to define constrained constructor pattern predicates and
their semantics. In what follows, X will always denote the countably infinite
S-sorted set of variables used in the language of Σ-formulas.

Definition 8 (Constrained Constructor Pattern Predicate). Let theory

pΩ,BΩ , ~EΩq be a constructor decomposition of pΣ,B, ~Eq. An s-sorted atomic
constrained constructor pattern predicate is an expression u | ϕ with u P TΩpXqs



A Constructor-Based Reachability Logic for Rewrite Theories 15

and ϕ a QF Σ-formula. The set PatPredpΩ,Σqs of s-sorted constrained con-
structor pattern predicates contains K, all s-sorted atomic constrained construc-
tor pattern predicates, and is closed under disjunction (_) and conjunction ( )̂.
Let PatPredpΩ,Σq “

Ť

sPS PatPredpΩ,Σqs. Capital letters A,B, . . . , P,Q, . . .
range over PatPredpΩ,Σq. The semantics of a constrained constructor pattern
predicate A is the subset JAK Ď CΣ{E,B defined inductively as follows:

1. JKK “ H
2. Ju | ϕK “ trpuρq!sBΩ P CΣ{E,B | ρ P rXÑTΩs ^ CΣ{E,B |ù ϕρu.
3. JA_BK = JAKY JBK
4. JA^BK = JAKX JBK.

Note that for any constructor pattern predicate A, if σ is a (sort-preserving)
bijective renaming of variables we always have JAK “ JAσK.

Example 1 (Pattern Predicate Example). Recall that QLOCK states have the
general form ă n | w | c | q ą with n, w , c multisets of process identifiers and
q an associative list of process identifiers. From the five rewrite rules defining
QLOCK, it is easy to prove that if ă n | w | c | q ą Ñ˚ ă n 1 | w 1 | c1 | q 1 ą and
nw c is a set (has no repeated elements), then n1 w1 c1 is also a set. Of course, it
seems very reasonable to assume that these process identifier multisets are, in
fact, sets, since otherwise we could, for example, have a process i that is both
waiting and critical at the same time. We can rule out such ambiguous states
by means of the pattern predicate ă n | w | c | q ą | duplpn w cq ‰ tt .

Now that we have explained our notion of constrained constructor pattern
predicate, it is worth pausing for a moment to explain why they do play a
crucial role in the constructor-based reachability logic that we shall define in
Sections 4 and 5. The answer is simple: they support symbolic reasoning about
reachability. Why so? For six reasons: (i) the constructor subtheory pΩ,EΩYBΩq
is often much simpler than the equational theory pΣ,E YBq; (ii) in particular,
in practice pΩ,EΩ Y BΩq almost always has the finite variant property (FVP)
[43,14] and therefore, assuming a BΩ-unification algorithm, it has a EΩ Y BΩ-
unification algorithm computable by folding variant narrowing [14]; (iii) as we
shall show in Lemma 5, under mild conditions the rewrite theory R can be
transformed into a semantically equivalent rewrite theory R̂ whose rewrite rules
have the form lÑ r if φ, with l and r Ω-terms, and φ a QF Σ-formula; (iv) but
this means that we can symbolically describe possibly infinite sets of states by
means of constructor pattern predicates; (v) it also means that we can effectively
symbolically describe how such sets of states are transformed by transitions with
the rules lÑ r if φ in R̂ using narrowing techniques [15,46] based on EΩ YBΩ-
unification (for more on this, see the explanation of the Step@ inference rule in
Section 5); and (vi) as explained below, many logical and set-theoretic operations
on constructor pattern predicates can also be effectively symbolically described
by corresponding constructor pattern predicates. The overall effect of (i)–(vi) is
that in constructor-based reachability logic large parts of the formal reasoning
process can be automated by symbolic methods.



16 S. Skeirik, A, Stefanescu and J. Meseguer

3.1 Constrained Constructor Pattern Operations

Let A, B, and C be pattern predicates. In the remainder of this section, we
define the following operations and show how they can be automated:

1. Pattern subsumption: to show that JAK Ď JBK
2. Over-approximating a complement: finding B where JBK Ě pJu | JKzJu | φK)
3. Pattern intersection: finding C where JCK “ JA^BK
4. Parameterized pattern subsumption: subsumption with shared variables
5. Parameterized pattern intersection: intersection with shared variables.

These operations will help in automating our reachability logic inference system.

Pattern Subsumption. Given constructor patterns u | ϕ and v | ψ, where,
without loss of generality, we assume that varspu | ϕq X varspv | ψq “ H, we are
seeking a symbolic sufficient condition to check that Ju | ϕK Ď Jv | ψK. The key
intuition is that if the term u is an instance modulo EΩ YBΩ of the term v by
some substitution β and TΣ{EYB |ù ϕñ pψβq, then such a set containment will
hold. However, since: (i) u can be an instance of v in several ways, and (ii) we
could consider not just one v, but a family tviuiPI , this intuition can be further
generalized in two ways. First, we can ask the more general question of when the
pattern u | ϕ is an instance, not of a single pattern v | ψ, but of a finite family
tvi | ψiuiPI of such patterns. Second, we can capture all the ways that u can
be an instance of some vi by defining, for a set Y of variables called parameters
(not needed now, so assume Y “ H for the moment, but needed later):

matchpu, tviuiPI , Y q ” tpi, βq | β P rvarspviqzY Ñ TΩpXqs ^ u “EΩYBΩ viβu

as a complete set of (parameter-preserving) EΩ Y BΩ-matches of u against the
vi. Since these matching substitutions are defined up to EΩ Y BΩ-equality, it
is enough to choose a representative matching substitution β in each equiva-
lence class rβsEΩYBΩ . That is, we should think somewhat more abstractly of the
elements of matchpu, tviuiPI , Y q as pairs pi, rβsEΩYBΩ q.

Then we can generalize our intuition of u | ϕ being an instance of v | ψ
by defining the notion that the family of patterns tvi | ψiuiPI (thought of as
a disjunction

Ž

iPI vi | ψi) subsumes u | ϕ , denoted u | ϕ Ď
Ž

iPI vi | ψi,
iff TΣ{EYB |ù ϕ ñ

Ž

pi,βqPmatchpu, tviuiPI ,Hq
ψiβ. The fact that, indeed, if this

symbolic condition holds, we have a set containment of the form Ju | ϕK Ď
J
Ž

iPI vi | ψiK follows (for the case Y “ H) from the more general Lemma
2 later in this section. Computationally, subsumption is a relatively cheap,6

6 This remark should be taken with several grains of salt. The matching involved
can be quite cheap in practice if EΩ “ H and BΩ consists of axioms such as as-
sociativity or associativity-commutativity and the terms involved are not too large.
It is still possible and automatable in Maude when axioms BΩ are like that, and
EΩ Y BΩ has the finite variant property [43,14]; but it will be more expensive.
In general, the validity check ϕ ñ

Ž

pi,βqPmatchpu, tviuiPI ,Hq
ψiβ may not be cheap

and may even be undecidable, since it is an inductive property. However: (i) this
check is automatable in Maude when E Y B has the finite variant property and
EΩ Y BΩ is OS-compact [30,31]; and (ii) even though the inductive validity of



A Constructor-Based Reachability Logic for Rewrite Theories 17

sufficient condition to check a set inclusion of the form Jv | ψK Ď J
Ž

iPI ui |
ϕiK, but of course it is not a necessary condition. For example, if x , y is a
pairing operator forming pairs of natural numbers in Peano notation, we have
an inclusion Jxn,my | JK Ď Jxx, 0y | J _ xy, spzqy | JK, but of course xn,my |
J Ę xx, 0y | J _ xy, spzqy | J. Nevertheless, a simple “inductive” instantiation
of the variable m by 0 and spkq can yield a proof by subsumption for the above
set inclusion.

Over-Approximating Complements. It follows trivially from the semantics
of pattern predicates that for any QF Σ-formula ϕ we always have an inclusion
Ju | ϕK Ď Ju | JK. The reason why negation has been excluded from the above
definition of pattern predicates is that the naive assumption that we would have
a set-theoretic equality Ju | JKzJu | ϕK “ Ju |  ϕK is false in general, even
assuming that varspϕq Ď varspuq. We always have Ju | JK “ Ju | ϕKY Ju |  ϕK,
but in general we only have Ju | JKzJu | ϕK Ď Ju |  ϕK.

For a simple example, consider sorts Elt and MSet with subsort inclusion
Elt ă MSet , constants a, b, c of sort Elt , an associative-commutative multiset
union operator , and variables x, y of sort Elt . Then, enclosing multisets in
parentheses for clarity, so that, e.g., the multiset a, b, b, c is denoted pa, b, b, cq,
we have:

– Jx, y, z | x ­“ yK “ tpa, b, cq, pa, a, bq, pa, a, cq, pb, b, aq, pb, b, cq, pc, c, aq, pc, c, bqu
– Jx, y, z | x “ yK “ tpa, a, aq, pb, b, bq, pc, c, cq, pa, a, bq, pa, a, cq, pb, b, aq, pb, b, cq,

pc, c, aq, pc, c, bqu
– Jx, y, z | JKzJx, y, z | x ­“ yK “ tpa, a, aq, pb, b, bq, pc, c, cqu.

Nevertheless, the set identity Ju | ϕK Y Ju |  ϕK “ Ju | JK gives us the set
containment Ju | JKzJu | ϕK Ď Ju |  ϕK. Therefore, Ju |  ϕK gives us a cheap,
symbolic way to over-approximate the set difference Ju | JKzJu | ϕK.

More generally, the powerset of u-pattern-definable subsets of Ju | JK of the
form Ju | ϕK is obviously closed under finite unions,

Ť

1ďiďnJu | ϕiK “ Ju |
ϕi _ . . ._ ϕnK. Likewise, it is closed under finite intersections

Ş

1ďiďnJu | ϕiK “
Ju | ϕi^ . . .^ϕnK (were without loss of generality we asumme for 1 ď i ă j ď n
that pvarspϕiqzvarspuqq X pvarspϕjqzvarspuqq “ H). But since Ju | ϕKzJu | ψK “
Ju | ϕKX pJu | JKzJu | ψKq, we can symbolically define the over-approximated set
difference Ju | ϕKzzJu | ψK by means of the equality:

Ju | ϕKzzJu | ψK “def Ju | ϕKX Ju |  ψK “ Ju | ϕ^ ψK

ϕ ñ
Ž

pi,βqPmatchpu, tviuiPI ,Hq
ψiβ is generally undecidable, in practice the use of

simplification techniques and of user-provided lemmas, to be later discharged as
proof obligations, can nevertheless suffice for proving it. To begin with, the Boolean
equivalences

Añ B ”  pAq _B ”  pAq _B _B ” pA^ Bq ñ B

make such simplification techniques more effective by checking instead
the equivalent inductive validity of pϕ ^

Ź

pi,βqPmatchpu, tviuiPI ,Hq
 ψiβq ñ

Ž

pi,βqPmatchpu, tviuiPI ,Hq
ψiβ, which has a stronger condition.



18 S. Skeirik, A, Stefanescu and J. Meseguer

assuming again that pvarspϕqzvarspuqq X pvarspψqzvarspuqq “ H. Such compu-
tationally cheap over-approximations of set difference are taken advantage of in
reachability logic’s inference system (see Section 5).

Intersecting Patterns by Unification. Note that, assuming that EΩYBΩ has
a finitary unification algorithm, any constrained constructor pattern predicate
A is semantically equivalent to a finite disjunction

Ž

i ui | ϕi of constrained
constructor patterns. This is because: (i) by (3)–(4) in Def. 8 we may assume A
is in disjunctive normal form; and (ii) it is easy to check that Jpu | ϕq^pv | φqK =
Ť

αPUnif EΩYBΩ
pu,vqJuα | pϕ ^ φqαK, where we assume without loss of generality

that varspu | ϕq X varspv | φq “ H, and that all variables in ranpαq are fresh.

Parametrized Intersections. In the above discussion of intersections it was
assumed that the variables in the two constructor patterns are disjoint. But
this may not always be what we want. Consider constrained patterns u | ϕ
and v | φ with Y “ varspu | ϕq X varspv | φq. The sharing of variables
Y may be intentional as parameters common to both u | ϕ and v | φ. Us-
ing the algebraic notation N “ t0, sp0q, spsp0qq, . . .u, this can be illustrated by
two patterns describing triples of natural numbers, namely, x0, y, zy | J and
xx, spyq, sp0qy | J with shared parameter y. We can view these patterns paramet-
rically as describing the N-indexed families of sets: ttx0, n, zy | z P NuunPN and
ttxx, spnq, sp0qy | x P NuunPN. Then their N-indexed intersection ttx0, n, zy | z P
Nu X txx, spnq, sp0qy | z P NuunPN “ tHunPN can then be symbolically described
by K, because the terms x0, y, zy and xx, spyq, sp0qy have no unifier, although
by renaming xx, spyq, sp0qy to xx, spy1q, sp0qy they can be unified into the term
x0, spy2q, sp0qy, so that Jx0, y, zy | JKXJxx, spyq, sp0qy | JK “ Jx0, spy2q, sp0qy | JK.

This suggests that if u | ϕ and v | φ are pattern predicates with shared
parameters Y “ varspu | ϕq X varspv | φq, we can consider them as describing
parameterized families of sets tJpu | ϕqρKuρPrYÑTΩs and tJpv | φqρKuρPrYÑTΩs.
We can then define their Y -parameterized conjunction as the pattern predicate

pu | ϕq ^Y pv | φq “
ł

αPUnif EΩYBΩ
pu,vq

pu | ϕ^ φqα

where, to avoid any variable capture, all variables in ranpαq are assumed fresh.
To emphasize that this models a Y -parameterized intersection, we then use

the notation, Jpu | ϕq ^Y pv | φqK “ Ju | ϕK XY Jv | φK. The specific sense in
which pu | ϕq ^Y pv | φq symbolically models the parameterized intersection of
the families of sets tJpu | ϕqρKuρPrYÑTΩs and tJpv | φqρKuρPrYÑTΩs can be made
precise as follows:

Lemma 1. For u | ϕ and v | φ pattern predicates, with Y “ varspu | ϕq X
varspv | φq, the following set identity holds:

ď

ρPrYÑTΩs

Jpu | ϕqρKX Jpv | φqρK “ Ju | ϕKXY Jv | φK.

Parametrized Containments. The notion of set containment also makes
sense for indexed families of sets. For example, given N-indexed families of sets:



A Constructor-Based Reachability Logic for Rewrite Theories 19

ttxspspxqq, n, sp0qy | x, y P NuunPN and ttxspx1q, n, spy1qy | x1, y1 P NuunPN, we
say that the first is contained in the second, denoted ttxspspxqq, n, sp0qy | x, y P
NuunPN Ď ttxspx1q, n, spy1qy | x1, y1 P NuunPN iff, by definition,

@n P N txspspxqq, n, sp0qy | x, y P Nu Ď txspx1q, n, spy1qy | x1, y1 P Nu,

which is actually the case for this example. In reachability logic applications
we will often encounter the case of two pattern predicates u | ϕ and

Ž

iPI vi |
ψi for which their shared variables Y “ varspu | ϕq X varsp

Ž

iPI vi | ψiq are
indeed parameters, so that the semantic meaning of their set containment is the
containment of a parametric family of sets, i.e.,

@ρ P rYÑTΩs Jpu | ϕqρK Ď Jp
ł

iPI

vi | ψiqρK.

To distinguish this notion of set containment from the standard one, where we
may always rename u | ϕ and

Ž

iPI vi | ψi so that varspu | ϕq X varsp
Ž

iPI vi |
ψiq “ H, we write it as follows: Ju | ϕK ĎY J

Ž

iPI vi | ψiK. Under these as-
sumptions, there is a natural notion of Y -parameterized subsumption of u | ϕ by
Ž

iPI vi | ψi, denoted u | ϕ ĎY

Ž

iPI vi | ψi, namely, such subsumption holds iff
TΣ{EYB |ù ϕñ

Ž

pi,βqPmatchpu, tviuiPI ,Y q
ψiβ. As for the unparameterized case, a

parameterized subsumption u | ϕ ĎY

Ž

iPI vi | ψi provides a relatively efficient,
symbolic way of checking the parameterized inclusion Ju | ϕK ĎY J

Ž

iPI vi | ψiK.
Indeed, we have:

Lemma 2. Given pattern predicates u | ϕ and
Ž

iPI vi | ψi with common pa-
rameters Y , if TΣ{EYB |ù ϕ ñ

Ž

pi,βqPmatchpu, tviuiPI ,Y q
ψiβ, then Ju | ϕK ĎY

J
Ž

iPI vi | ψiK.

The notions of parameterized intersection and parameterized containment
will be used in Section 4.1 to reason about parameterized invariants and co-
invariants, and in Section 5 to perform inferences in reachability logic.

4 Constructor-Based Reachability Logic

The constructor-based reachability logic we shall define is a logic to reason about
reachability properties of the canonical reachability model CR of a topmost
rewrite theory R, where “topmost” captures the intuitive idea that all rewrites
with the rules R in R happen at the top of the term. Many rewrite theories
of interest, including theories specifying distributed object-oriented systems and
rewriting logic specifications of (possibly concurrent) programming languages,
can be easily specified as topmost rewrite theories by a simple theory transfor-
mation (see, e.g., [15]). Besides satisfying the requirements in Definition 5, R
should also satisfy the requirements in Definition 9 below.

Definition 9 (Suitable Rewrite Theories). We say a rewrite theory R “

pΣ,E YB,Rq satisfying the requirements in Definition 5 is suitable for reacha-
bility analysis or just suitable iff it satisfies the following additional conditions:



20 S. Skeirik, A, Stefanescu and J. Meseguer

1. pΣ,E Y Bq has a decomposition pΣ,B, ~Eq and a constructor decomposition

pΩ,BΩ , ~EΩq such that: (i) the equations EΩ YBΩ are regular and there is a
finitary EΩ YBΩ-unification algorithm7 and (ii) the axioms BΩ are linear.

2. Σ has a sort State, the top sort of a connected component rStates, and R
is topmost for sort State in the sense that: (i) for rules l Ñ r P R, l and r
have sort State and (ii) for any u P TΩpXqState and any non-empty position
p in u, u|p R TΩpXqState .

3. All rules pl Ñ r if ϕq P R have l P TΩpXq and are unforgetful,8i.e. they
satisfy varsplqzpvarsprq Y varspφqq “ H.

Requirements (1)–(3) in Definition 9 ensure that in the canonical reachability
model CR if rus ÑR rvs holds, then the R,B-rewrite u ÑR,B u1 such that
ru1!s “ rvs happens at the top of u, i.e., uses a rewrite rule l Ñ r if ϕ P R
and a ground substitution σ P rYÑTΩs, with Y the rule’s variables, such that
u “BΩ lσ and u1 “ rσ. In the sequel, we assume that all rewrite theories satisfy
the requirements in Definition 9, i.e., are suitable for reachability analysis. We
are now ready to define the formulas of our constructor-based reachability logic
for suitable theories R.

Definition 10 (Reachability Formulas). Let R “ pΣ,EYB,Rq be suitable.
Recall the notion of an s-sorted constrained pattern predicate PatPredpΩ,Σqs
in Definition 8. A reachability formula then has the form: A Ñf B, with
A,B P PatPredpΩ,ΣqState , where pΩ,BΩ , ~EΩq is the constructor decomposi-

tion of pΣ,B, ~Eq assumed in Definition 9. By definition, the parameters Y of
A Ñf B are the variables in the set Y “ varspAq X varspBq, and A Ñf B is
called unparameterized iff Y “ H.

The presentation of reachability logic in [3] considers two different semantics:
(i) a one-path semantics, which we denote R |ù1 AÑf B, and (ii) an all-paths
semantics, which we denote R |ù@ A Ñf B. Since the all-paths semantics is
the most general and expressive, and the one-path semantics applies mostly to
sequential systems, in this work we focus on the all-paths semantics.

The reachability logic in [2,3] is based on terminating sequences of state
transitions and is such that all reachability formulas are vacuously true when
there are no terminating states. Our purpose is to extend reachability logic so

7 This is always guaranteed in practice if pΩ,BΩ , ~EΩq is FVP and BΩ has a finitary
unification algorithm.

8 Call a rule lÑ r P R forgetful if it is not unforgetful. In the rewriting specification of
an asynchronous fault-tolerant communication protocol where the state is specified
as a multiset of objects (network nodes) and messages, the dropping of messages
by the faulty environment can be modeled by the forgetful rule M Ñ null , where
null is the empty multiset. For technical reasons, in reachability logic deduction it
is useful to assume that all rewrite rules are unforgetful. But this entails no real loss
of generality: any forgetful rule l Ñ r if φ P R with varsplqzpvarsprq Y varspφqq “
tx1, . . . xnu can be replaced by the semantically equivalent unforgetful rule: l Ñ
r if φ ^ x1 “ x1 ^ . . . ^ xn “ xn. For example, M Ñ null can be replaced by
M Ñ null if M “M .



A Constructor-Based Reachability Logic for Rewrite Theories 21

as to be able to verify properties of general distributed systems specified as
rewrite theories R which may never terminate. For this, as further explained
in Section 4.1, we extend the rewrite theory R into a closely-related theory
Rstop which does have terminating states. This allows a useful interpretation of
reachability formulas, which have a non-vacuous meaning in Rstop and indirectly
also a new meaning (the desired one) in the original non-terminating theory R.
Furthermore, we can generalize the satisfaction relation R |ù@ A Ñf B to
a relativized satisfaction relation R |ù@T A Ñf B, where T is a constrained
pattern predicate such that JT K is a subset of the set of terminating states.

The following terminological clarification may help the reader. In the canon-
ical reachability model CR of a rewrite theory R we call a finite or infinite
sequence of ÑR-transitions maximal iff it cannot be extended. This can happen
in exactly two ways; either: (i) the sequence is infinite, and is then called non-
terminating, or (ii) the sequence is a finite sequence rus Ñ˚

R rvs but it cannot
be extended, i.e., pErwsq rvs ÑR rws, and is then called terminating. R itself is
called never terminating iff all maximal sequences in CR are infinite, and termi-
nating iff they are all finite. In general, of course, CR may have both terminating
and non-terminating sequences.

Definition 11 (T -Terminating Sequence). Let TermR denote the set of ter-
minating states for theory R, i.e., TermR “ trus P CR,State | pErvsq rus ÑR rvsu.
If JT K Ď TermR, call rus Ñ˚

R rvs a T -terminating sequence iff rvs P JT K. For
reachability analysis purposes, we require that T can be specified as a pattern
predicate of the form T “

Ž

i ti | χi, with varspχiq Ď varsptiq.

In all the examples we present, the relation |ù@T is the standard relation
|ù@, i.e., JT K “ TermR; but even in the standard case, giving an explicit spec-
ification of the set of terminating states is very useful for deduction purposes.
Constructor-based techniques such as those proposed in [45] can be used to char-
acterize the set TermR of terminating states by means of a pattern predicate T in
many cases. In the relative case, where we just have an inclusion JT K Ď TermR,
we need to show that the containment JT K Ď TermR holds, which can often be
achieved by showing, using unification and narrowing techniques, that no state
rws P JT K can be rewritten at all by the rules in R.

Definition 12 (Semantics of Reachability Formulas). Given T with JT K Ď
TermR, the all-paths satisfaction relation R |ù@T u | ϕ Ñf

Ž

jPJ vj | φj assert-

ing the satisfaction of the formula u | ϕ Ñf
Ž

jPJ vj | φj in the canonical
reachability model CR of a suitable rewrite theory R is defined as follows:

For u | ϕ Ñf
Ž

jPJ vj | φj unparameterized, R |ù@T u | ϕ Ñf
Ž

jPJ vj | φj
holds iff for each T -terminating sequence ru0s ÑR ru1s . . . run´1s ÑR runs with
ru0s P Ju | ϕK there exist k, 0 ď k ď n and j P J such that ruks P Jvj | φjK. For
u | ϕÑf

Ž

jPJ vj | φj with parameters Y , R |ù@T u | ϕÑf
Ž

jPJ vj | φj holds if

R |ù@T pu | ϕqρÑf p
Ž

jPJ vj | φjqρ holds for each ρ P rYÑTΩs.
Since a constrained pattern predicate is equivalent to a disjunction of atomic

ones, we can define satisfaction on general reachability logic formulas as follows:



22 S. Skeirik, A, Stefanescu and J. Meseguer

R |ù@T
Ž

1ďiďn ui | ϕi Ñ
f A iff

Ź

1ďiďnR |ù@T ui | ϕi Ñ
f A, assuming same

parameters Yi “ varspui | ϕiq X varspAq, i.e., Yi “ Yi1 for 1 ď i ă i1 ď n.

R |ù@T A Ñf B is a path-universal partial correctness assertion: If state rus
satisfies precondition A, then midcondition B is satisfied somewhere along each
T -terminating sequence from rus, generalizing a Hoare formula tAuRtBu, where
B is understood not just as a “midcondition,” but as a “postcondition” satisfied
by final states. To be consistent with the Hoare logic meaning of postconditions
(see Section 4.2 for a generalized Hoare logic), we reserve the term postcondition
for a midcondition B in a reachability formula AÑf B such that JBK Ď JT K.

Implicit Quantification in Reachability Formulas. Implicit in the above
definition of satisfaction is the different way in which variables are quantified.
It may be worthwhile making this explicit to clarify the implicit universal and
existential quantifications involved in a (seemingly unquantified) reachability
formula u | ϕ Ñf

Ž

jPJ vj | φj . Let U “ varspu | ϕq, Z “ varsp
Ž

jPJ vj | φjq,
and Y “ U XZ. Then, all variables in U (and in particular all parameters in Y )
are universally quantified, and all variables in ZzY are existentially quantified,
in the sense that R |ù@T u | ϕÑf

Ž

jPJ vj | φj holds iff:

@γ P rUÑTΩs s.t. TΣ,EYB |ù ϕγ

@ ru0s ÑR ru1s . . . run´1s ÑR runs s.t. ru0s “ rpuγq!s ^ runs P JT K
Dk P N, 0 ď k ď n, Dj P J Dτ P rZzYÑTΩs

s.t. ruks “ rpvjpγ|Y Z τqq!s P Jpvj | φjqγ|Y K.

Parameter Instantiation. Assume again a reachability formula u | ϕ Ñf

Ž

jPJ vj | φj with U “ varspu | ϕq, Z “ varsp
Ž

jPJ vj | φjq, and parameters
Y “ U X Z. In deductive reasoning, such a formula, and other formulas related
to it, are often instantiated by a substitution α whose domain is a subset of U and
whose range is disjoint from U Y Z. Then, α respects the formula’s parameters
in the expected way:

Lemma 3. (Parameter Instantiation Lemma). Under the above assumptions on
u | ϕ Ñf

Ž

jPJ vj | φj, for any substitution α such that dompαq Ď U and

ranpαq X pU Y Zq “ H, the formula pu | ϕ Ñf
Ž

jPJ vj | φjqα has parameters
varspαpY qq.

Three simple classes of reachability formulas, called, respectively, trivial, vac-
uous, and T -consistent, play an important role in reachability logic deduction:

Definition 13 (Trivial, Vacuous, T -consistent). Given a rewrite theory R
with terminating states T specified by the pattern predicate T “

Ž

i ti | χi,
a reachability formula u | ϕ Ñf

Ž

jPJ vj | φj, whose variables are without
loss of generality assumed disjoint from those in T , and with (possibly empty)
parameters Y is called:

1. trivial iff Ju | ϕK ĎY J
Ž

jPJ vj | φjK.



A Constructor-Based Reachability Logic for Rewrite Theories 23

2. vacuous iff Ju | ϕK “ H
3. T -consistent iff:

p@iq p@α P UnifEΩYBΩ pu, tiqq Jpu | ϕ^ χiqαK ĎvarspαpY qq Jp
ł

jPJ

vj | φjqαK.

A trivial reachability formula u | ϕ Ñf
Ž

jPJ vj | φj is called so because all
states in its precondition have already reached the midcondition, and therefore
R |ù@T u | ϕ Ñf

Ž

jPJ vj | φj trivially holds in 0 rewrite steps. A reachability
formula whose precondition is empty is vacuously valid. Note that vacuousness
is a special case of triviality. The meaning of a T -consistent formula can be
best clarified by its negation: u | ϕ Ñf

Ž

jPJ vj | φj will be T -inconsistent iff
there is a ground substitution ρ of the parameters Y and a final state rws P
Jpu | ϕqρKX JT K such that rws R Jp

Ž

jPJ vj | φjqρK. Therefore, T -consistency is a
necessary condition for validity. It is also a sufficient condition when the states
in the precondition are terminating states:

Lemma 4. If u | ϕ Ñf
Ž

jPJ vj | φj with parameters Y is T -consistent and

Ju | ϕK Ď TermR, then R |ù@T u | ϕÑf
Ž

jPJ vj | φj.

Recall that in requirement (3) for a suitable rewrite theory R we assumed
unforgetful topmost rewrite rules of the form l Ñ r if φ with l P TΩpXq.
For symbolic reasoning purposes it will be very useful to also require that r P
TΩpXq. This can be done without any real loss of generality by means of a theory
transformation9 R ÞÑ R̂ defined as follows. If R “ pΣ,E Y B,Rq, then R̂ “

pΣ,EYB, R̂q, where the rules R̂ are obtained from the rules R by transforming

each l Ñ r if φ in R into the rule l Ñ r1 if φ ^ θ̂, where: (i) r1 is the Ω-
abstraction of r obtained by replacing each length-minimal position p of r such
that t|p R TΩpXq by a fresh variable xp whose sort is the least sort of t|p,

(ii) θ̂ “
Ź

pPP xp “ tp, where P is the set of all length-minimal positions in

r such that t|p R TΩpXq. Note that the transformation R ÞÑ R̂ preserves all
suitable theory requirements (1)–(3). Its key semantic property can be expressed
as follows:

Lemma 5. The canonical reachability models CR and CR̂ are identical.

4.1 Invariants, Co-Invariants, and Never-Terminating Systems

The notion of an invariant makes sense for any transition system S, that is, for
any pair S “ pS,ÑSq with S its set of states and ÑSĎ S ˆ S its transition
relation. Given a set of “initial states” S0 Ď S, the set ReachSpS0q of states
reachable from S0 is defined as ReachSpS0q “ ts P S | pDs0 P S0q s0 Ñ

˚
S su,

where Ñ˚
S denotes the reflexive-transitive closure of ÑS . An invariant is a safety

property about S with initial states S0 and can be specified in two ways: (i) by a

9 An even more general theory transformation R ÞÑ RΩ
Σ1,l,r, used in some of the

examples of Section 6, is presented in [37,46].



24 S. Skeirik, A, Stefanescu and J. Meseguer

“good” property P Ď S, the invariant, that always holds from S0, i.e., such that
ReachSpS0q Ď P , or (ii) as a “bad” property Q Ď S, the co-invariant, that never
holds from S0, i.e., such that ReachpS0q XQ “ H. Obviously, P is an invariant
iff SzP is a co-invariant. Sometimes it is easier to specify an invariant positively,
as P , and sometimes negatively, as its co-invariant SzP .

Invariants and co-invariants are much easier to prove if they are inductive.
This can be expressed in terms of the notion of an S-stable set. For S “ pS,ÑSq

a transition system, U Ď S is S-stable iff for each s, s1 P S, ps P U ^ sÑS s
1q ñ

s1 P U . An invariant P (resp. a co-invariant Q) for initial states S0 is inductive
iff P is S-stable (resp. Q is S´1-stable, where S´1 “ pS, pÑSq

´1q). Equivalently,
the following are equivalent:

1. P is an inductive invariant (resp. Q is an inductive co-invariant) for S0.
2. S0 Ď P and P is S-stable (resp. S0 XQ “ H and Q is S´1-stable).
3. S0 Ď P and P “ ReachSpP q (resp. S0 XQ “ H and Q “ ReachS´1pQq).

All this is particularly relevant for the transition system pCR,State ,ÑRq as-
sociated to the canonical model CR of a rewrite theory R. Here is an obvious
question with a non-obvious answer. Suppose we have specified a distributed sys-
tem as the canonical model CR of a suitable rewrite theory R. Suppose further
that we have specified constrained pattern predicates S0 and P (resp. and Q)
and we want to prove that JP K (resp. JQK) is an invariant (resp. co-invariant) of
the system pCR,State ,ÑRq from JS0K. Can we characterize such invariant, resp.
co-invariant, property by means of reachability formulas and use the inference
system of Section 5 to try to prove such formulas?

Suppose R specifies a never-terminating system, i.e., a system such that
TermR “ H. Many distributed systems are never-terminating. For example,
QLOCK and other mutual exclusion protocols are never-terminating. Then the
set TermR “ H, and R |ù@T A Ñf B holds vacuously for all reachability
formulas A Ñf B and no reachability formula can characterize an invariant
(resp. co-invariant) over R.

Nevertheless, reachability logic can indeed meaningfully reason about in-
variants and co-invariants of distributed systems, regardless of whether they
are terminating, sometimes terminating, or never terminating. We just need to
first perform a simple theory transformation. To ease the exposition, we ex-
plain the transformation in case Ω has a single state constructor, say, x , . . . , y :
s1, . . . , sn Ñ State. Extending to multiple constructors is straightforward.

Invariant Theory Transformation. The theory transformation has the form
R ÞÑ Rstop , where Rstop is obtained from R by just adding: (1) a new state
constructor operator r , . . . , s : s1, . . . , sn Ñ State to Ω, and (2) a new rewrite
rule stop : xx1:s1, . . . , xn:sny Ñ rx1:s1, . . . , xn:sns to R. Also, let r s denote the
pattern predicate rx1 :s1, . . . , xn :sns | J. Likewise, for any atomic constrained
pattern predicate B “ xu1, . . . , uny | ϕ we define the pattern predicate rBs “
ru1, . . . , uns | ϕ and extend this notation to any union Q of atomic predicates.

Since x , . . . , y : s1, . . . , sn Ñ State is the only state constructor, we can
assume without loss of generality that any atomic constrained pattern predicate



A Constructor-Based Reachability Logic for Rewrite Theories 25

in R is semantically equivalent to one of the form xu1, . . . , uny | ϕ. Likewise, any
pattern predicate will be semantically equivalent to a union of atomic predicates
of such form, called in standard form. Here is the main theorem:

Theorem 3 (Invariants). For S0, P PPatPredpΩ,Σq constrained pattern pred-
icates in standard form with varspS0q X varspP q “ H, JP K is an invariant of
pCR,State ,ÑRq from JS0K iff Rstop |ù

@
r s
S0 Ñ

f rP s.

The notion of a parametric invariant can be reduced to the unparameterized
one: if Y “ varspS0q X varspP q, then JP K is an invariant of pCR,State ,ÑRq from
JS0K with parameters Y iff Rstop |ù

@
r s
S0 Ñ

f rP s. That is, iff JPρK is an (unpa-

rameterized) invariant of pCR,State ,ÑRq from JS0ρK for each ρ P rYÑTΩs. In this
way, just by dropping the unparametricity requirement varspS0qX varspP q “ H
from the theorem’s statement, Theorem 3 extends seamlessly to a reachability
logic characterization of parametric invariants.

Example 2 (Specifying Invariants for QLOCK). As an example, we consider how
to specify invariants as reachability formulas using the QLOCK specification
from Sections 2 and 3. Note that not only is QLOCK nonterminating: it is also
never terminating. Thus, specifying any invariants as reachability formulas in
the original theory is impossible. However, by applying the R ÞÑ Rstop the-
ory transformation and Theorem 3, we can specify invariants by reachability
formulas. Define the set of initial states containing only normal processes by
the pattern predicate S0 “ ă n 1 | H | H | nil ą | duplpn1q ­“ tt . Since QLOCK
states have the form ă n | w | c | q ą, mutual exclusion means |c| ď 1, which is
expressible by the pattern predicate ă n | w | H | q ą _ ă n | w | i | i ; q ą.
We need also to ensure our multisets are actually sets. Thus, we define the
constructor pattern predicates P1 “

`

ă n | w | H | q ą | duplpn wq ‰ tt
˘

and

P2 “
`

ă n | w | i | i ; q ą | duplpn w iq ‰ tt
˘

, so that the pattern predicate
P “ P1_P2 specifies mutual exclusion. By Theorem 3, QLOCK ensures mutual
exclusion from JS0K iff Rstop |ù

@
r s
S0 Ñ

f rP s where here rP s is rP1s _ rP2s, i.e.
`

r n | w | H | q s | duplpn wq ‰ tt _ r n | w | i | i ; q s | duplpn w iq ‰ tt
˘

.

As pointed out above, proving inductive invariants is much easier than prov-
ing non-inductive ones. The following theorem provides a precise characterization
of parametric invariants in reachability logic. Of the three equivalent character-
izations we have given of inductive invariants, it uses Characterization (3). This
theorem can, for example, be applied to prove the mutual exclusion of QLOCK.

Theorem 4 (Parametric Inductive Invariants). Let S0, P P PatPredpΩ,Σq
be constrained pattern predicates in standard form with varspS0qXvarspP q “ Y .
Then JP K is a parametric inductive invariant of pCR,State ,ÑRq from JS0K with
parameters Y iff: (i) JS0K ĎY JP K (see Section 3.1), and (ii) Rstop |ù

@
r s
P Ñf

rPσs, where σ is a sort-preserving bijective renaming of variables such that σ is
the identity on Y and varspP q X varspPσq “ Y .



26 S. Skeirik, A, Stefanescu and J. Meseguer

This leaves still open the question of whether reachability logic could directly
express Characterization (2) of inductive invariants in terms of stable sets. The
answer is yes! provided we assume without loss of generality, thanks to Lemma
5, that R “ R̂ and we use a slightly different theory transformation, namely, a
transformation R ÞÑ Rstop1 , where Rstop1 is the theory obtained from Rstop by

replacing the rules R from R “ R̂ by the set of rules rRs obtained by replacing
each rule l Ñ r if φ in R by the rule l Ñ rrs if rφs, where, by convention,
(i) if the constructor term r has the from xv1, . . . , vny, then rrs “ rv1, . . . , vns
and rφs “ φ, and (ii) otherwise, r must be a variable S of sort State, and then
rrs “ rx1, . . . , xns, where the variables x1, . . . , xn are fresh of the input sorts
s1, . . . , sn for r , . . . , s, and where rφs “ φ^ S “ xx1, . . . , xny. The proof of the
following corollary uses Characterization (2) and, being totally analogous to,
and even simpler than, that of Theorem 4 is left to the reader.

Corollary 1 (Parametric Inductive Invariants). Assume R “ R̂ and let
S0, P P PatPredpΩ,Σq be constrained pattern predicates in standard form with
varspS0qXvarspP q “ Y . Then JP K is a parametric inductive invariant from JS0K
with parameters Y for pCR,State ,ÑRq iff: (i) JS0K ĎY JP K (see Section 3.1), and
(ii) Rstop1 |ù

@
r s
P Ñf rPσs, where σ is a sort-preserving bijective renaming of

variables such that σ is the identity on Y and varspP q X varspPσq “ Y .

What is attractive about Corollary 1 is that Rstop1 is a very simple theory:
in Rstop1 all R-terms of sort State terminate and all their associated terminat-
ing sequences have length 1. It is also useful to point out that the parametric
inclusion JS0K ĎY JP K is semantically equivalent to Rstop1 |ù

@
r s
rS0s Ñ

f rPσs,
since this will allow us to use the Subsumption inference rule in Section 5 to
discharge this proof obligation.

Let us now turn to the case of inductive co-invariants. Suppose we have spec-
ified constrained pattern predicates S0 and Q and we want to prove that JQK
is an inductive co-invariant of the system pCR,State ,ÑRq from JS0K. Can this
property be characterized by some reachability formula or formulas? More gen-
erally, can we characterize in reachability logic when Q is a parametric inductive
co-invariants from JS0K? Parametric co-invariants are entirely analogous to para-
metric invariants. Given constrained pattern predicates S0, Q P PatPredpΩ,Σq
in standard form, with Y “ varspS0q X varspQq, we call Q a parametric co-
invariant in pCR,State ,ÑRq for initial states JS0K with parameters Y iff for each
ρ P rYÑTΩs JQρK is an (unparameterized) co-invariant in pCR,State ,ÑRq for ini-
tial states JS0ρK. The key idea to characterize inductive co-invariants in reach-
ability logic is to use the rules of R backwards. Assume, without loss of gen-
erality thanks to Lemma 5, that R “ R̂. Then, if R “ pΣ,E Y B,Rq, define
R´1 “ pΣ,E Y B,R´1q, where R´1 “ tr Ñ l if ϕ | pl Ñ r if ϕq P Ru. Then,
if R satisfies the suitability conditions (1)–(3) and, assuming the rules R´1 are
ground coherent10 with the equations E modulo B and have been made unfor-
getful if necessary by adding trivial equalities for the forgotten variables to their

10 Ground coherence of R´1 may be problematic because, while a rule’s lefthand side
l is assumed to be a constructor term, that assumption does not hold in general



A Constructor-Based Reachability Logic for Rewrite Theories 27

conditions, then R´1 also satisfies the suitability conditions (1)–(3). Here is the
main theorem characterizing parametric inductive co-invariants in reachability
logic (the unparameterized case is the case Y “ H):

Theorem 5 (Parametric Inductive Co-invariants). Assume R “ R̂ and
let S0, Q P PatPredpΩ,Σq be constrained pattern predicates in standard form
with varspS0q X varspQq “ Y . Then JQK is a parametric inductive co-invariant
in pCR,State ,ÑRq for initial states JS0K with parameters Y iff: (i) JS0KXY JQK “
H (see Section 3.1), and (ii) pR´1qstop |ù

@
r s
Q Ñf rQσs, where σ is a sort-

preserving bijective renaming of variables such that σ is the identity on Y and
varspP q X varspPσq “ Y .

In complete analogy with Corollary 1 we get the following corollary in terms
of Characterization (2), whose proof simplifies and follows closely that of Theo-
rem 5 and is left to the reader.

Corollary 2 (Parametric Inductive Co-invariants). Assume R “ R̂ and
let S0, Q P PatPredpΩ,Σq be constrained pattern predicates in standard form
with varspS0qXvarspQq “ Y . Then JQK is a parametric inductive co-invariant in
pCR,State ,ÑRq for initial states JS0K with parameters Y iff: (i) JS0KXY JQK “ H
(see Section 3.1), and (ii) pR´1qstop1 |ù@

r s
Q Ñf rQσs, where σ is a sort-

preserving bijective renaming of variables such that σ is the identity on Y and
varspP q X varspPσq “ Y .

4.2 Relationships to Hoare Logic and Universally Quantified LTL

It is both natural and helpful to compare reachability logic to other property
logics such as Hoare logic or linear time temporal logic (LTL). Let us begin with
Hoare logic [47].

Relationship to Hoare Logic. A Hoare logic is traditionally associated to a
programming language; but the desired comparison should apply not just to pro-
gramming languages but to any systems specifiable by topmost rewrite theories.
This suggests defining Hoare logic in this more general setting.

Definition 14 (Hoare Logic). Let R “ pΣ,E Y B,Rq be a suitable theory,
and let Ω be its constructor subsignature. A Hoare triple for R is then a triple
of the form:

tAu R tBu
where A,B P PatPredpΩ,ΣqState . Let Y “ varspAq X varspBq. By definition,
when Y “ H, a Hoare triple tAu R tBu is satisfied by the initial reachability
model TR, denoted TR |ù tAu R tBu, iff for each rus P JAK and each terminating
sequence rus ÑR!rvs, rvs P JBK. If Y ­“ H, then TR |ù tAu R tBu iff TR |ù

tAρu R tBρu for each ρ P rXÑTΩs.

for its righthand side r. However, its does if we assume (without loss of generality
thanks to Lemma 5) that R “ R̂. Coherence-type critical pairs almost never arise
in practice between a constructor-based rule and equations E. Therefore, assuming
R “ R̂, the ground coherence assumption for R´1 is very reasonable.



28 S. Skeirik, A, Stefanescu and J. Meseguer

Since the rewriting logic semantics of a programming language L can be
specified by a topmost rewrite theory RL, the standard Hoare logic for L be-
comes the special case where in the above notation we represent a Hoare triple
tϕu p tψu as the Hoare triple txp : inity | rϕu RL txskip : Sy | rψu, where init is
the initial program state, of sort ProgState, skip is the empty program continua-
tion, and where configurations of a program (or, more generally, a continuation)
p and a program state S are represented as pairs xp : Sy. Explaining how the

QF ΣL-formulas rϕ and rψ are derived from the original ϕ and ψ is essentially
straightforward, but becomes complicated by the regrettable systematic confu-
sion of program variables with mathematical variables in ϕ and ψ. This can be
best illustrated with an example. Consider the Hoare triple tn ě 0u x := n ;

factp ty “ n!u, which specifies that a factorial program factp with its variable
x initialized to the integer n ě 0 will have upon termination the value n! stored
in its variable y. For RL this can be expressed as the Hoare triple txx := n ;

factp : inity | n ě 0u RL txskip : Sy | Srys “ n!u, where S is a variable of sort
ProgState and Srvs is an auxiliary function extracting the value in state S of
program variable v. Of course, conversely, a Hoare triple tAu R tBu has also in a
sense a standard interpretation, since we can view R as a program in a rewriting
logic language with user-definable data types such as Maude.

The comparison with reachability logic is now straightforward: Hoare logic is
essentially a sublogic of reachability logic, namely, in a Hoare triple tAu R tBu,
since B is a postcondition, we may assume without loss of generality that JBK Ď
JT K “ TermR. Then, tAu R tBu is just syntactic sugar for the reachability
formula A Ñf B. Of course, the Hoare triple tAu R tBu is parametric with
parameters Y iff AÑf B is so. Indeed, we then have:

TR |ù tAu R tBu ô R |ù@ AÑf B.

When the above comparison is applied to programming languages (see also
[48]), it can be easy to miss the obvious, namely, the two crucial advantages
that reachability logic has in this comparison. Besides being more general than
Hoare logic and having abilities comparable to those of separation logic [49] to
express and verify —through matching modulo associative-commutative axioms
B— the properties of heap-intensive programs, the two crucial advantages of
reachability logic are that:

1. unlike Hoare logic, reachability logic is language-generic; that is, instead
of having to tailor a different Hoare logic for each different programming
language, the need for language-specific Hoare rules completely evaporates:11

only reachability logic’s few inference rules (see Section 5), which are rewrite-
theory-generic and, a fortiori, programming-language-generic, are needed;
and

2. there is no need whatsoever for defining a so-called axiomatic semantics and
proving it correct with respect to an operational semantics, which is crucially

11 See [3] for strong evidence about the advantages of the language-generic nature of
reachability logic applied to programming languages within the K framework.



A Constructor-Based Reachability Logic for Rewrite Theories 29

needed in the Hoare logic approach: all that is needed is the simple, theory-
generic semantics of reachability logic given in Definition 12, which reduces
it to the, again simple and generic, rewriting logic semantics of the rewrite
theory RL defining the semantics of language L [50,6].

It is even quite possible to miss the obvious pragmatic consequences of advantages
(1)–(2). Developing a Hoare logic axiomatic semantics for a real programming
language, say, Java or C, as opposed to a toy one, is a big effort requiring careful
formalization and typically resulting in a large number of Hoare rules. But, rel-
atively speaking, this is actually the easiest part of the job. The real challenge is
to prove that such an axiomatic semantics is correct with respect to an opera-
tional semantics. This can be a daunting task, and sometimes even an impossible
one due to the absence of a complete operational semantics for the language in
question. For example, not until [51] was a complete operational semantics for
C given, as a rewrite theory expressed in K. As a consequence, some Hoare log-
ics are never proved correct, so their trustworthiness becomes anybody’s guess.
The fact that in reachability logic a single semantic object, namely the rewrite
theory RL, is needed, and that this semantic object is executable, becomes a big
pragmatic advantage.

Relationship to LTL. The comparison with LTL requires making explicit
the atomic predicates and the Kripke structure KR associated to a suitable
rewrite theory R “ pΣ,E Y B,Rq on which the comparison is based. The
atomic predicates are PatPredpΩ,ΣqState , and KR is the Kripke structure KR “
pCΣ{E,B,State , pÑRq

‚, LRq, where the relation pÑRq
‚ is the totalization of the

one-step rewrite relation and LR is the labeling function:

CΣ{E,B,State Q rus ÞÑ tA P PatPredpΩ,ΣqState | rus P JAKu P PpPatPredpΩ,ΣqStateq.

Note the useful fact that KR can give semantics not only to propositional LTL
formulas ϕ, but also to universal quantifications p@Y qϕ of propositional LTL
formulas ϕ, where Y is a (possibly empty) finite set of variables typed in the
signature Σ of R. Indeed, we can define, for each rus P CΣ{E,B,State ,

KR, rus |ùLTL p@Y qϕ ôdef @ρ P rYÑTΩs KR, rus |ùLTL ϕρ.

The comparison with LTL then becomes straightforward: reachability logic
is essentially a sublogic of quantified LTL: a reachability formula AÑf B with
parameters Y is syntactic sugar for the LTL formula p@Y q AÑ p3pBq_2enRq,
where if R “ tli Ñ ri if ϕiuiPI , then enR is the “enabledness” pattern predicate
enR “

Ž

iPI li | ϕi. Indeed, we have:

R |ù@ AÑf B ô KR |ùLTL p@Y q AÑ p3pBq _2enRq.

Of course, when the semantics of AÑf B is relativized to a pattern predicate T
of terminating states, we get instead the LTL formula p@Y q AÑ p3pBq_2 T q.

Note that, thanks to the results in Section 4.1, reachability logic can also
express universal LTL safety formulas of the form: p@Y q AÑ 2B (with A,B P
PatPredpΩ,ΣqState and Y “ varspAq X varspBq), since we have:

Rstop |ù
@
r s AÑ

f rBs ô KR |ùLTL p@Y q AÑ 2B.



30 S. Skeirik, A, Stefanescu and J. Meseguer

Furthermore, reachability logic can also express universal LTL stability formulas
of the form: p@Y q B Ñ ©B, which are very useful for specifying and proving
parametric inductive invariants. Indeed, we have:

Rstop1 |ù
@
r s B Ñ

f rBs ô KR |ùLTL p@Y q B Ñ©B.

While constructor-based reachability logic can only express an (admittedly
quite useful) subset of (quantified) LTL properties, this is compensated for by
other advantages. For example, as shown in Section 5, reachability logic enjoys
a built-in notion of circularity that is very useful for reasoning about repet-
itive behavior in systems. As another example, since Kripke models have no
native notion of constructor, the symbolic methods extensively exploited in this
paper cannot be used as generic (quantified) LTL proof methods for arbitrary
Kripke structures. However, an interesting question for future research is how the
symbolic proof methods presented in this paper could be extended to a bigger
fragment of LTL for Kripke structures of the form KR.

In summary, we can close our comparisons with Hoare logic and with quan-
tified LTL by remarking that:

1. In comparison with Hoare logic, constructor-based reachability logic amounts
to a vast generalization of an already highly expressive logic in three differ-
ent dimensions: (i) from programming languages to rewrite theories which
can specify both programming languages and distributed system designs;
(ii) from language-specific Hoare logics that have to be hand crafted and
proved sound for each programming language to a rewrite theory generic
logic whose soundness is proved once and for all; and (iii) from pre-post
condition properties to considerably more general and expressive pre-mid
condition properties.

2. In comparison with quantified LTL the key point is that, not only are safety
properties such as parametric invariants of the form p@Y q A Ñ 2B and
parametric stability properties p@Y q B Ñ ©B supported, but so are also
parametric eventuality properties such as p@Y q AÑ p3pBq_2enRq, stating
that all terminating paths starting at A eventually reach B for each ground
instantiation of the parameters Y .

5 Reachability Logic’s Inference System

We present our inference system for all-path reachability logic, parametric on a
suitable rewrite theory R with unforgetful rules R “ tlj Ñ rj if φjujPJ such that
lj , rj P TΩpXq, j P J . Variables of rules in R are always assumed disjoint from
variables in reachability formulas; this can be ensured by renaming. The infer-
ence system has three proof rules: (i) the Subsumption proof rule discharges
trivial formulas (recall Definition 13) by means of vacuousness or subsumption
checks; (ii) the Step@ proof rule allows taking one step of (symbolic) rewriting
along all paths according to the rules in R; and (iii) the Axiom proof rule allows



A Constructor-Based Reachability Logic for Rewrite Theories 31

the use of a trusted reachability formula to summarize multiple rewrite steps,
and thus to handle repetitive behavior.

The proof rules derive sequents of the form rA, Cs $T u | ϕÑf
Ž

i vi | ψi,
which are always checked for T -consistency, where A and C are finite sets of
T -consistent reachability formulas and T is a pattern predicate defining a set of
T -terminating ground states. Formulas in A are called axioms and those in C
are called circularities. We furthermore assume that in all reachability formulas
u | ϕÑf

Ž

i vi | ψi we have varspψiq Ď varspviqYvarspu | ϕq for each i. Accord-
ing to the implicit quantification of the semantic relation |ù@T this means that
any variable in ψi is either universally quantified and comes from the precondi-
tion u | ϕ, or is existentially quantified and comes from vi only. This property is
an invariant preserved by the three inference rules.

Proofs always begin with a set C of T -consistent formulas that we want to
simultaneously prove, so that the proof effort only succeeds if all formulas in C
are eventually proved. C contains the main properties we want to prove as well
as any (as yet unproved) auxiliary lemmas that may be needed to carry out the
proof. We can also use an additional set L of already proved, and therefore valid,
lemmas as axioms that are always available for use. In such case, the initial set
of goals we want to prove is rL, Cs $T C, which is a shorthand for the set of
goals trL, Cs $T u | ϕÑf

Ž

i vi | ψi
ˇ

ˇ pu | ϕ Ñf
Ž

i vi | ψiq P Cu. Thus, we
start only with the already proved lemmas L as axioms, but we shall be able to
also use all the formulas in C as axioms in their own derivation after taking at
least one step with the rewrite rules in R using the Step@ rule.

A very useful feature of the inference system is that sequents rL, Cs $T

u | ϕÑf
Ž

i vi | ψi, whose formulas C have been postulated (as the conjectures

we want to prove) but not yet justified, are transformed by Step@ into sequents
of the form rLY C, Hs $T u1 | ϕ1 Ñf

Ž

i v
1
i | ψ

1
i, where now the formulas in C

can be assumed valid, and can be used in derivations with the Axiom rule.

Example 3 (Conjectures for QLOCK’s Mutual Exclusion). By Theorem 4, the
mutual exclusion of QLOCK can be verified as an inductive invariant by: (i)
using pattern subsumption to check the trivial inclusion JS0K Ď JP K, and (ii)
proving Rstop |ù

@
r s
P Ñf rPσs, where σ is a sort-preserving bijective renaming

of variables such that varspP qXvarspPσq “ H. For QLOCK, we had the follow-
ing initial state S0 “ ă n | H | H | nil ą | duplpnq ­“ tt and invariant defined by
pattern predicate P “ P1 _P2 where P1 “

`

ă n | w | H | q ą|duplpn wq ‰ tt
˘

and P2 “
`

ă n | w | i | i ; q ą | duplpn w iq ‰ tt
˘

. Since P is a disjunction, in
our inference system, the formula P Ñf rPσs naturally splits into two corre-
sponding reachability formulas P1 Ñ

f rPσs and P2 Ñ
f rPσs shown below:

ă n | w | i | i ; q ą|ϕÑf ră n 1 | w 1 | i 1 | i 1 ; q 1ą|ϕ1_ă n 1 | w 1 | H | q 1ą|ψ1s

ă n | w | H | q ą|ψ Ñf ră n 1 | w 1 | i 1 | i 1 ; q 1ą|ϕ1_ă n 1 | w 1 | H | q 1ą|ψ1s

where ϕ “ duplpn w iq ‰ tt , ψ “ duplpn wq ‰ tt , and ϕ1, ψ1 are their obvious
renamings. More generally, if our invariant is of the form P “

Ž

iPI Pi, then we
have initial formulas to be proved C “ tPj Ñf

Ž

iPI rPiσsujPI .



32 S. Skeirik, A, Stefanescu and J. Meseguer

Recall from Definition 13 that a T -inconsistent formula is invalid. Therefore,
proof goals or subgoals involving any such formulas are nonsense. Before ex-
plaining in detail our inference system we explain the requirement of restricting
all inferences to T -consistent goals. This is an invariant of the inference system
that is assumed and that must be ensured before applying any inference rule.
To maintain this invariant, our implementation —indeed, any implementation—
must perform a T -consistency check before applying any inference step.

The Importance of Checking T -Consistency. Since any T -inconsistent for-
mula is invalid and would therefore invalidate any further proof attempts based
on it, all formulas in C and any further sequents derived by the inference system
are always checked for T -consistency using parameterized subsumption, and if
the check can show the formula T -inconsistent, the user is immediately notified,
and the proof search is abandoned.

However, since, as noted in Section 3, not all set containments between pat-
tern predicates can be checked by parameterized subsumption, as soon as a
reachability formula u | ϕÑf

Ž

jPJ vj | φj is encountered such that: (i) the set
intersection Ju | ϕK X JT K cannot be shown to be empty, and (ii) any of the set
containments Jpu | ϕ ^ χjqαK ĎvarspαpY qq Jp

Ž

jPJ vj | φjqαK in the definition of
T -consistency cannot be established by parameterized subsumption, the formula
is declared T -dubious. In our implementation these T -dubious formulas are im-
mediately indicated to the user, who is then given two options: (a) to continue
the proof effort leaving the check of either: (i) the emptiness of Ju | ϕK X JT K,
or (ii) the set inclusions Jpu | ϕ^ χjqαK ĎvarspαpY qq Jp

Ž

jPJ vj | φjqαK as a proof
obligation to be subsequently discharged, or (b) abandon the proof search in
case the T -dubious formula is deemed to be T -inconsistent. In summary:

All formulas ever encountered or produced by the inference system should
be automatically checked for T -consistency, so that if they are shown or
deemed to be T -inconsistent, the proof search is abandoned; otherwise, the
proof obligations essential for showing the T -consistency of a T -dubious
formula are displayed and must be later discharged by the user.

The reasons for performing the T -consistency check on reachability goals
can be explained as follows. Any reachability goal is either T -consistent or T -
inconsistent. But if it is T -inconsistent, it is then invalid. Therefore, detecting
T -inconsistent goals is very useful for three complementary reasons:

1. Since all goals in any correct proof tree must be valid and therefore T -
consistent, checking that all generated goals are T -consistent is a very useful
invariant to be maintained along the proof search. For this reason, as ex-
plained later, T -consistency is made into a basic requirement of any proof
goal and any correct proof tree. Indeed, the T -consistency requirement on
proof trees is explicitly used in the proof of Theorem 6.

2. As shown by an example in Section 5.2, the Axiom inference rule is so power-
ful that, if unwisely used, it can generate invalid, and indeed T -inconsistent,



A Constructor-Based Reachability Logic for Rewrite Theories 33

subgoals from valid ones.12 This is a further reason to always check that all
goals are T -consistent.

3. As soon as a T -inconsistent goal is detected, no proof of the original set of
goals is possible; therefore, the user should be immediately notified and the
proof search should be stopped.

Let us first explain the Subsumption inference rule. Its purpose is to dis-
charge goals that are trivial formulas in the sense of Definition 13, and therefore
valid. It is a conditional rule of the form:

Subsumption

rA, Cs $T u | ϕÑf
ł

i

vi | ψi

subject to the condition of showing that u | ϕ Ñf
Ž

jPJ vj | ψj is a trivial

formula by either: (i) showing that ϕ is unsatisfiable13 in TΣ{EYB (the vac-
uousness subcase), or (ii) checking the parameterized subsumption condition
u | ϕ ĎY

Ž

jPJ vj | ψj , where Y are the formula’s parameters. As explained in
Section 4, parameterized subsumption is a sufficient condition for proving the
parametric inclusion Ju | ϕK ĎY J

Ž

jPJ vj | ψjK, and therefore the formula’s
triviality. But checking either unsatisfiability of ϕ in TΣ{EYB or a parameterized
subsumption may sometimes require the use of formula simplification techniques
and user-provided lemmas as explained in Footnote 6. In particular, the appli-
cation of this extremely useful inference rule may sometimes fail for a formula
where the containment Ju | ϕK ĎY J

Ž

jPJ vj | ψjK actually holds. To remedy
this limitation, the Split, Case Analysis and Substitution auxiliary rules
explained in Section 5.1 can be invoked to help achieve a successful application
of Subsumption.

Before explaining the Step@ proof rule we introduce some notational conven-
tions associated to a reachability formula u | ϕ Ñf

Ž

i vi | ψi with parameters
Y .
12 This of course can happen for many perfectly correct inference rules where some

formulas have to be guessed. For example, to prove an implication A ñ C we may
apply a chain inference rule by guessing a middle formula B to try to reduce the
proof of Añ C to that of the subgoals Añ B and B ñ C. But a bad choice of B
may make either A ñ B or B ñ C invalid, while the original goal A ñ C may be
perfectly valid. As we shall see, when using the Axiom rule, the “middle formulas”
guessed are instances of patterns in the midcondition of the chosen axiom formula.

13 If R’s equational theory pΣ,E Y Bq is FVP and has an OS-compact constructor
subtheory pΩ,EΩ Y BΩq, variant satisfiability makes satisfiability of quantifier-free
formulas in TΣ{EYB decidable [30]. In general, however, we can only assume ~E con-
vergent modulo B, so that satisfiability of a QF formula ϕ in TΣ{EYB becomes in
general undecidable. Likewise, the, in general undecidable, checking of satisfiabili-
ty/validity in TΣ{EYB also arises for constraints involved in the application of the
Axiom rule: such checks must be either replaced by safe but incomplete checks,
or, under user control, become explicit proof obligations to be discharged by an
inductive theorem prover backend.



34 S. Skeirik, A, Stefanescu and J. Meseguer

Let R “ tlj Ñ rj if φjujPJ . We define:

unifypu | ϕ1, Rq ” tpj, αq | α P UnifEΩYBΩ pu, ljqu

a complete set of EΩ YBΩ-unifiers14 of a pattern u | ϕ1 with the lefthand-sides
of the rules in R.

Consider now the rule:

Step@

ľ

pj,αqPunifypu|ϕ1, Rq

rAY C, Hs $T prj | ϕ
1 ^ φjqαÑ

f
ł

i

pvi | ψiqα

rA, Cs $T u | ϕÑf
ł

i

vi | ψi

where the above conjunction symbol abbreviates a set of goals15 that need to be
proved as hypotheses, and where ϕ1 ” ϕ ^

Ź

pi,βqPmatchpu, tviu,Y q
 pψiβq. This

inference rule allows us to take one step with the rules in R. The following
remarks can help clarify this inference rule’s meaning:

1. Note that, from the definitions of matchpu, tviu, Y q and of parameterized
subsumption in Section 3, it follows easily that we have a parametric inclu-
sion:

Ju | ϕ^
ł

pi,βqPmatchpu, tviu,Y q

ψiβK ĎY J
ł

i

vi | ψiK

and that, by definition of ϕ1, we have a union decomposition:

Ju | ϕK “ Ju | ϕ^
ł

pi,βqPmatchpu, tviu,Y q

ψiβKY Ju | ϕ1K.

But since states in the left subset have already reached J
Ž

i vi | ψiK, it is
enough for us to prove the sequent rA, Cs $T u | ϕ1 Ñf

Ž

i vi | ψi.
2. Furthermore, since u | ϕ Ñf

Ž

i vi | ψi has been checked T -consistent, a
fortiori u | ϕ1 Ñf

Ž

i vi | ψi is T -consistent, and therefore it holds iff it does
for all T -terminating sequences of length 1 or more starting in a state in
ru0s P Ju | ϕ1K. That is, ru0s has an R-successor ru1s in such a sequence.

14 Without loss of generality, all EΩ YBΩ-unifiers will be assumed to: (i) have as their
domain exactly the variables of the terms that they unify, and (ii) introduce fresh
variables, i.e., all variables in ranpαq will be new variables, different from all other
variables in the formulas that originated the need for unification. We call this the
freshness assumption on unifiers. Furthermore, we also assume that the rules R have
been renamed with fresh variables, so that, after renaming, the rules R do not share
any variables with the sequent rA, Cs $T u | ϕÑf

Ž

i vi | ψi appearing in the
Step@ rule.

15 Recall that all goals, to be properly so called, must be checked for T -consistency.
Therefore, both the hypothesis goals and the conclusion are assumed T -consistent.
The inference rule’s application is automatically blocked, so that the proof process
cannot be continued, if it generates a T -inconsistent goal.



A Constructor-Based Reachability Logic for Rewrite Theories 35

3. But using constrained narrowing (in the sense of [46]) of u | ϕ1 with the
(possibly conditional) rules R modulo EΩYBΩ , we can symbolically compute
the new set of preconditions tprj | ϕ

1 ^ φjqα | pj, αq P unifypu | ϕ1, Rqu
obtained by one-step transitions from states in u | ϕ1 with the rules R.
Therefore, instead of proving the sequent rA, Cs $T u | ϕ1 Ñf

Ž

i vi | ψi,
it is enough for us to prove the conjunction of sequents in the upper part of
the Step@ rule.

Note the crucial fact that, for the new goals generated by Step@, the formulas
in C are added to A, so that from now on they can be used by Axiom.

Axiom
ľ

j

rA, Cs $T v1jα | ϕ^ ψ
1
jαÑ

f
ł

i

vi | ψi

rA, Cs $T u | ϕÑf
ł

i

vi | ψi

where pu1 | ϕ1 Ñf
Ž

j v
1
j | ψ

1
jq P A has parameters Y 1, and the substitution

α has dompαq “ varspu1 | ϕ1q “ U 1 and ranpαq Ď varspu | ϕq “ U and is
such that u “EΩYBΩ u1α and TΣ{EYB |ù ϕ ñ ϕ1α. That is, the matching
substitution α gives us a subsumption u | ϕ Ď u1 | ϕ1, and therefore an inclusion
Ju | ϕK Ď Jpu1 | ϕ1qαK. We assume that u | ϕ Ñf

Ž

i vi | ψi and u1 | ϕ1 Ñf

Ž

j v
1
j | ψ

1
j do not share variables, which can always be guaranteed by renaming.

This inference rule is subject to the additional parameter preservation conditions
that, for Z “ varsp

Ž

i vi | ψiq and Y “ U X Z, (i) Y “ varspαpY 1qq, and
(ii) for each j, Y “ varsppv1j | ψ

1
jqαqX varsp

Ž

i vi | ψiq. This is required for
correct implicit quantification. Axiom allows us to use a trusted formula in A
to summarize multiple transition steps. Since ϕ is stronger than ϕ1α, for each
j we add ϕ to pv1j | ψ

1
jqα (the result of using axiom u1 | ϕ1 Ñf

Ž

j v
1
j | ψ

1
j).

To find the matching substitution α more easily, in automatic applications of
Axiom we require that varspϕ1q Ď varspu1q, so that all the variables in varspϕ1q
are matched. However, this syntactic requirement is not always met in practice
(see Section 5.2 for an example). The fully general application of Axiom can be
performed by a user command that provides the required matching substitution
α instantiating u1 | ϕ1.

Proof Trees, Closed Goals, and Provability. Given an initial set of T -
consistent sequents rL, Cs $T C, with L valid reachability formulas in the given
theory R, a T -consistent sequent rA, C1s $T u | ϕÑf

Ž

i vi | ψi is called a
subgoal of this initial set of sequents iff either: (i) it is one of the sequents in
the initial set, or (ii) it is one of the hypothesis sequents obtained by repeated
application of the above Step@ and Axiom rules. Therefore, rA, C1s must be
either rA, C1s “ rL, Cs, or rA, C1s “ rL Y C,Hs. We call any such subgoal closed
if a proof tree can be built with such a subgoal as its root such that each of its
leaves can be closed by a Subsumption inference step. Finally, we say that R
proves rL, Cs $T C if all the goals in the initial set of goals rL, Cs $T C have
been closed. Recall that this is an all-or-nothing requirement: all the original



36 S. Skeirik, A, Stefanescu and J. Meseguer

goals C must be closed for them to be (collectively) proved. Note, finally, that
a T -dubious goal can be used for building up a proof tree only if the additional
proof obligations required to show that it is T -consistent have themselves been
closed, i.e., if it has been actually shown to be a T -consistent goal. In summary,
therefore, all subgoals of any closed goal and the closed goal itself are always,
by definition, T -consistent.

The soundness of the Subsumption, Step@, and Axiom inference rules is
now the theorem:

Theorem 6 (Soundness). Let R be a rewrite theory, and C a finite set of T -
consistent reachability formulas. If R proves rL, Cs $T C and R |ù@T L, then
R |ù@T C.

5.1 The Split, Case Analysis and Substitution Auxiliary Rules

Auxiliary Rules as Deduction Modulo. All auxiliary rules presented in this
section are rules of the form:

G
G1

where G and G1 are semantically equivalent sets of goals, in the sense that
R |ù@T G ô R |ù@T G1. Since all auxiliary rules transform some goals into seman-
tically equivalent ones, they do not affect the soundness of the inference system.
Their specific role is to facilitate the application of the three inference rules of
reachability logic, particularly of the Subsumption and Axiom rules. They can
be best understood as endowing reachability logic with deduction modulo [52] ca-
pabilities. That is, we can view the semantic equivalence R |ù@T G ô R |ù@T G1
as an equivalence relation G ” G1, so that we can apply the three reachability
logic rules modulo such goal equivalences. The classical analogue in first-order
theorem proving is the application of inference rules, for example in a sequent
calculus, modulo Boolean equivalences (see, e.g., [52,53,54]). The key point of
deduction modulo is that the original inference rules are not changed, but de-
duction is rendered much more effective by allowing them to be applied modulo
the given semantic equivalences.

A key reason why the auxiliary rules presented below are particularly useful is
that the symbolic methods used in the application of the Subsumption, Step@,
and Axiom rules provide only sufficient conditions for verifying certain semantic
requirements. For example, in the application of the Subsumption rule, the
parameterized subsumption check u | ϕ ĎY

Ž

jPJ vj | ψj is a sufficient condition
for proving the parametric semantic inclusion Ju | ϕK ĎY J

Ž

jPJ vj | ψjK. The
point is that such a check may fail for a goal G1 as given, but may succeed for a
semantically equivalent goal (or set of goals) G thanks to an auxiliary rule.

The following Split rule is an auxiliary proof rule that uses a Σ-formula
equivalence ϕ ô ψ _ φ to split a goal into two. Split is a validity-preserving
rule transforming a set G of reachability logic goals to be proved (understood as
a conjunction) into a semantically equivalent set of goals G1, so that R |ù@T G ô
R |ù@T G1. This means that Split does not affect soundness.



A Constructor-Based Reachability Logic for Rewrite Theories 37

Split
rA, Cs $T u | ψ Ñf A rA, Cs $T u | φÑf A

rA, Cs $T u | ϕÑf A

subject to the conditions: (i) TΣ{EYB |ù ϕô ψ _ φ, and (ii) (parameter preser-
vation) varspu | ϕq X varspAq “ varspu | ψq X varspAq “ varspu | φq X varspAq.

Lemma 6. In the above Split rule, R |ù@T G ô R |ù@T G1, where G is the
premise and G1 the conclusion.

A very common use of the Split rule in our examples is to use an always valid
equivalence ϕô ppϕ^φq_pϕ^ φqq to split the precondition u | ϕ depending on
whether an additional condition φ holds or not. This still leaves open the question
of when it would be advantageous to use the Split rule and with what choice
of φ. One attractive possibility is to use Split to increase success in application
attempts for the Axiom rule. Suppose that we have tried to apply Axiom with a
substitution α such that u “EΩYBΩ u1α, but the condition TΣ{EYB |ù ϕñ pϕ1αq
does not hold. Suppose, however, that ϕ ^ pϕ1αq is satisfiable in TΣ{EYB , and
that varspu | ϕqX varsp

Ž

i vi | ψiq “ varspu | ϕ^ pϕ1αqqX varsp
Ž

i vi | ψiq.
In such a case, we can first apply Split to split u | ϕ Ñf

Ž

i vi | ψi into
u | ϕ^ pϕ1αq Ñf

Ž

i vi | ψi and u | ϕ^ pϕ1αq Ñf
Ž

i vi | ψi, and then
apply Axiom (checking parameter preservation) to close the first of these two
reachability goals.

Another very common use of the Split rule is to use a semantic QF for-
mula equivalence TΣ{EYB |ù ϕ ô ψ to replace a goal u | ϕ Ñf

Ž

i vi | φi
by the equivalent goal u | ψ Ñf

Ž

i vi | φi. This corresponds to the spe-
cial case of splitting on the equivalence TΣ{EYB |ù ϕ ô pψ _ Kq, so that
the second goal becomes vacuous and is automatically discharged. In this spe-
cial case the parameter preservation condition can be relaxed to just requiring
varspu | ϕq X varspAq “ varspu | ψq X varspAq. In general we may not have
varspu | ϕq X varspAq “ varspu | Kq X varspAq, but this is immaterial: let
tx1, . . . xnu “ varspu | ϕq X varspAqzvarspu | Kq X varspAq; if we care to do so,
we can replace K by the semantically equivalent formula

Ź

1ďiďn xi ­“ xi.

A second, also validity-preserving, auxiliary rule is a Case Analysis rule.
It allows us to reason by cases by decomposing a variable x :s of sort s into
a complete covering of it by constructor patterns. Call tu1, . . . , uku Ď TΩpXqs
a pattern set for sort s iff TΩ,s “

Ť

1ďiďktuiρ | ρ P rXÑTΩsu. We assume
throughout that i ­“ i1 ñ varspuiq X varspui1q “ H, and that all variables in the
pattern set are fresh variables not appearing in any current goal.

Case Analysis
ľ

1ďiďk

rA, Cs $T pu | ϕqtx:s ÞÑ uiu Ñ
f Atx:s ÞÑ uiu

rA, Cs $T u | ϕÑf A

where x:s P varspuq and tu1, . . . , uku is a pattern set for s.



38 S. Skeirik, A, Stefanescu and J. Meseguer

Lemma 7. In the above Case Analysis rule, R |ù@T G ô R |ù@T G1, where G
is the premise and G1 the conclusion.

A third auxiliary rule is the Substitution rule, which makes it possible to
solve a conjunction of equalities

Ź

i wi “ w1i in a reachability formula’s precon-
dition u |

Ź

i wi “ w1i^ϕ and apply the substitutions solving the conjunction to
the formula’s midcondition, provided a finitary unification algorithm can be used
to solve them. This will be the case if a subtheory pΣ1, E1 Y B1q Ď pΣ,E Y Bq
can be found having a finitary E1 Y B1-unification algorithm and such that
TΣ{EYB |Σ1

– TΣ{EYB and
Ź

i wi “ w1i is a conjunction of Σ1-equations. Sub-
stitution is the conditional inference rule:

Substitution
ľ

αPUnifE1YB1
p
Ź

i wi“w
1
iq

rA, Cs $T uα | ϕα^ pαÑf p
ł

jPJ

vj | φjqα

rA, Cs $T u |
ľ

i

wi “ w1i ^ ϕÑ
f
ł

jPJ

vj | φj

subject to the above-mentioned conditions on pΣ1, E1 Y B1q and
Ź

i wi “ w1i,
and where if dompαq “ tx1, . . . , xku then pα “ x1 “ αpx1q^, . . . ^ xk “ αpxkq,
with the same freshness assumptions as in Footnote 14 for the unifiers α P

UnifE1YB1
p
Ź

i wi “ w1iq.

Lemma 8. In the above Substitution rule, R |ù@T G ô R |ù@T G1, where G
is the premise and G1 the conclusion.

The proof of Lemma 8, given in Appendix A, uses the following lemma, which
is of general interest and is also proved in Appendix A, as an auxiliary lemma:

Lemma 9. (Instance Lemma). Suppose R |ù@T u | ψ Ñf
Ž

jPJ vj | φj with
parameters Y , and let β be a substitution whose domain V is contained in
varspu | ψq and where the variables in ranpβq are all fresh. Then R |ù@T pu |
ψqβ Ñf p

Ž

jPJ vj | φjqβ

Goal Subsumption Simplification. The above Instance Lemma justifies the
following, validity-preserving, goal subsumption simplification: whenever in an
unclosed proof tree two subgoals of the form:

rA, Cs $T u | ϕÑf
ł

jPJ

vj | φj rA, Cs $T uβ | ψ Ñf p
ł

jPJ

vj | φjqβ

appear in two different leaves of the partial proof tree, with, say, Y the pa-
rameters of the more general subgoal, β satisfying the conditions in the In-
stance Lemma 9, varspuβ | ψq X varspp

Ž

jPJ vj | φjqβq “ varsppu | ϕqβq X
varspp

Ž

jPJ vj | φjqβq “ varspβpY qq, and TΣ{EYB |ù ψ ñ pϕβq. Then, in
order to close the entire proof tree, only the more general goal rA, Cs $T



A Constructor-Based Reachability Logic for Rewrite Theories 39

u | ϕÑf
Ž

jPJ vj | φj as well as any other leaf nodes, but excluding the instance

leaf subgoal rA, Cs $T uβ | ψ Ñf p
Ž

jPJ vj | φjqβ, need to be closed.
The correctness of this goal subsumption simplification then follows from the

Instance Lemma plus the fact that the above requirements ensure a parame-
terized inclusion Juβ | ψK ĎvarspβpY qq Jpu | ϕqβK, and therefore the implication

pR |ù@T pu | ϕqβ Ñf
Ž

jPJpvj | φjqβq ñ pR |ù@T uβ | ψ Ñf
Ž

jPJpvj | φjqβq.

5.2 A Simple Example

The following very simple example of a counter system illustrates the use of goal
subsumption and of the Split, Case Analysis and Substitution rules. It also
illustrates some possible pitfalls when applying the Axiom rule.

Recall from the Introduction the counter system whose states are of the form
xny, with n a natural number. We can specify this counter system as a rewrite
theory R with three sorts, Nat , Bool , and Counter , a constructor signature Ω
with constants 0, 1 and binary operator ` of sort Nat , constants J,K of sort
Bool , and a cell constructor x y : Nat Ñ Counter . The signature Σ extends Ω
with defined functions ą,ě: Nat Nat Ñ Bool . The axioms B “ BΩ are the
associativity-commutativity of addition ` and the identity axiom n` 0 “ n.
The equations E define the predicates ą and ě as follows: n`m` 1 ą n “ J,
n ą n `m “K, n `m ě n “ J, n ě n `m ` 1 “K. This equational theory
is FVP. Furthermore, since its constructor subtheory pΩ,BΩq is decidable by
variant satisfiability, satisfiability of QF Σ-formulas in TΣ{EYBΩ is also decidable
[30]. The rewrite rules R defining the semantics of this simple counter system
are: xn ` 1y Ñ xny and xn ` 1y Ñ xn ` 1 ` 1y. That is, a non-zero counter can
be incremented or decremented by one unit. Its set of terminating states, of sort
Counter , can be characterized by the pattern formula T “ x0y | J.

Note that this system is non-terminating. However, it satisfies the partial
correctness reachability formula xny | J Ñf x0y | J, which is actually in the
Hoare logic fragment and can be proved as follows. We start with the sequent

rH, txny | J Ñf x0y | Jus $T xny | J Ñf x0y | J

Note that x0y cannot match xny, so we are unable to strengthen the constraint
on our precondition by overapproximated difference performed as part of the
Step@ rule. Since precondition term xny is the most general possible, the most
general unifiers with our two rewrite rules is just the mapping n ÞÑ n` 1. Using
these unifiers, by the Step@ rule we get the sequents:

rtxny | J Ñf x0y | Ju, Hs $T xn1y | J Ñf x0y | J

rtxny | J Ñf x0y | Ju, Hs $T xn2 ` 1` 1y | J Ñf x0y | J

But, by goal subsumption, only the first, more general goal needs to be proved.
Applying Axiom to the more general subgoal we get the subgoal

rtxny | J Ñf x0y | Ju, Hs $T x0y | J Ñf x0y | J



40 S. Skeirik, A, Stefanescu and J. Meseguer

which can be immediately closed by the Subsumption rule, thus proving the
partial correctness property R |ù@T xny | J Ñf x0y | J.

Another general property of this counter system is that from a positive
counter xn ` 1y any other counter holding a smaller number will be eventu-
ally reached along any terminating sequence. This can be specified by means of
the reachability formula xn ` 1y | n ` 1 ą m Ñf xmy | J, parametric on m,
which can be proved as follows. We start with the sequent

rH, txn` 1y | n` 1 ą mÑf xmy | Jus $T xn` 1y | n` 1 ą mÑf xmy | J

Applying the Step@ rule we get the sequents:

rtxn` 1y | n` 1 ą mÑf xmy | Ju, Hs $T xn1y | n1 ` 1 ą mÑf xmy | J

rtxn`1y | n`1 ą mÑf xmy | Ju, Hs $T xn
2`1`1y | n2`1 ą mÑf xmy | J

Note that for β “ tn1 ÞÑ n2` 1` 1u we get TΣ{EYB |ù n2` 1 ą mñ ppn1` 1 ą
mqβq, which can be automatically proved in Maude using variant satisfiability.
Therefore, by goal subsumption, only the first goal needs to be closed. But since
t0, k ` 1u is a pattern set for the sort Nat , we can use the Case Analysis
auxiliary rule to decompose the first goal into the subgoals:

rtxn` 1y | n` 1 ą mÑf xmy | Ju, Hs $T x0y | 0` 1 ą mÑf xmy | J

rtxn`1y | n`1 ą mÑf xmy | Ju, Hs $T xk`1y | k`1`1 ą mÑf xmy | J

Applying Split to the first subgoal with equivalence TΣ{EYB |ù 0 ` 1 ą m ô

m “ 0, which can be automatically proved by variant satisfiability, we obtain:

rtxn` 1y | n` 1 ą mÑf xmy | Ju, Hs $T x0y | m “ 0 Ñf xmy | J

Then Substitution lets us solve the constraint m “ 0 with tm ÞÑ 0u, giving:

rtxn` 1y | n` 1 ą mÑf xmy | Ju, Hs $T x0y | m “ 0 Ñf x0y | J

which is trivially subsumed by Subsumption. This closes the first subgoal.
Using the equivalence TΣ{EYB |ù k` 1` 1 ą mô pk` 1 ą m_m “ k` 1q,

which can also be automatically proved by variant satisfiability, we can use the
Split auxiliary rule to split the second subgoal into the two subgoals:

rtxn` 1y | n` 1 ą mÑf xmy | Ju, Hs $T xk ` 1y | m “ k ` 1 Ñf xmy | J

rtxn` 1y | n` 1 ą mÑf xmy | Ju, Hs $T xk ` 1y | k ` 1 ą mÑf xmy | J

Then, the first of these subgoals can be closed by applying Substitution fol-
lowed by Subsumption; and the second subgoal can be closed by applying Ax-
iom followed by Subsumption. This finishes the proof of the desired property
R |ù@T xn` 1y | n` 1 ą mÑf xmy | J.



A Constructor-Based Reachability Logic for Rewrite Theories 41

Getting Nowhere with the Axiom Rule. The Axiom rule is very powerful.
But its power must be used wisely. Unwise applications of Axiom can produce
invalid subgoals which can never be closed, so we get nowhere that way. The
reason is easy to explain. Axiom is a very powerful “seven league boots” inference
rule that, under appropriate parameter preservation conditions, can apply an
axiom AÑf B such that JCK Ď JAαK to a goal C Ñf D with C ” u | ϕ to “fast
forward” and reduce the proof of C Ñf D to that of16 pBαq^ϕÑf D. But, of
course, the Axiom rule implicitly assumes in its hypothesis that the midcondition
pBαq ^ ϕ will happen before (or simultaneously with) the midcondition D. But
this need not be the case in general and can, if Axiom is applied unwisely,
produce invalid subgoals that can never be closed.

We can illustrate this undesirable phenomenon by an unwise application of
Axiom. Suppose that we get into our heads the idea that, to prove the property
R |ù@T xn ` 1y | n ` 1 ą m Ñf xmy | J, we will be better off using the already
proved partial correctness property R |ù@T xny | J Ñf x0y | J as an axiom. That
is, we start with the sequent:

“ 

xny | J Ñf
x0y | J

(

,
 

xn` 1y | n` 1 ą mÑ
f
xmy | J

(‰

$T

xn` 1y | n` 1 ą mÑ
f
xmy | J

Then, one application of Axiom yields the sequent:

“ 

xny | J Ñf
x0y | J

(

,
 

xn` 1y | n` 1 ą mÑ
f
xmy | J

(‰

$T

x0y | n` 1 ą mÑ
f
xmy | J

ButR��|ù
@

T x0y | n` 1 ą mÑf xmy | J, since this formula is parameterized by
m, and, therefore, if it were valid, we should in particular have for ρ “ tm ÞÑ 1u
that R |ù@T x0y | n` 1 ą 1 Ñf x1y | J. But of course it is impossible to rewrite
the counter state x0y to the counter state x1y. That is, this application of Axiom
gets us nowhere. Note, furthermore, that in this example JT K “ tx0yu “ Jx0y |
n ` 1 ą 1K. But of course x0y R Jx1y | JK “ tx1yu. Therefore, the derived goal
x0y | n` 1 ą mÑf xmy | J is T -inconsistent.

Two simple guidelines for the application of Axiom can be drawn from this
last frustrated proof attempt and the prior successful applications of Axiom:

1. Given a goal AÑf B P C, with B ” v | ψ, call a goal C Ñf D a descendant
of A Ñf B if C Ñf D has been obtained from A Ñf B by successive
applications of the Step@ rule. Given C ” u | φ, the fact that Axiom can
be applied to the descendant C Ñf D using the “ancestor” axiom AÑf B
because JCK Ď JAαK will often be linked to the fact that in the resulting goal
pBαq^ϕÑf D, midcondition D is just a substitution instance of B by the
same chain of substitutions that were used to obtain C. Thus, D is likely

16 We are abusing notation a little for the sake of conciseness. pBαq is really a dis-
junction of pattern predicates, and what the notation pBαq ^ ϕ abbreviates is the
conjunction of ϕ with each formula in each of those pattern predicates.



42 S. Skeirik, A, Stefanescu and J. Meseguer

to subsume the precondition pBαq ^ ϕ, resulting in a successful application
of Axiom followed by Subsumption. This reasoning can be generalized to
ancestors of the form AÑf B with B ”

Ž

j vj | ψj .

2. It is always a bad idea to apply a formula AÑf B as an axiom to another
formula C Ñf D when B is a postcondition but D is not so: this is what got
us into trouble in the above frustrated proof attempt. Axioms with postcon-
ditions should only be applied to formulas having also a postcondition.

5.3 Revisiting QLOCK

In the same vein as for the counter example, here we revisit QLOCK, bringing
our entire example together to obtain a bird’s eye view of the mathematical
proof. We will not explicitly list all intermediate states, since the larger number
of rules as well as list/multiset unification generate many tens of descendants.
Instead, we will describe such states more abstractly by explaining which rules
can narrow which goals, which vacuous goals are closed by Subsumption, and
how the axioms are applied. Recall from the note in Section 5 that we needed
to prove in the rewrite theory R of QLOCK that the following sequents hold:
(a) rH, Cs $T P1 Ñ

f
Ž

jPI P
1
j and (b) rH, Cs $T P2 Ñ

f
Ž

jPI P
1
j , where

C “ tPi Ñ
f

Ž

jPI P
1
juiPI and I “ t1, 2u. As a convenience to the reader, we

expand out the two formulas below:

ă n | w | H | q ą |ψ Ñf ră n 1 | w 1 | i 1 | i 1; q 1 ą |ϕ1 _ă n 1 | w 1 | H | q 1 ą |ψ1s

ă n | w | i | i ; q ą|ϕÑf ră n 1 | w 1 | i 1 | i 1; q 1 ą|ϕ1_ă n 1 | w 1 | H | q 1 ą|ψ1s

where ϕ “ duplpn w iq ‰ tt , ψ “ duplpn wq ‰ tt , and ϕ1, ψ1 are their obvious re-
namings. By abuse of notation, let P1 and P2 refer to both the goal preconditions
as well as the entire formula/sequents to be proved.

To begin the proof, we first apply the Step@ rule. The goal P1 has 12 suc-
cessors while P2 has 14. The discrepancy lies in the fact that, since goal P2 has
a non-empty set of processes in its critical section, the rule c2n is enabled. For
all other rules, the successors generated for P1 and P2 are entirely analogous.
Note that most rules have multiple successors; this occurs due to the flexibility of
ACU and AU unification, so that any rule that contains a multiset variable un-
derneath a multiset union operator/list variable underneath a list concatenation
operators generates two variants: one for the non-empty and empty multiset/list
respectively.

After generating the successors of goals P1 and P2, one of two things will
happen. A successor of goal P2 generated by the w2c rule will immediately be
closed by Subsumption because it is vacuous—adding an extra critical process
to the critical process set violates the dupl predicate constraint. For all other
successors, they are now an instance of one of our two original invariant patterns,
allowing us to apply the Axiom rule. Since the original goals have no parameters,
the structure of invariants of the form P Ñf rPσs and the Axiom rule force all
the successors to be immediately ready to be subsumed by the Subsumption



A Constructor-Based Reachability Logic for Rewrite Theories 43

rule. Recall that each axiom will generate two successors—one corresponding to
the P1 case and another to the P2 case—doubling the amount of proof goals that
are ultimately closed by Subsumption.

To give a flavor for how the proof process proceeds, we consider the successors
of the P2 goal by the c2n rule. For convenience, we recall the c2n rule below:

c2n : ă n | w | c i | i ; q ą Ñ ă n i | w | c | q ą

The precondition of goal P2 is ă n | w | i | i ; q ą | duplpn w iq ‰ tt . By the
Step@ rule, unify the precondition term of P2 and left-hand side of c2n via most
general unifier α “ tc ÞÑ H, q ÞÑ q 1u. By rewriting the precondition of P2α by
c2n, obtain K “ ă n i | w | H | q 1 ą|duplpn w iq ‰ tt (in our implementation,
this unification proceeds slightly differently due to A/U unification; see Sec. 6.2).

At this point, our sequent will be of the form rC, Hs $T K Ñf
Ž

jPI P
1
j , and

we can apply the Axiom rule with P1 P C. To see this, note that the precondition
of P1, ă n | w | H | q ą|duplpn wq ‰ tt covers our goal by the substitution n ÞÑ
n i, q ÞÑ q1, where we have to prove the validity of the implication duplpn w iq ‰
tt ñ duplpn w iq ‰ tt , which is a tautology.

6 Prototype Implementation and Experiments

We have implemented the reachability logic proof system in Maude [34]. We
exploit the fact that rewriting logic is reflective, so that concepts such as terms,
rewrite rules, signatures, and theories are directly expressible as data in the logic.
This is supported by Maude’s META-LEVEL library [34]. Our prototype tool takes
as input (i) a reflected rewrite theory R “ pΣ,E Y B,R, φq and (ii) a set of
reachability formulas C “ tAi Ñf BiuiPI to be simultaneously proved.

The state of a reachability proof is represented as a set of proof sequents with
associative-commutative union, as defined in Section 5, plus some global state
information (for example, the theory R). Given goal set C, the initial proof state
will be

 

rH, Cs $T Ai Ñ
f Bi

(

iPI
, that is, one sequent for each goal in C. Given

the simplicity of the proof system, we need only perform a very simple proof
search strategy: until there are no pending goals, we first apply Axiom as much
as possible and then apply Step@ if possible. Before every Step@ and Axiom
application, we greedily try to the apply the Substitution rule to simplify
goals and the Subsumption rule to discharge them. At the same time, we also
perform T-consistency checks so that errors can be reported to the user as early
as possible. Currently, aside from Substitution, the other derived rules must
be applied manually—in a future version of the tool we will investigate heuristics
to further guide auxiliary proof rule application. Note that the simple strategy
just outlined cannot distinguish between appropriate and inappropriate uses of
the Axiom rule; instead, for any sequent, we allow the user to control which
reachability formulas will be tried as axioms by selecting some subset A1 Ă A of
possible axioms.

We of course need to mechanize the three proof rules, all the auxiliary rules,
and the T -consistency checks. Internally, the action of each proof rule is speci-
fied as an equationally-defined function, while the policy is specified by a single



44 S. Skeirik, A, Stefanescu and J. Meseguer

non-deterministic rewrite rule, which arbitrarily selects an active goal to ad-
vance according to the strategy specified above. Proof rule application on a goal
is controlled by a simple strategy language. Currently, there are only limited
commands to interact with the strategy language—in particular, to select the
set of axioms that applies to a particular goal. In a future version, there will be
additional commands to modify the proof strategies for any particular goal.

Our implementation further requires a finitary BΩ-unification algorithm as
well as an inductive validity backend that tries to answer inductive validity ques-
tions of the form TΣ{EYB |ù ϕ for ϕ a QF Σ-formula. Maude can perform unifi-
cation modulo commutativity and associativity/commutativity with or without
identity and in many cases associativity without commutativity. Our tool has
infrastructure to support various user-selectable pluggable backends to try to
check inductive validity. The application of the backends is syntax-driven in the
sense that they are associated to some subtheory pΣ1, E1 Y B1q of pΣ,E Y Bq
and are applied whenever the formula to be verified falls into the subsignature
Σ1. Any requirements on subtheory pΣ1, E1 Y B1q for utilizing these backends
are proof obligations for the user. Currently, we have implemented two such
backends.

Decidable Case. (pΣ1, E1YB1q “ pΣ,EYBq). If the validity of QF Σ-formulas
in TΣ{EYB is decidable by variant satisfiability, we use a variant satisfiability-
based backend using techniques in [30,31]. This allows us to handle any suitable
rewrite theory R “ pΣ,EYB,Rq such that the equational theory pΣ,EYBq has
a convergent decomposition satisfying the finite variant property [43] and pro-
tects a constructor subtheory which we assume consists only of axioms BΩ of the
above-described form. Note that this means that both validity and satisfiability
of QF formulas in the initial pΣ,EYBq-algebra TΣ{EYB are decidable [26]. The
only exception is the case when BΩ includes associativity without commutativ-
ity axioms for some operators unless (as is the case for the QLOCK example)
such associative-only operators do not appear in constraints.

Undecidable Case. When pΣ,E Y Bq does not have the finite variant prop-
erty, but still protects a constructor subtheory consisting only of axioms BΩ
of the above-described form, pΣ,E Y Bq will still protect an FVP subspecifi-
cation pΣ1, E1 Y B1q with decidable inductive validity (in the worse case, just
pΩ,BΩq itself). In this case, we provide a second backend that extends the
variant-satisfiability one and therefore becomes a decision procedure for the
inductive validity of QF Σ1-formulas. Outside the Σ1-formula case, it applies
various heuristics based on clause simplification to try to answer inductive va-
lidity questions about QF Σ-formulas. Future versions of the tool will add other
decision procedures and more powerful automated inductive theorem proving
routines to further automate this kind of inductive reasoning.

In addition to the issue of proof representation, several other issues must
be addressed. First, to ensure correct applications of unification, we uniquely
rename all variables in rules in the theory R and in goals C. Second, recall that
we assume that the rewrite theory R has been Ω-abstracted as R̂. Therefore,



A Constructor-Based Reachability Logic for Rewrite Theories 45

we have automated the Ω-abstraction as well. Third, an important practical
consideration during any tool development is a user interface that is flexible
and usable enough to express real theories and problems that users may wish
to reason about. To that end, we have developed a FULL-MAUDE-based user in-
terface [55] in Maude that provides commands to input goals and invariants,
solve pattern predicate subsumption/intersection queries, and specify theories
plus the corresponding terminating state pattern predicates of interest. The full
command grammar is given in Appendix B.

In the following subsections we illustrate how to use the tool by way of
complete examples that are executable using our prototype Maude implemen-
tation. Recall that our implementation requires two main arguments: (i) a re-
flected rewrite theory R “ pΣ,E YB,Rq and (ii) a set of reachability formulas
C “ tAi Ñf BiuiPI to be simultaneously proved. Generally, the user of the tool
will spend some time thinking about the best way to specify a system design as
a rewrite theory R “ pΣ,E Y B,Rq in Maude, since a well-specified problem
can be both more readable and easier to verify. To that end, we show complete
examples written in a style that we believe is both easy to read and to verify.

6.1 Counter Proof Example

Though mathematically and syntactically simple, the counter example shown
in subsection 5.2 illustrates how each of the proof rules can be used. Below we
present a Maude specification of a rewrite theory R specifying such a counter.
Later we will see how to verify reachability formulas over this theory.

The reader may recall that the Maude syntax is quite similar to the formal
notation used in the preliminaries in Section 2; this is no accident. Nevertheless,
before continuing, we gloss over a few keywords in the Maude syntax and describe
their associated concepts. In Maude, the primary definitional unit is a module,
which is surrounded by the keyword pair fmod/endfm or mod/endm. The former
specifies a functional module, which is an equational theory whose equations are
assumed (ground) convergent modulo the specified axioms B (specification of
axioms is explained below), while the latter specifies a system module, which is
a rewrite theory and therefore may contain both equations of the above form as
well as potentially non-deterministic, non-terminating rewrite rules. Generally,
functional modules specify data structures which are imported by potentially
several different system modules, each specifying a different system of interest.

In this case, the system of interest is a counter (COUNTER) that may nondeter-
ministically increase or decrease by one unit. The underlying functional module
PRES-NAT specifies the theory of Presburger natural numbers. In the above exam-
ple, the keyword protecting specifies that the system module COUNTER imports
the functional module PRES-NAT in a semantics-preserving way that is precisely
described in Definition 6.

In Maude, a module’s syntax is specified by sort, subsort, and operator dec-
larations using the keywords sort, subsort, and op, respectively, while its se-
mantics is specified by equation and rule declarations using keywords eq and rl



46 S. Skeirik, A, Stefanescu and J. Meseguer

(or ceq and crl in the conditional case), respectively.17 The keyword var is used
to declare variables that will be used in later rules and equations. Constructor
operators, the particular symbols that form the constructor subsignature Ω of
the module’s signature Σ, are specified using the ctor attribute, which appears
within optional square brackets ([]) following an operator declaration.

1 fmod PRES-NAT is

2 sort Bool .

3 op true : -> Bool [ctor] .

4 op false : -> Bool [ctor] .

5

6 sort NzNat Nat .

7 subsort NzNat < Nat .

8 op 0 : -> Nat [ctor] .

9 op 1 : -> NzNat [ctor] .

10 op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

11 op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

12

13 var J K : Nat . var P : NzNat .

14

15 op _<=_ : Nat Nat -> Bool .

16 op _<_ : Nat Nat -> Bool .

17

18 eq J <= J + K = true [variant] .

19 eq J + P <= J = false [variant] .

20 eq J < J + P = true [variant] .

21 eq J + K < J = false [variant] .

22 endfm

23

24 mod COUNTER is

25 protecting PRES-NAT .

26

27 var N : Nat .

28

29 sort Counter .

30 op {_} : Nat -> Counter [ctor] .

31

32 rl {N + 1} => {N + 1 + 1} .

33 rl {N + 1} => {N} .

34 endm

Fig. 2. Theory specification for Counter.

In the example above, we have four sort declarations (Bool, NzNat, Nat,
and Counter) and one subsort declaration (NzNat ă Nat). There are 9 opera-

17 Note that our concept of a sort/subsort is often called type/subtype in the program-
ming language literature.



A Constructor-Based Reachability Logic for Rewrite Theories 47

tor declarations: 7 constructor symbols and 2 defined symbols. The equations
in lines 18-21 ensure that the two defined symbols (< and <=), when applied to
ground arguments, always evaluate to the Bool constructors true and false.
The variant attribute that appears tagged on the right-hand side of these equa-
tions means that they also satisfy the finite variant property, so that unification
problems over equalities containing these operators are decidable. Furthermore,
validity and satisfiability of QF formulas in the initial algebra for this theory is
decidable by variant satisfiability [26,56].

Finally, the two rewrite rules on lines 32-33 define the state changes of the
counter. Recall that this system is non-terminating, since the counter increment
rule on line 32 can loop. The single Counter operator ({_}) is used to mark
those numbers which correspond to the current state of the counter. This is
used to control the application of these two rules; even though the sorts Nat and
Counter are in bijective correspondence, it is useful to separate the two, since we
certainly do not want all numbers to non-deterministically vary. Furthermore,
this extra operator ensures that our theory is topmost.

For anyone familiar with basic functional programming, the specification in
Figure 2 hopefully is not difficult to read. There are, however, two unusual fea-
tures that need to be mentioned. The first feature is Maude’s support for mixfix
syntax; any underbars appearing in an operator declaration (op) represent an
argument position. For example, in the operator declaration (op + ), the first
underbar corresponds to the first argument while the second underbar repre-
sents the second argument, so that typed operator (op + : Nat Nat -> Nat)
applied to the arguments 0 and 1 would be written as 0 + 1 and yield a result
of type Nat. The second feature is that binary function symbols in Maude may
be declared as associative and/or commutative and/or having a unit element
using the assoc, comm, and id: attributes, respectively. These declarations are
not just descriptive: any equation or rule in which, for example, an associative-
commutative operator appears, is actually applied modulo associativity and com-
mutativity. This combination of features allows Maude to very naturally specify
recursive functions and transition rewrite rules over lists, sets, multisets, etc., in
a highly expressive and remarkably succinct way.

Now that we have described the rewrite theory to be analyzed as a Maude
specification, we can perform reachability logic verification over it. To do so,
we first load the file that contains our theory specification, then load the file
that contains our prototype implementation definition, and then type out the
commands that make up the proof script. Since the loading commands are always
relative to the filesystem layout, and are commands given directly to the Maude
interpreter, not to our prototype tool, we do not display them below.

Partial Correctness Property of Counter. As a first example, consider the
proof script for proving the partial correctness property of the counter theory
shown in Figure 3 with the associated output shown inline, as if the commands
were typed directly into the terminal.



48 S. Skeirik, A, Stefanescu and J. Meseguer

All proof scripts for our implementation are divided into two parts: a header,
which initializes the proof state, followed by a body beginning with the command
start-proof (here on line 14) that contains the actual commands that drive
the prover engine to do something. Furthermore, there are three grammatical
requirements that every command in our grammar obeys: (1) it is written inside
parentheses; (2) it is terminated with a period (.) before the closing parenthesis;
(3) any object theory term is written wrapped by another pair of parentheses;
however, identifiers such as module, rule, and goal names need not be wrapped.
All lines that are not wrapped in parentheses are tool output.

1 (select COUNTER .)

2 Set module to COUNTER

3 (use tool varsat for validity on PRES-NAT .)

4 Loaded function varsat for validity

5 (def-term-set ({0}) | true .)

6 Added terminating state:

7 {0} | true

8 (declare-vars (N:Nat) .)

9 Declared variable(s):

10 { N:Nat }

11 (add-goal partial-correctness : ({N}) | true => ({0}) | true .)

12 Added goal(s):

13 [partial-correctness : {N:Nat} | true => {0} | true]

14 (start-proof .)

15 Started proof:

16 [1 | {N:Nat} | true => {0} | true]

17 (auto .)

18 Auto Results:

19 [13 | {&2:Nat} | true => {0} | true]

20 [14 | {1 + 1 + &2:Nat} | true => {0} | true]

21 (subsume 14 by 13 .)

22 Goal 14 subsumed by 13 via matching

23 (auto .)

24 Proof Completed.

Fig. 3. The proof script for the partial correctness property of Counter.

In the proof header, the first command is always select; this specifies the
object theory R that we will be reasoning about. The rest of the commands
in the header can usually be supplied in any order. The use tool command
on line 3 instructs the tool that the backend to be used when trying to solve
validity problems for formulas in the PRES-NAT theory is the variant satisfiability
backend (this works because PRES-NAT has a decidable satisfiability problem).

The def-term-set command specifies a set of patterns that define the ter-
minating states for the given theory. Here, the only terminating state is the
zero counter, since the decrement and increment rules assume that the counter



A Constructor-Based Reachability Logic for Rewrite Theories 49

is non-zero. Since we can directly express this pattern as the term {0} with-
out constraints, we express the terminating state via the pattern ({0}) | true,
with true the constraint that always holds.

The declare-vars command specifies the sort of each declared variable.
In this way, we need not later mention a variable’s sort when it is used. This
command is not strictly needed, but it makes complex goals easier to input.

The most important header command is add-goal, which adds a reachability
formula to our set C “ tAi Ñ

f BiuiPI of reachability formulas to be proved.
Recall that in the partial correctness example, the formula to be proved was
xny | J Ñf x0y | J. The tool’s notation has only minor syntactic differences; the
most important of which is all terms must be wrapped in parentheses.

Finally, we arrive at the proof body. Here, there are only two interesting com-
mands so far: auto and subsume. The main proof command is auto which applies
the default proof strategy to all goals. The subsume command must be invoked
manually and uses one goal to subsume another, according to the goal subsump-
tion simplification, which is justified by Lemma 9. Note that the structure of
this tool-based proof follows logically the original high-level proof. The first ap-
plication of auto applies the Step@ rule, since the Axiom rule is not enabled
yet, generating two successors. We then use the goal subsumption simplification
to close one of these goals. The second invocation of the auto command applies
the Axiom rule and closes the second goal using the Subsumption rule.

Eventual Decrease of Counter. As a second example, we prove that from
any starting state, on all terminating paths (of which there are infinitely many),
the counter will always pass through each natural number in the subsequence
of numbers smaller than itself on its way to zero. The proof script with inline
output is shown in Figure 4. This script is slightly more complicated than our
first example; this is not surprising, since the high-level proof also required more
steps to finish. Note that the proof header is identical to our previous example,
except for an extra variable declaration and a different goal to be proved. Recall
that any object theory terms that appear in any goal must be wrapped by
parentheses, including any terms in the constraint.

Here, we see that the proof body exactly follows the high-level outline shown
in Subsection 5.2. The auto and subsume commands on lines 17 and 23 apply the
Step@ rule followed by a goal subsumption simplification in a way completely
analogous to the previous proof. This is followed by the application of the Case
Analysis auxiliary rule, two applications of two different variants of the Split
rule, concluding with a second invocation of auto that applies the Substitu-
tion and Subsumption rules to close goals 17 and 18 and the Axiom and
Subsumption rules to close goal 19. Finally, as mentioned above, the tool auto-
matically checks T -consistency and issues a warning on line 18 for a T -dubious
goal, which here is no problem because the goal is immediately subsumed.

Let us look at these commands in more detail. The case command on line 25
corresponds to a Case Analysis application on a single variable in the named
goal; currently, proving that the pattern covers the intended sort is a proof



50 S. Skeirik, A, Stefanescu and J. Meseguer

1 (select COUNTER .)

2 Set module to COUNTER

3 (use tool varsat for validity on PRES-NAT .)

4 Loaded function varsat for validity

5 (def-term-set ({0}) | true .)

6 Added terminating state:

7 {0} | true

8 (declare-vars (N:Nat) U (M:Nat) U (K:Nat) .)

9 Declared variable(s):

10 { K:Nat, M:Nat, N:Nat }

11 (add-goal count-red : ({N + 1}) | (M < N + 1) = (true) => ({M}) | true .)

12 Added goal(s):

13 [count-red : {1 + N:Nat} | true = M:Nat < 1 + N:Nat => {M:Nat} | true]

14 (start-proof .)

15 Started proof:

16 [1 | {1 + N:Nat} | true = M:Nat < 1 + N:Nat => {M:Nat} | true]

17 (auto .)

18 Warning: [9 | {&3:Nat} | true = M&4:Nat < 1 + &3:Nat => {M&4:Nat} | true]

19 may have terminated

20 Auto Results:

21 [13 | {&3:Nat} | true = M&4:Nat < 1 + &3:Nat => {M&4:Nat} | true]

22 [14 | {1 + 1 + &3:Nat} | true = M&4:Nat < 1 + &3:Nat => {M&4:Nat} | true]

23 (subsume 14 by 13 .)

24 Goal 14 could not be automatically subsumed; check subsumption manually

25 (case 13 on &3:Nat by (0) U (K + 1) .)

26 Case rule generated:

27 [15 | {0} | true = M&4:Nat < 1 + 0 => {M&4:Nat} | true]

28 [16 | {1 + K:Nat} | true = M&4:Nat < 1 + 1 + K:Nat => {M&4:Nat} | true]

29 (replace 15 by (M&4:Nat) = (0) .)

30 Split rule generated:

31 [17 | {0} | 0 = M&4:Nat => {M&4:Nat} | true]

32 (split 16 by (M&4:Nat < K:Nat + 1) = (true) and (K:Nat + 1) = (M&4:Nat).)

33 Split rule generated:

34 [18 | {1 + K:Nat} | M&4:Nat = 1 + K:Nat => {M&4:Nat} | true]

35 [19 | {1 + K:Nat} | true = M&4:Nat < 1 + K:Nat => {M&4:Nat} | true]

36 (auto .)

37 Proof Completed.

Fig. 4. Eventual Decrease of Counter Proof Script.



A Constructor-Based Reachability Logic for Rewrite Theories 51

obligation that must be manually verified by the user. A future version of the tool
will include automatic coverage checks when possible. The replace command on
line 29 takes a goal identifier and a formula and replaces the original constraint
of a goal precondition with the supplied formula; it exactly corresponds to the
variant of the Split rule that replaces a constraint using the pattern φ “ ψ_K.
The split by and command on line 32 corresponds exactly to the fully general
Split rule that performs a replacement of the form φ “ ψ_ρ. When attempting
either kind of Split, the tool attempts a validity check to show that the formulas
are semantically equivalent, printing a warning if it cannot verify the equivalence.

6.2 QLOCK Proof Example

Next let us use our tool to prove that mutual exclusion is an invariant for
QLOCK. We describe a Maude specification of QLOCK in Figure 5 and then
show the proof script (without inline output) in Figure 6. As before, we sep-
arate our example into two modules: an underlying functional module called
QLOCK-STATE imported by the system module QLOCK.

Due to the fact that associative unification is, in general, infinitary, we make
a few tweaks to the QLOCK signature Σ and rewrite rules R to ensure that
Maude’s associative unification algorithm will work.18 Thus, the signature Σ1

of the Maude module QLOCK is identical to the signature Σ except for the list
constructor which has an extra sort NeList with subsorts Nat ă NeList ă List ,
two constructors nil : Ñ List , ; : NeList NeList Ñ NeList , and where: (a)
the original list concatenation operator ; : List List Ñ List is no longer a con-
structor; (b) the operator ; only uses built-in associativity axioms; and (c) the
built-in identity axiom designation is replaced by a pair of equations explicitly
defining the identity axiom. The set of rewrite rules R1 of the QLOCK module are
slightly more verbose than the rules R in the original specification. Since we are
no longer matching modulo associativity and identity, but only modulo associa-
tivity, more patterns are needed. Specifically, the rules n2w , w2c, and c2n now
have two versions, corresponding to nil and non-nil List substitutions.

Note that, unlike COUNTER, the module QLOCK has the conditional rule join;
Maude requires conditional rewrite rules to be declared with the crl keyword.
Finally, recall that in order to prove invariants, we extend our theory with a stop
rule; this is done in the module QLOCK-stop, which is the specific instance for
this example of the general theory construction Rstop presented earlier.

Let us now describe the proof script in Figure 6. After replacing associativ-
ity plus identity matching patterns by associativity-only ones, the proof script
proceeds as we would expect. In fact, inputting the goals and applying auto

is enough. Note the new command use strat on lines 31-33. This command
selects which axioms to use when applying the Axiom rule to a goal and its de-
scendants; it is necessary because each goal corresponding to one of the patterns
in the disjunct P 1 may reach any of the others via one of the rewrite rules.

18 Specifically, we require that: (1) associative symbols do not also have identity axioms;
(2) associative lists to be unified do not share variables of the list sort (see [57]).



52 S. Skeirik, A, Stefanescu and J. Meseguer

1 fmod QLOCK-STATE is

2 sorts Nat MSet NeList List Pred .

3 subsort Nat < MSet .

4 subsort Nat < NeList < List .

5

6 op 0 : -> Nat [ctor] .

7 op s_ : Nat -> Nat [ctor] .

8 op __ : MSet MSet -> MSet [ctor assoc comm id: mt] .

9 op mt : -> MSet [ctor] .

10 op nil : -> List [ctor] .

11 op _;_ : List List -> List [assoc] .

12 op _;_ : NeList NeList -> NeList [ctor assoc] .

13 op tt : -> Pred [ctor] .

14 op dupl : MSet -> Pred [ctor] .

15

16 var N : Nat . var S : MSet . var L : List .

17 eq dupl(N N S) = tt [variant] .

18 eq L ; nil = L [variant] .

19 eq nil ; L = L [variant] .

20 endfm

21

22 mod QLOCK is pr QLOCK-STATE .

23 sort Conf State .

24 op _|_|_|_ : MSet MSet MSet List -> Conf [ctor] .

25 op <_> : Conf -> State [ctor] .

26

27 var I W C : MSet . var L : NeList . var M N : Nat . var CNF : Conf .

28 --- n2w

29 rl < I M | W | C | L > => < I | W M | C | L ; M > .

30 rl < I M | W | C | nil > => < I | W M | C | M > .

31 --- w2c

32 rl < I | W N | C | N ; L > => < I | W | C N | N ; L > .

33 rl < I | W N | C | N > => < I | W | C N | N > .

34 --- c2n

35 rl < I | W | C M | N ; L > => < I M | W | C | L > .

36 rl < I | W | C M | N > => < I M | W | C | nil > .

37 --- exit/join

38 rl < I M | W | C | L > => < I | W | C | L > .

39 crl < I | W | C M | L > => < I M | W | C | L >

40 if dupl(I M) =/= tt .

41 endm

42

43 mod QLOCK-stop is pr QLOCK .

44 op [_] : Conf -> State [ctor] .

45 rl < CNF:Conf > => [ CNF:Conf ] .

46 endm

Fig. 5. Theory Specification for the QLOCK Example



A Constructor-Based Reachability Logic for Rewrite Theories 53

1 (select QLOCK-stop .)

2 (use tool varsat for validity on QLOCK-STATE .)

3 (def-term-set ([C:Conf]) | true .)

4 (declare-vars (I:MSet) U (I’:MSet) U (W:MSet) U (W’:MSet) U

5 (N:Nat) U (M:Nat) U (N’:Nat) U (M’:Nat) U

6 (Q:List) U (NQ:NeList) U (Q’:List) .)

7 (def-term-set ([C:Conf]) | true .)

8

9 (add-goal mutex1 : (< I | W | mt | Q >) |

10 (dupl(I W)) =/= (true)

11 =>

12 ([ I’ | W’ | N’ | M’ ; NQ ]) | (N’) = (M’) \/

13 ([ I’ | W’ | N’ | M’ ]) | (N’) = (M’) \/

14 ([ I’ | W’ | mt | Q’ ]) | true .)

15

16 (add-goal mutex2a : (< I | W | N | M >) |

17 (dupl(I W N)) =/= (true) /\ (N) = (M)

18 =>

19 ([ I’ | W’ | N’ | M’ ; NQ ]) | (N’) = (M’) \/

20 ([ I’ | W’ | N’ | M’ ]) | (N’) = (M’) \/

21 ([ I’ | W’ | mt | Q’ ]) | true .)

22

23 (add-goal mutex2b : (< I | W | N | M ; Q >) |

24 ((dupl(I W N)) =/= (true) /\ (N) = (M))

25 =>

26 ([ I’ | W’ | N’ | M’ ; NQ ]) | (N’) = (M’) \/

27 ([ I’ | W’ | N’ | M’ ]) | (N’) = (M’) \/

28 ([ I’ | W’ | mt | Q’ ]) | true .)

29

30 (start-proof .)

31 (on 1 use strat mutex1 mutex2a mutex2b .)

32 (on 2 use strat mutex1 mutex2a mutex2b .)

33 (on 3 use strat mutex1 mutex2a mutex2b .)

34 (auto .)

35 (auto .)

Fig. 6. QLOCK Mutual Exclusion Proof Script



54 S. Skeirik, A, Stefanescu and J. Meseguer

6.3 Other Examples

To validate the feasibility of our approach we also verified properties for a col-
lection of examples. Table 1 summarizes these experiments; it is subdivided into
sections based on the kind of example, i.e., communication protocols, mutual
exclusion algorithms, programs written in a simple imperative programming lan-
guage IMP, and examples that do not belong in any of the other categories. For
complete details, refer to http://maude.cs.illinois.edu/tools/rltool/.

Table 1. Examples Verified by the Tool

Example Decidable Goals Leaves Lemmas Auto

Simple Comm. Protocol No 1 2 0 Yes
Fault-Tolerant Comm. Protocol Yes 6 21 N/A Yes

Dijkstra’s Mutex Algorithm Yes 3 218 N/A Yes
QLOCK Yes 4 71 N/A No
Unbounded Lamport’s Bakery Yes 11 827 N/A No
Readers/Writers Problem Yes 2 5 N/A Yes
Fixed-Size Token Ring Yes 3 7 N/A Yes

IMP Factorial Function No 1 5 1 Yes
IMP Fibonacci Function No 1 5 1 Yes
IMP Multiplication Function No 1 5 1 No
IMP Remainder Function No 1 10 0 No

Bank Account No 1 7 2 Yes
Non-Deterministic Choice Yes 1 5 N/A No
Counter Eventual Decrease No 1 4 0 No
Counter Partial Correctness No 1 2 0 No
List Sorting Element Preservation No 1 5 0 Yes

For each example the table shows whether satisfiability of quantifier-free for-
mulas in the initial algebra defined by the equational part of the example theory
is decidable or not as far as the equational formulas involved in the property
to be verified and in rule conditions are concerned.19 The table also shows the
number of initial goals/invariants, the number of leaves in the proof tree, the
number of inductive lemmas needed for verifying examples in undecidable the-
ories, and whether the built-in strategy can find a proof (aside from finding
necessary circularities), i.e. whether the user needed to manually apply a de-
rived rule to complete the proof. Below, we briefly describe each example and
property verified in the table above.

19 For example, in the QLOCK specification, due to the use of an associativity axiom
for queues, decidable satisfiability of arbitrary quantifier-free formulas in the initial
algebra of QLOCK cannot be ensured by variant satisfiability methods. But is en-
sured by variant satisfiability for equational formulas whose equations only involve
terms of sorts either MSet or Pred .

http://maude.cs.illinois.edu/tools/rltool/


A Constructor-Based Reachability Logic for Rewrite Theories 55

We defined two order-preserving communication protocols assuming a sigle
sender, receiver, and channel: (1) a simple communication protocol that is not
fault-tolerant with a unidirectional channel as well as (2) a fault-tolerant protocol
with a bidirectional channel that uses acknowledgments to confirm that messages
are received. For the simple protocol, we verified that the final state contains
the message sent in the correct order, so that the sequence number corresponds
correctly to that of messages sent; the undecidability comes from the fact that
counting sequence numbers of a set of messages requires non-FVP recursive
equations. For the fault-tolerant protocol, we verified that the message sent is
received in the correct order. Note that in-order message reception reduces to
an equality check over an associative list of naturals.

We also defined five classic mutual exclusion algorithms. In each case the
reachability goal proved was always the invariant stating that the mutual exclu-
sion algorithm never allows two or more processes to enter the critical section at
the same time. For each of these algorithms the system in question was never-
terminating and thus required the techniques introduced in Section 4.1 to carry
out the proof.

Additionally, we defined a rewrite theory that specifies the semantics of a
simple programming language we call IMP. Its expressions range over two data
types: booleans and natural numbers. The supported operations are addition,
subtraction, multiplication, boolean negation, and boolean conjunction; expres-
sions are side-effect free. Variables all have the natural number type, share a
global namespace, and must be declared before the program body executes.
Supported statements include assignment, if-statements, and while-loops. Note
that, since IMP does not have dynamic memory allocation, heap-based reasoning
is not needed.

We wrote four functions in IMP and verified their correctness: multiplica-
tion, factorial, remainder, and the function that returns the n-th element of the
Fibonacci sequence. In each case, the property verified is that the IMP function
implements the same function as one equationally defined in Maude. Since each
of the functions verified is inherently recursive, verifying their correctness is gen-
erally undecidable. An interesting feature of the tool-based proofs for these IMP
programs is that, even though there are few leaves in the proof tree, the depth
of the proof trees is considerably longer than for other examples, because the
program must be unfolded through many steps before reaching a state captured
by one of our loop invariants.

Finally, we verified a few other examples that do not fit in any of the previous
categories, including the two counter examples discussed in Subsection 5.2. We
also gave a specification of a bank account that allows deposits and withdrawals
to nondeterministically occur, where each withdrawal occurs in two steps: the
withdrawal is initiated and, at some later time, the withdrawal is completed.
For this bank account specification we proved the invariant that a bank account
where the pending withdrawals are initially less than the balance will never over-
draft later. We defined an algorithm that takes a multiset of natural numbers
and nondeterministically throws numbers away and proved that this algorithm,



56 S. Skeirik, A, Stefanescu and J. Meseguer

when supplied with a non-empty multiset as its starting state, will always reach
a singleton contained in the original set. Finally, we defined a list sorting specifi-
cation and proved that the multiset of elements belonging to the partially sorted
list remains invariant.

7 Related Work and Conclusions

7.1 Related Work

Reachability logic [48,58,2,3] is a language-generic approach to program veri-
fication, parametric on the operational semantics of a programming language.
Both Hoare logic and separation logic can be naturally mapped into reachability
logic [48,58]. This work, based on our earlier work in [29], extends reachabil-
ity logic from a programming-language-generic logic of programs to a rewrite-
theory-generic logic to reason about both distributed system designs and pro-
grams, based on their rewriting logic semantics. This extension is non-trivial
and requires a number of new concepts and results, including: (i) relativization
of terminating sequences to a chosen subset JT K of terminating states; (ii) solving
the “invariant paradox,” to reason about invariants and co-invariants of possibly
non-terminating systems, and characterizing such invariants by means of reach-
ability formulas through a theory transformation; and (iii) making it possible
to achieve higher levels of automation by systematically basing the state pred-
icates on positive Boolean combinations of constrained constructor patterns of
the form u | ϕ with u a constructor term.

In contrast, standard reachability logic [2,3] uses matching logic, which as-
sumes a first-order model M and its satisfaction relation M |ù ϕ as the basis
of the reachability logic proof system, and further assumes a matching-logic-
definable transition relation onM. As discussed in Section 3, we choose TΣ{EYB
as the model andÑR for transitions, rather than some generalM with definable
transitions, and systematically exploit the isomorphism TΣ{EYB |Ω – TΩ{EΩYBΩ ,
allowing us to use unification, matching, narrowing, and satisfiability procedures
based on the typically much simpler initial algebra of constructors TΩ{EΩYBΩ .
This has the advantage that we can explicitly give the complete details of our in-
ference rules (e.g., how Subsumption checks for subsumption, or Step@ ensures
that states have at least a successor), instead of relying on a general satisfaction
relation |ù on some M with definable transitions. The result is a simpler infer-
ence system with only three rules (instead of the eight in reachability logic). On
the practical side, reachability logic has been previously implemented as part
of the K framework, and has only been instantiated with operational semantics
of programming languages and used for the purpose of program verification. In
particular, the implementation in K has several hand-crafted heuristics for rea-
soning about specific features of programming languages, such as dynamically
allocated memory (the “heap”). In spite of the fact that similar heuristics have
not yet been added to the current prototype described in Section 6, the poten-
tial for automation of the constructor-based reachability logic approach has been



A Constructor-Based Reachability Logic for Rewrite Theories 57

demonstrated by the tool’s capacity to prove relevant properties for a represen-
tative suite of distributed system designs, including various distributed system
designs and algorithms as well as programs in a simple imperative programming
language. Of course, this is a proof of concept: improving the tool by adding rea-
soning heuristics, e.g., attempting to guess inductive axioms for loops, as well as
more powerful inductive validity checking support will be crucial to scale up to
bigger applications.

As mentioned in the Introduction, we have been inspired by the work in
[7]. We agree on the common goal of making reachability logic rewrite-theory-
generic, but differ on the methods used and their applicability. Main differences
include: (1) The authors in [7] do not give an inference system but a verification
algorithm manipulating goals, which makes it hard to compare both logics. (2)
The theories to which the methods in [7] apply seem more restricted than the
ones presented here. Roughly, (see their Assumption 3) [7] assumes restrictions
akin to those imposed in [41] to allow “rewriting modulo SMT,” which limits the
equational theories pΣ,Eq that can be handled. (3) Matching is used throughout
in [7] instead of unification. This means that, unless a formula has been suffi-
ciently instantiated, no matching rule may exist, whereas unification with some
rule is always possible in our case. (4) No method for proving invariants is given
in [7]; our solving of the “invariant paradox” provides such a method.

Three recent further developments that add coinductive reasoning capabili-
ties to reachability logic are also worth mentioning, namely: (1) Moore’s Ph.D.
dissertation [59]; (2) the coinductive approach by Lucanu et al. in [60]; and (3)
the coinductive approach to reachability logic by Ciobâcă and Lucanu in [61].
The closest to our work are the approaches in [60] and, even more so, [61]. The
approach in [60] adopts a semantic framework for models similar to the already-
discussed work in [2,3], i.e., state properties are specified using matching logic
and assume a given first-order logic model. In this regard, the already discussed
model theoretic differences between our work and that in [2,3], as well as the
associated advantages and disadvantages, seem to be essentially the same as for
[60]. However, an important contribution of the work in [60] is its coinductive
semantics and justification for circular co-inductive reasoning. The relationship
to our work is that the circular coinduction inference rule in [60] roughly cor-
responds to our Axiom rule, where formulas that have become available as
circularities provide a kind of “seven league boots” to advance the proof process
and eventually finish it. Perhaps the work closest to ours in the coinductive ap-
proach is that of Ciobâcă and Lucanu in [61]. At a very high level, it seems fair
to say that regarding the models assumed, the kinds of reachability properties
proved, and the state predicates and inference systems proposed, the approach
in [61] and ours are quite close. Of course, one important difference is that, to
achieve essentially the same objectives, their semantic approach uses coinductive
reasoning, whereas ours, particularly in the proof of our Soundness Theorem 6,
uses inductive or, more precisely, minimal counter-example reasoning. There are
however other substantial differences:



58 S. Skeirik, A, Stefanescu and J. Meseguer

(i) rewriting, as in our case, is based on conditional rules with formulas as
constraints in conditions; but in [61] the topmost requirement is dropped,
as is also the possibility of matching and rewriting modulo axioms B, ex-
cept for the fact that, using “built-in constraints” in an (expected to be
decidable) reduct model on built-in sorts, one could achieve the effect of
rewriting modulo such a built-in decidable reduct model;

(ii) their reachability formulas are less general than ours: in our notation their
formulas have the form u | ϕÑf v | ψ, i.e., only atomic patterns predicates
can be used, but as our QLOCK example shows, having disjunctions of
atomic pattern predicates in midconditions is very useful in practice;

(iii) although the inference systems are relatively close, they are not in a one-
to-one correspondence:
(a) their [axiom] rule corresponds to the subcase of our Subsumption rule

that discharges vacuous formulas,
(b) their [subs] and rder@s rules roughly correspond to the combined effect

of our Step@ and Subsumption rules (which in [29] were combined
into a single Step@`Subsumption rule); but this comes with a slight
twist: their [subs] rule does the job of our Subsumption rule and,
roughly, that of the formula ϕ1 in our Step@ rule, whose purpose is to
restrict the (in their sense “derived”) goals after one rewriting step to
states not already subsumed by the precondition,

(c) their [circ] rule and our Axiom rule basically agree with each other.

Another area of related work is that of deductive proofs of safety properties,
particularly of invariants, for systems specified in rewriting-based languages such
as CafeOBJ [62] and Maude [34]. The two main approaches that have been
developed in this area are:

1. The CafeOBJ approach to the specification of transition systems and the
verification of their invariants using either so-called proof scores (which can
use CafeOBJ itself or Maude directly as a theorem prover in the spirit of,
say, [63]) as in, e.g., [64], or by direct use of an inductive theorem prover or a
combination of standard inductive theorem proving and score-based theorem
proving as in, e.g., [65,66]. An important feature of this approach, illustrated
in the proof-score case but also applicable to the standard inductive theorem
proving or mixed approaches is that both proofs of invariants and of purely
equational inductive verification conditions associated to both invariants and
inductive properties of algebraic data types can be carried out.

2. The Invariant Analyzer (InvA) Maude-based approach to the deductive veri-
fication of invariants and other safety properties of a concurrent system spec-
ified as a topmost rewrite theory [67,68,69]. The key ideas in the InvA ap-
proach include: (i) the proof of an invariant is inductively reduced to proving
that all one-step transitions with the rules R preserve the invariant; (ii) using
unification and narrowing symbolic techniques, the proof that each system
transition preserves the invariant is reduced to proving purely equational in-
ductive verification conditions in the underlying algebraic data type of states
(that is, in TΣ{EYB if the rewrite theory has the form R “ pΣ,E Y B,Rq);



A Constructor-Based Reachability Logic for Rewrite Theories 59

and (iii) an inductive theorem prover (in this case Maude’s ITP) is used to
discharge the generated verification conditions.

Generally speaking, although technically the CafeOBJ-based and Maude-
based approaches are different and not directly comparable, their main goals,
namely, the deductive verification of transition systems with emphasis on their
safety properties, are quite close and these two approaches have stimulated each
other. In comparison with constructor-based reachability logic, the following
remarks can be made: (i) the verification of invariants in constructor-based
reachability logic is closely related to both invariant verification in InvA and
in the CafeOBJ-based tools (very roughly speaking, in reachability logic, the
equational verification conditions in these two other approaches are replaced by
the symbolic methods and side conditions involved in applying the reachability
logic inference rules); (ii) of course, the more general reachability properties,
including in particular the Hoare logic partial correctness properties, do not have
a counterpart in the CafeOBJ-based and InvA approaches; (iii) the use of pattern
predicates in reachability logic seems to be new: in the other two approaches
state predicates are typically specified by Boolean predicates; we conjecture that
pattern predicates and their associated symbolic techniques should also be quite
useful in future developments of the InvA and Cafe-OBJ approaches; and (iv)
last but not least, in [64], besides proving invariants of transition systems, a
new method for proving leads to properties using proof scores is also presented.
Such properties are liveness temporal logic properties beyond the usual safety
properties. This is quite intriguing, and suggests investigating whether leads-to
properties could also be verified in a future version of reachability logic.

Finally, there is also a close connection between this work and other rewriting-
based symbolic methods, including: (i) unification modulo FVP theories [14]; (ii)
decidable satisfiability (and validity) of quantifier-free formulas in initial alge-
bras [16,17,18,19,20,21,22,23,24,25,26]; (iii) narrowing-based reachability analy-
sis [15,46]; (iv) narrowing-based proof of safety properties [67,69]; (v) patterns
and constrained patterns [21,46]; and (vi) rewriting modulo SMT [41]. Exploiting
such connections, particularly with [14,26,56,46], has been essential to achieve
the goals of this work.

7.2 Conclusions

In conclusion, this work advances the goal of making reachability logic available
as a rewrite-theory-generic verification logic. The goals of wide applicability,
invariant verification, simplicity, and mechanization of inference rules have been
substantially advanced, but much work remains ahead. The feasibility of the
approach has been validated with our prototype implementation using a suite of
representative examples. They show that, both for reasoning about distributed
protocols and algorithms and for proving properties of programs in conventional
languages, the verification approach presented here seems promising and feasible
in practice. However, the examples are relatively small, and the prototype tool
implementation should be further improved, automated, and endowed with more



60 S. Skeirik, A, Stefanescu and J. Meseguer

powerful backends for inductive validity checking. Hand in hand with this, both
the proof methods and the tool capabilities should be stressed by means of more
substantial case studies, both of distributed system designs and of programming
language verification.

At the foundational level, several problems deserve further research, includ-
ing: (i) a relative completeness proof for a suitable future version of constructor-
based reachability logic; (ii) investigation of additional temporal logic properties
that could be expressed in reachability logic; a case in point is that of the leads-
to properties already discussed in connection with the work in [64]; and (iii) how
to exploit modularity and parameterization at the level of rewriting logic spec-
ifications (in the sense of parameterized rewrite theories) to make reachability
logic proofs as modular, generic and reusable as possible.

All this, together with reaching a mature tool implementation, are among
our current goals for the near future.

Acknowledgments. We thank Grigore Roşu, Dorel Lucanu and Vlad Rusu for
their very helpful comments on an earlier draft of this work, and the anonymous
referees for numerous judicious comments that have also helped to substantially
improve the paper. This research has been partially supported by NSF Grants
CNS 13-19109 and CNS 14-09416, AFOSR Contract FA8750-11-2-0084, and NRL
under contract N00173-17-1-G002.

References

1. Rosu G, Serbanuta T. An overview of the K semantic framework. J. Log. Algebr.
Program., 2010. 79(6):397–434.

2. Stefanescu A, Ştefan Ciobâcă, Mereuta R, Moore BM, Serbanuta T, Rosu G. All-
Path Reachability Logic. In: Proc. RTA-TLCA 2014, volume 8560. Springer LNCS,
2014 pp. 425–440.

3. Stefanescu A, Park D, Yuwen S, Li Y, Rosu G. Semantics-based program verifiers
for all languages. In: Proc. OOPSLA 2016. ACM, 2016 pp. 74–91.

4. Meseguer J. Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science, 1992. 96(1):73–155.

5. Meseguer J. Twenty years of rewriting logic. J. Algebraic and Logic Programming,
2012. 81:721–781.

6. Meseguer J, Rosu G. The rewriting logic semantics project: A progress report. Inf.
Comput., 2013. 231:38–69.

7. Lucanu D, Rusu V, Arusoaie A, Nowak D. Verifying Reachability-Logic Properties
on Rewriting-Logic Specifications. In: Logic, Rewriting, and Concurrency - Essays
dedicated to José Meseguer on the Occasion of His 65th Birthday, volume 9200.
Springer LNCS, 2015 pp. 451–474.

8. Siekmann JH. Unification Theory. J. Symb. Comput., 1989. 7(3/4):207–274.
9. Jouannaud JP, Kirchner C. Solving Equations in Abstract Algebras: A Rule-Based

Survey of Unification. In: Computational Logic - Essays in Honor of Alan Robinson.
MIT Press, 1991 pp. 257–321.

10. Baader F, Siekmann JH. Unification theory. In: Handbook of Logic in Artificial
Intelligence and Logic Programming, Volume 2, pp. 41–126. Oxford University
Press, 1994.



A Constructor-Based Reachability Logic for Rewrite Theories 61

11. Baader F, Snyder W. Unification Theory. In: Handbook of Automated Reasoning
(in 2 volumes), pp. 445–532. Elsevier and MIT Press, 2001.

12. Hullot JM. Canonical Forms and Unification. In: Proc. Fifth Conference on Au-
tomated Deduction, volume 87 of LNCS, pp. 318–334. Springer, 1980.

13. Jouannaud JP, Kirchner C, Kirchner H. Incremental construction of unification
algorithms in equational theories. In: Proc. ICALP’83. Springer LNCS 154, 1983
pp. 361–373.

14. Escobar S, Sasse R, Meseguer J. Folding variant narrowing and optimal variant
termination. J. Algebraic and Logic Programming, 2012. 81:898–928.

15. Meseguer J, Thati P. Symbolic reachability analysis using narrowing and its appli-
cation to the verification of cryptographic protocols. J. Higher-Order and Symbolic
Computation, 2007. 20(1–2):123–160.

16. Maher MJ. Complete Axiomatizations of the Algebras of Finite, Rational and
Infinite Trees. In: Proc. LICS ’88. IEEE Computer Society, 1988 pp. 348–357.

17. Comon H, Lescanne P. Equational Problems and Disunification. Journal of Sym-
bolic Computation, 1989. 7:371–425.

18. Comon H. Complete Axiomatizations of Some Quotient Term Algebras. Theor.
Comput. Sci., 1993. 118(2):167–191.

19. Baader F, Schulz KU. Combination Techniques and Decision Problems for Disuni-
fication. Theor. Comput. Sci., 1995. 142(2):229–255.

20. Comon H, Delor C. Equational Formulae with Membership Constraints. Inf.
Comput., 1994. 112(2):167–216.

21. Meseguer J, Skeirik S. Equational Formulas and Pattern Operations in Initial
Order-Sorted Algebras. In: Falaschi M (ed.), Proc. LOPSTR 2015, volume 9527.
Springer LNCS, 2015 pp. 36–53.

22. Giesl J, Kapur D. Decidable Classes of Inductive Theorems. In: Proc. IJCAR
2001, volume 2083. Springer LNCS, 2001 pp. 469–484.

23. Giesl J, Kapur D. Deciding Inductive Validity of Equations. In: Proc. CADE 2003,
volume 2741. Springer LNCS, 2003 pp. 17–31.

24. Falke S, Kapur D. Rewriting Induction + Linear Arithmetic = Decision Procedure.
In: Proc. IJCAR 2012, volume 7364. Springer LNCS, 2012 pp. 241–255.

25. Aoto T, Stratulat S. Decision Procedures for Proving Inductive Theorems without
Induction. In: Proc. PPDP2014. ACM, 2014 pp. 237–248.

26. Meseguer J. Variant-Based Satisfiability in Initial Algebras. In: Artho C, Ölveczky
P (eds.), Proc. FTSCS 2015. Springer CCIS 596, 2016 pp. 1–32.

27. Bae K, Meseguer J. Model checking linear temporal logic of rewriting formulas
under localized fairness. Sci. Comput. Program., 2015. 99:193–234.

28. Futatsugi K. Fostering Proof Scores in CafeOBJ. In: Proc. ICFEM 2010, volume
6447. Springer LNCS, 2010 pp. 1–20.

29. Skeirik S, Stefanescu A, Meseguer J. A Constructor-Based Reachability Logic for
Rewrite Theories. In: Proc. Logic-Based Program Synthesis and Transformation -
27th International Symposium, LOPSTR 2017, volume 10855 of Lecture Notes in
Computer Science. Springer, 2017 pp. 201–217.

30. Meseguer J. Variant-based satisfiability in initial algebras. Sci. Comput. Program.,
2018. 154:3–41.

31. Skeirik S, Meseguer J. Metalevel algorithms for variant satisfiability. J. Log. Algebr.
Meth. Program., 2018. 96:81–110.

32. Meseguer J. Membership algebra as a logical framework for equational specifica-
tion. In: Proc. WADT’97. Springer LNCS 1376, 1998 pp. 18–61.



62 S. Skeirik, A, Stefanescu and J. Meseguer

33. Goguen J, Meseguer J. Order-Sorted Algebra I: Equational Deduction for Mul-
tiple Inheritance, Overloading, Exceptions and Partial Operations. Theoretical
Computer Science, 1992. 105:217–273.

34. Clavel M, Durán F, Eker S, Meseguer J, Lincoln P, Mart́ı-Oliet N, Talcott C. All
About Maude – A High-Performance Logical Framework. Springer LNCS Vol.
4350, 2007.

35. Dershowitz N, Jouannaud JP. Rewrite Systems. In: van Leeuwen J (ed.), Handbook
of Theoretical Computer Science, Vol. B, pp. 243–320. North-Holland, 1990.

36. Gutiérrez R, Meseguer J, Rocha C. Order-sorted equality enrichments modulo
axioms. Sci. Comput. Program., 2015. 99:235–261.

37. Meseguer J. Generalized Rewrite Theories and Coherence Completion. In: Rusu V
(ed.), Proc. Rewriting Logic and Its Applications - 12th International Workshop,
WRLA 2018, volume 11152 of Lecture Notes in Computer Science. Springer, 2018
pp. 164–183.

38. Lucas S, Meseguer J. Normal forms and normal theories in conditional rewriting.
J. Log. Algebr. Meth. Program., 2016. 85(1):67–97.

39. Durán F, Meseguer J. On the Church-Rosser and coherence properties of condi-
tional order-sorted rewrite theories. J. Log. Algebr. Program., 2012. 81(7-8):816–
850.

40. Meseguer J. Symbolic Reasoning Methods in Rewriting Logic and Maude. In:
Moss LS, de Queiroz RJGB, Mart́ınez M (eds.), Logic, Language, Information, and
Computation - 25th International Workshop, WoLLIC 2018, Bogotá, Colombia,
July 24–27, 2018, Proceedings, volume 10944 of Lecture Notes in Computer Science.
Springer, 2018 pp. 25–60.

41. Rocha C, Meseguer J, Muñoz CA. Rewriting Modulo SMT and Open System
Analysis. Journal of Logic and Algebraic Methods in Programming, 2017. 86:269–
297.

42. Bruni R, Meseguer J. Semantic foundations for generalized rewrite theories. Theor.
Comput. Sci., 2006. 360(1-3):386–414.

43. Comon-Lundth H, Delaune S. The finite variant property: how to get rid of some
algebraic properties. In Proc RTA’05, Springer LNCS 3467, 294–307, 2005.

44. Cholewa A, Meseguer J, Escobar S. Variants of Variants and the Finite Variant
Property. Technical report, CS Dept. University of Illinois at Urbana-Champaign,
2014. Available at http://hdl.handle.net/2142/47117.

45. Rocha C, Meseguer J. Constructors, Sufficient Completeness, and Deadlock Free-
dom of Rewrite Theories. In: Proc. LPAR 2010, volume 6397 of Lecture Notes in
Computer Science. Springer, 2010 pp. 594–609.

46. Meseguer J. Generalized Rewrite Theories, Coherence Completion, and Symbolic
Methods, 2019. To appear in Journal of Logical and Algebraic Methods in Pro-
gramming.

47. Hoare CAR. An Axiomatic Basis for Computer Programming. Commun. ACM,
1969. 12(10):576–580.

48. Rosu G, Stefanescu A. From Hoare Logic to Matching Logic Reachability. In:
Giannakopoulou D, Méry D (eds.), FM, volume 7436 of Lecture Notes in Computer
Science. Springer. ISBN 978-3-642-32758-2, 2012 pp. 387–402.

49. Reynolds JC. Separation Logic: A Logic for Shared Mutable Data Structures. In:
LICS 2002. IEEE, 2002 pp. 55–74.

50. Meseguer J, Roşu G. The Rewriting Logic Semantics Project. Theoretical Com-
puter Science, 2007. 373:213–237.

51. Ellison C, Rosu G. An executable formal semantics of C with applications. In:
Field J, Hicks M (eds.), POPL. ACM. ISBN 978-1-4503-1083-3, 2012 pp. 533–544.



A Constructor-Based Reachability Logic for Rewrite Theories 63

52. Dowek G, Hardin T, Kirchner C. Theorem Proving Modulo. J. Autom. Reasoning,
2003. 31(1):33–72.

53. Viry P. Adventures in sequent calculus modulo equations. Electr. Notes Theor.
Comput. Sci., 1998. 15:21–32. doi:10.1016/S1571-0661(05)82550-2. URL http:

//dx.doi.org/10.1016/S1571-0661(05)82550-2.
54. Rocha C, Meseguer J. Theorem Proving Modulo Based on Boolean Equational

Procedures. In: Proc. RelMiCS 2008, volume 4988. Springer LNCS, 2008 pp. 337–
351.

55. Durán F, Ölveczky PC. A Guide to Extending Full Maude Illustrated with the
Implementation of Real-Time Maude. Electronic Notes in Theoretical Computer
Science, 2009. 238(3):83 – 102.

56. Skeirik S, Meseguer J. Metalevel Algorithms for Variant-Based Satisfiability. In:
Lucanu D (ed.), Proc. WRLA 2016, volume 9942. Springer LNCS, 2016 pp. 167–
184.

57. Durán F, Eker S, Escobar S, Mart́ı-Oliet N, Meseguer J, Talcott CL. Associative
Unification and Symbolic Reasoning Modulo Associativity in Maude. In: Rusu V
(ed.), Proc. Rewriting Logic and Its Applications - 12th International Workshop,
WRLA 2018, volume 11152 of Lecture Notes in Computer Science. Springer, 2018
pp. 98–114.

58. Rosu G, Stefanescu A. Checking reachability using matching logic. In: Proc.
OOPSLA 2012. ACM, 2012 pp. 555–574.

59. Moore B. Coinductive Program Verification. Ph.D. thesis, University of Illinois at
Urbana-Champaign, 2016. http://hdl.handle.net/2142/95372.

60. Lucanu D, Rusu V, Arusoaie A. A generic framework for symbolic execution: A
coinductive approach. J. Symb. Comput., 2017. 80:125–163.

61. Ştefan Ciobâcă, Lucanu D. A Coinductive Approach to Proving Reachability Prop-
erties in Logically Constrained Term Rewriting Systems. In: Proc. IJCAR 2018,
volume 10900 of Lecture Notes in Computer Science. Springer, 2018 pp. 295–311.

62. Futatsugi K, Diaconescu R. CafeOBJ Report. World Scientific, 1998.
63. Goguen J. OBJ as a Theorem Prover with Application to Hardware Verification.

In: Subramanyam P, Birtwistle G (eds.), Current Trends in Hardware Verification
and Automated Theorem Proving, pp. 218–267. Springer-Verlag, 1989.

64. Futatsugi K. Generate & Check Method for Verifying Transition Systems in
CafeOBJ. In: De Nicola R, Hennicker R (eds.), Software, Services, and Systems -
Essays Dedicated to Martin Wirsing on the Occasion of His Retirement from the
Chair of Programming and Software Engineering, volume 8950 of Lecture Notes in
Computer Science. Springer, 2015 pp. 171–192.

65. Gâinâ D, Lucanu D, Ogata K, Futatsugi K. On Automation of OTS/CafeOBJ
Method. In: Iida S, Meseguer J, Ogata K (eds.), Specification, Algebra, and Soft-
ware - Essays Dedicated to Kokichi Futatsugi, volume 8373 of Lecture Notes in
Computer Science. Springer, 2014 pp. 578–602.

66. Riesco A, Ogata K. Prove it! Inferring Formal Proof Scripts from CafeOBJ Proof
Scores. ACM Trans. Softw. Eng. Methodol., 2018. 27(2):6:1–6:32.

67. Rocha C, Meseguer J. Proving Safety Properties of Rewrite Theories, 2011. In
Proc. CALCO 2011, Springer LNCS 6859, 314-328.

68. Rocha C. Symbolic Reachability Analysis for Rewrite Theories. Ph.D. thesis,
University of Illinois at Urbana-Champaign, 2012.

69. Rocha C, Meseguer J. Mechanical Analysis of Reliable Communication in the Al-
ternating Bit Protocol Using the Maude Invariant Analyzer Tool. In: Specification,
Algebra, and Software - Essays Dedicated to Kokichi Futatsugi, volume 8373 of
Lecture Notes in Computer Science. Springer, 2014 pp. 603–629.

http://dx.doi.org/10.1016/S1571-0661(05)82550-2
http://dx.doi.org/10.1016/S1571-0661(05)82550-2


64 S. Skeirik, A, Stefanescu and J. Meseguer

A Proofs of Lemmas and Theorems

Proof of Lemma 1

Proof. The show the Ě part, let α P Unif EΩYBΩ pu, vq and τ P rpvarsppu |
ϕqαq Y varsppv | φqαqqÑTΩs be such that ruατ !s P Jpu | ϕ ^ φqαK. Then, for
ρ “ pατq|Y we have ruατ !s P Jpu | ϕqρKX Jpv | φqρK, as desired.

To show the Ď part, let rws P Jpu | ϕqρK X Jpv | φqρK for some ρ P rYÑTΩs.
Note that varspu | ϕq Y varspv | φq “ Y Z varsppu | ϕqρq Z varsppv | φqρq.
Therefore, we have disjoint substitutions τ P rvarsppu | ϕqρqÑTΩs γ P rvarsppv |
φqρqÑTΩs such that rws “ rpupρ Z τqq!s “ rpvpρ Z γqq!s and TΣ{EYB |ù pϕ ^
φqpρZ τ Z γq. But this means that there is a substitution α P Unif EΩYBΩ pu, vq
and a ground substitution δ P rpvarsppu | ϕqαq Y varsppv | φqαqqÑTΩs such that
ρ Z τ Z γ “EΩYBΩ pαδq|varspu|ϕqYvarspv|φq, and therefore, that rws “ ruαδ!s P
Jpu | ϕ^ φqαK, as desired. 2

Proof of Lemma 2

Proof. We have to prove that if TΣ{EYB |ù ϕ ñ
Ž

pi,βqPmatchpu, tviuiPI ,Y q
ψiβ,

then for each ρ P rYÑTΩs we have Jpu | ϕqρK Ď Jp
Ž

iPI vi | ψiqρK. Indeed, if rws P
Jpu | ϕqρK there is a ground substitution τ P rXÑTΩs such that rws “ rpuρτq!s
and TΣ{EYB |ù ϕρτ . But since TΩ Ď TΣpXq, we can view ρτ as a composed sub-
stitution ρτ P rXÑTΩs, and therefore TΣ{EYB |ù

Ž

pi,βqPmatchpu, tviuiPI ,Y q
ψiβρτ .

That is, there is a pair pj, γq P matchpu, tviuiPI , Y q such that TΣ{EYB |ù ψjγρτ ,
and, since by construction, u “EΩYBΩ vjγ and ρ and γ have disjoint domains,
using again the containment TΩ Ď TΣpXq, we have an identity of composed
substitutions γρτ “ ργτ , and therefore rws “ rpuρτq!s “ rpvjγρτq!s “ rpvjργτq!s
with TΣ{EYB |ù ψjργτ . Therefore, rws P Jpvj | ψjqρK Ď Jp

Ž

iPI vi | ψiqρK, as
desired. 2

Proof of Lemma 3

Proof. First of all note that varspαpY qq “ pY zdompαqq Z ranpα|Y q. Let U0 “

UzY and Z0 “ ZzY , so that U0 X Z0 “ H. We then can derive equalities
varspαpUqq “ pU0zdompαqq Z ranpαq Z pY zdompαqq, and varspαpZqq “ Z0 Z

ranpα|Y q Z pY zdompαqq. Therefore, by the disjointness of U0, Z0, and ranpαq,
we get, varspαpUqq X varspαpZqq “ pY zdompαqq Z ranpα|Y q “ varspαpY qq, as
desired. 2

Proof of Lemma 4

Proof. Since Ju | ϕK Ď TermR and JT K Ď TermR, R |ù@T u | ϕÑf
Ž

jPJ vj | φj
iff for each ρ P rYÑTΩs and each rws P Jpu | ϕqρK, if rws P JT K then rws P
Jp
Ž

jPJ vj | φjqρK. But this is exactly what the T -consistency of u | ϕ Ñf

Ž

jPJ vj | φj ensures. 2.

Proof of Lemma 5.



A Constructor-Based Reachability Logic for Rewrite Theories 65

Proof. If rus ÑR rvs corresponds to the topmost R,B-rewrite u ÑR,B u1, per-
formed with a rewrite rule lÑ r if φ P R and a ground substitution σ P rYÑTΣs,
with Y the rule’s variables, and such that u “BΩ lσ, u1 “ rσ, and ru1!s “ rvs,

this is also a rewrite with the rule l Ñ r1 if φ ^ θ̂, by extending σ to the fresh
variables XP “ txp | p P P u with the assignments xp ÞÑ prσq|p, so that we have
rus ÑR̂ rvs.

Conversely, if rus ÑR̂ rvs corresponds to the topmost R̂, B-rewrite uÑR,B w,

performed with rewrite rule l Ñ r1 if φ ^ θ̂ in R̂ and ground substitution
ρ P rY Z XPÑTΣs, so that w “ r1ρ and rw!s “ rvs, then we can perform a
corresponding rewrite with rule l Ñ r if φ P R and substitution ρ|Y , because

TΣ{EYB |ù φρ. Furthermore, since TΣ{EYB |ù θ̂ρ, we must have rw!s “ rprρq!s “
rvs, so that rus ÑR rvs. 2

Proof of Theorem 3.

Proof. A state rxu1, . . . , unysBΩ P CR,State is reachable from JS0K iff the state
rru1, . . . , unssBΩ is reachable from JS0K in CRstop

. Therefore, JP K is an invariant
of pCR,State ,ÑRq from JS0K iff Rstop |ù

@
r s
S0 Ñ

f rP s. 2

Proof of Theorem 4.

Proof. We need to show that (i) and (ii) in the theorem’s statement hold iff for
each ρ P rYÑTΩs we have: (i1) JS0ρK Ď JPρK, and (ii1) ReachRpJPρKq “ JPρK.
Since (i) is equivalent to (i1) holding for each ρ, we just need to show that (ii)
holds iff (ii1) holds for each ρ. But this follows easily from the earlier remarks
explaining the implicit universal and existential quantification in reachability
logic formulas, plus the two crucial observation that: (a) in the pattern formula
P Ñf rPσs the pattern predicate rPσs is a postcondition, and (b) in Rstop a
terminating sequence from ru0s P JPρK always has the form:

ru0s ÑR ru1s . . . run´1s ÑR runs ÑRstop
rrunss

for n ě 0 (where, by convention, if un “ xun1
, . . . , unky, then runs abbreviates

run1
, . . . , unk s), thus putting in one-to-one correspondence such sequences with

elements runs P ReachRpJPρKq reachable from a ru0s P JPρK, and, since P Ñf

rPσs holds on such a sequence, showing that rrunss P JrPσρsK “ JrPρσsK “
JrPρsK and therefore that runs P JPρK, as desired. 2

Proof of Theorem 5.

Proof. The proof is completely analogous to that of Theorem 4. We need to
show that (i) and (ii) in the theorem’s statement hold iff for each ρ P rYÑTΩs
we have: (i1) JS0ρK X JQρK “ H, and (ii1) ReachR´1pJQρKq “ JQρK. As before,
(i) holds iff (i1) does for each ρ. The proof that (ii) is equivalent to (ii1) holding
for each ρ is entirely analogous to that in Theorem 4 and is left to the reader. 2

Proof of Theorem 6.

Proof. We begin by introducing the following auxiliary notation



66 S. Skeirik, A, Stefanescu and J. Meseguer

Definition 15. Let u | ϕ Ñf
Ž

i vi | ψi be a T -consistent reachability formula

with parameters Y . By definition, R |ù@,nT u | ϕÑf
Ž

i vi | ψi iff for each ru0s “
ruρ!s P Ju | ϕK and for each T -terminating sequence ru0s ÑR ru1s ÑR . . . ÑR
rums with m ď n, there exist j, 0 ď j ď m, τ and i such that rujs “ rpvipρ|Y Z
τqq!s P Jpvi | ψiqρ|Y K. Note that, since u | ϕ Ñf

Ž

i vi | ψi is T -consistent,

R |ù@,0T u | ϕÑf
Ž

i vi | ψi always holds.

With this notation, we state the following auxiliary lemma:

Lemma 10. Let rA, C1s $T u | ϕÑf
Ž

i vi | ψi be a closed goal with param-
eters Y (and therefore T -consistent), derived by our inference system for R from

some initial set of goals rL, Cs $T C. Then, for each n ą 1, if R |ù@,nT A and

R |ù@,n´1
T C1, then R |ù@,nT u | ϕÑf

Ž

i vi | ψi.

Proof. We prove the lemma by contradiction. Assume it does not hold; let nmin

be the smallest n for which the lemma does not hold for the closed goals derivable
from the initial goals rL, Cs $T C. Let rA, C1s $T u | ϕÑf

Ž

i vi | ψi be a
closed goal among these for which the lemma does not hold for nmin and, among
such closed goals, one having a closed proof tree P of the smallest possible
size. Note that this means that: (i) the Lemma holds for any n ď nmin for
each non-root closed subgoal appearing in the closed proof tree P (otherwise P
would not be of smallest possible size); and (ii) R ��|ù

@,nmin
u | ϕ Ñf

Ž

i vi | ψi,
but (a) the Lemma’s hypotheses hold for n “ nmin; and (b) for any n ă nmin

R |ù@,n u | ϕ Ñf
Ž

i vi | ψi. We then show that, for any ru0s “ ruρ!s P Ju | ϕK
and for any T -terminating path, ru0s ÑR ru1s ÑR . . . ÑR runmin

s there exists
a k, 0 ď k ď nmin, τ and i with ruks “ rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K, so

that, since R |ù
@,n
T u | ϕ Ñf

Ž

i vi | ψi for any n ă nmin, we get R |ù
@,nmin

T

u | ϕÑf
Ž

i vi | ψi, contradicting the assumption R��|ù
@,nmin

u | ϕÑf
Ž

i vi | ψi
and completing the proof.

We distinguish the following cases, according to the proof rule applied to the
root goal rA, C1s $T u | ϕÑf

Ž

i vi | ψi in its closed proof tree:

Subsumption. Then u | ϕ Ñf
Ž

i vi | ψi is a trivial formula, so that R |ù@

u | ϕÑf
Ž

i vi | ψi, and, a fortiori, R |ù@,nmin

T u | ϕÑf
Ž

i vi | ψi.

Step@. Let rA, C1s $T u | ϕÑf
Ž

i vi | ψi be a closed goal with a minimal
closed proof tree P for which the lemma does not hold for nmin. First, notice
that

ϕô pϕ^
ł

pi,βqPmatchpu, tviu,Y q

ψiβq _ ϕ
1.

Therefore, Ju | ϕK “ Ju | ϕ ^
Ž

pi,βqPmatchpu, tviu,Y q
ψiβqK Y Ju | ϕ1K. But, since

for each pi, βq P matchpu, tviu, Y q we have u “EΩYBΩ viβ, and for each ground
Ω-substitution γ Z τ with dompγq “ Y the goal’s parameters, and for each
rws “ rpupγ Z τqq!s P Ju | ϕ ^

Ž

pi,βqPmatchpu, tviu,Y q
ψiβqK there must be an i

such that TΣ{EYB |ù ψiβpγ Z τq and u “EΩYBΩ viβ, we must have rws P Jpvi |



A Constructor-Based Reachability Logic for Rewrite Theories 67

ψiqβγK, and, since γ and β have disjoint domains, so that γβ “ βγ, a fortiori,
rws P Jp

Ž

i vi | ψiqγK. But this means that Ju | ϕ^
Ž

pi,βqPmatchpu, tviu,Y q
ψiβqK Ď

Ju | ϕKXY J
Ž

i vi | ψiK. Therefore, since we have: (i) Ju | ϕK “ Ju | ϕKzpJu | ϕKXY
J
Ž

i vi | ψiKqZpJu | ϕKXY J
Ž

i vi | ψiKq, (ii) Ju | ϕ^
Ž

pi,βqPmatchpu, tviu,Y q
ψiβqK Ď

Ju | ϕKXY J
Ž

i vi | ψiK, and (iii) Ju | ϕK “ Ju | ϕ^
Ž

pi,βqPmatchpu, tviu,Y q
ψiβqKY

Ju | ϕ1K, the set-theoretic equalities (i)–(iii) force the containment Ju | ϕ1K Ě Ju |
ϕKzpJu | ϕK XY J

Ž

i vi | ψiKq, giving us the desired over-approximation claimed

in Fact (3) in the explanation of the Step@ rule. Therefore, since, as pointed
out in Fact (1) of the same explanation, any state in the set Ju | ϕKXY J

Ž

i vi |

ψiK automatically satisfies the formula u | ϕ Ñf
Ž

i vi | ψi, and R |ù
@,nmin´1
T

u | ϕ Ñf
Ž

i vi | ψi, to reach the desired contradiction R |ù
@,nmin

T u | ϕ Ñf

Ž

i vi | ψi it is enough to consider T -terminating paths of length nmin, ru0s ÑR
ru1s ÑR . . . ÑR runmin

s with ru0s “ ruρ!s P Ju | ϕKzpJu | ϕK XY J
Ž

i vi | ψiKq.
Note that if such a path is going to satisfy R |ù

@,nmin

T u | ϕ Ñf
Ž

i vi | ψi by
means of some k, 0 ď k ď nmin, with ruks “ rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K, we
must have k ě 1. Therefore, it is enough to show that in the length nmin ´ 1
path ru1s ÑR . . . ÑR runmins there is a k, 1 ď k ď nmin such that ruks “
rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K. But, since we have the over-approximation
Ju | ϕ1K Ě Ju | ϕKzpJu | ϕK XY J

Ž

i vi | ψiKq, and, by the assumptions on

the minimal proof tree P, we have R |ù
@,nmin

T prj | ϕ
1 ^ φjqα Ñ

f
Ž

ipvi | ψiqα
for each pj, αq P unifypu | ϕ1, Rq, it will be enough to show that: (a) ru1s “
rprjαδq!s P Jprj | ϕ1 ^ φjqαK for some pj, αq P unifypu | ϕ1, Rq; (b) ρ “EΩYBΩ
pαδq|U for some ground substitution δ, where U “ varspu | ϕ1q (and of course,
thanks to the over-approximation, TΣ{EYB |ù ϕ1ρ), and (c) the parameters of
prj | ϕ

1 ^ φjqαÑ
f
Ž

ipvi | ψiqα are exactly varspαpY qq.

Indeed, let us prove (a)–(c) hold, and then show that there is a k, 1 ď k ď
nmin such that ruks “ rpvipρ|Y Zτqq!s P Jpvi | ψiqρ|Y K. First of all, since ru0s ÑR
ru1s, there is an unforgetful rule lj Ñ rj if φj in R such that ru0s “ rpuρq!s “
rpljγq!s ÑR rprjγq!s “ ru1s, and TΣ{EYB |ù φjγ. But since the variables of
all sequents and those of lj Ñ rj if φj are always assumed disjoint, this just
means that ρ Z γ is a EΩ Y BΩ-unifier of u “ lj . Therefore, there is a pj, αq P
unifypu | ϕ1, Rq and a ground substitution δ such that ρ Z γ is equal modulo
EΩ Y BΩ to αδ, which proves (b). But since ρ Z γ is equal modulo EΩ Y BΩ
to αδ, TΣ{EYB |ù ϕ1ρ, and TΣ{EYB |ù φjγ, we have TΣ{EYB |ù pϕ1 ^ φjqαδ,
which proves (a). Now note that, by the variable disjointness between rules
in R and sequents, pvi | ψiqα “ pvi | ψiqα|U “ pvi | ψiqα|Y . Therefore, if
Z “ varspvi | ψiq, assuming without loss of generality that all variables in the
range of α are fresh, we have varsppvi | ψiqαq “ ZzY ZvarspαpY qq. Furthermore,
since u | ϕÑf

Ž

i vi | ψi satisfies the invariant varspψiq Ď varspviqYvarspu | ϕq
for each i, and for each pi, βq P matchpu, tviu, Y q uβ “ u “EΩYBΩ viβ, and
the equations EΩ Y BΩ are regular, we have varspψiβq Ď varspu | ϕq, and
therefore varspu | ϕq “ varspu | ϕ1q. But since lj Ñ rj if φj is unforgetful,
we have varspljq Ď varsprjq Y varspφjq “ W , and therefore, by the freshness
assumption on α and regularity of the equations EΩ Y BΩ , varspprj | φjqαq “



68 S. Skeirik, A, Stefanescu and J. Meseguer

varspljαq Z W zvarspljq “ varspuαq Z W zvarspljq. This then yields varspprj |
ϕ1 ^ φjqαq “ varsppu | ϕqαq ZW zvarspljq. And since Z and W are disjoint sets
of variables, again by the freshness of α, we finally have, varspprj | ϕ

1 ^ φjqαq X
varsppvi | ψiqαq “ pZzY Z varspαpY qqq X pvarsppu | ϕqαq Z W zvarspljqq “
varspαpY qq X pvarsppu | ϕqαq “ varspαpY qq, proving (c).

Having proved (a)–(c) let us now finish this case by proving that in the
path ru1s ÑR . . . ÑR runmins there is a k, 1 ď k ď nmin, such that ruks “

rpvipρ|Y Zτqq!s P Jpvi | ψiqρ|Y K, using the fact that R |ù@,nmin

T prj | ϕ
1 ^ φjqαÑ

f

Ž

ipvi | ψiqα for each pj, αq P unifypu | ϕ1, Rq. But we already know that ru1s “

rprjαδq!s and TΣ{EYB |ù pϕ1 ^ φjqαδ. But by R |ù
@,nmin

T prj | ϕ
1 ^ φjqα Ñf

Ž

ipvi | ψiqα and (c), this ensures that there is a k, 1 ď k ď nmin such that ruks P
Jppvi | ψiqαqδ|varspαpY qqK “ Jppvi | ψiqα|Y qδ|varspαpY qqK “ Jppvi | ψiqpαδq|Y K “
Jppvi | ψiqρ|Y K. Therefore, there is a ground substitution τ such that ruks “
rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K, as desired.

Axiom. Let rA, C1s $T u | ϕÑf
Ž

i vi | ψi be a closed goal with parameters
Y and with a smallest possible closed proof tree P for which the lemma does
not hold for nmin. In particular we know that R |ù@,nmin

T A. To reach the desired
contradiction we need to show that for any ρ P rUÑTΩs such that ru0s “ rpuρq!s P
Ju | ϕK and any T -terminating path, ru0s ÑR ru1s ÑR . . . ÑR runmin

s there
exists a k, 0 ď k ď nmin, an i, and a ground substitution τ such that ruks “
rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K.

Let u1 | ϕ1 Ñf
Ž

j v
1
j | ψ

1
j with parameters Y 1 such that Y “ varspαpY 1q

be the axiom in A used in the rule application. Since u “EΩYBΩ u1α and
u0 “EΩYBΩ uρ we have that u0 “EΩYBΩ u1αρ. Further, since TΣ{EYB |ù ϕ ñ
ϕ1α and TΣ{EYB |ù ϕρ, we have that TΣ{EYB |ù ϕ1αρ. Thus, ru0s “ rpu

1αρq!s P

Ju1 | ϕ1K. Since R |ù@,nmin

T u1 | ϕ1 Ñf
Ž

j v
1
j | ψ

1
j , there exists j and 0 ď k1 ď nmin

such that ruk1s P Jpv1j | ψ1jqpαρq|Y 1K. But by pv1j | ψ
1
jqα “ pv1j | ψ

1
jqα|Y 1 and

Y “ varspαpY 1q, we have Jpv1j | ψ1jqpαρq|Y 1K “ Jpv1jα | ψ1jαqρ|Y K. We then will be
done of we show that:

1. Y “ varspv1jα | ψ
1
jα^ ϕqXvarsp

Ž

i vi | ψiq, and
2. for any ρ P rUÑTΩs such that TΣ{EYB |ù ϕρ, Jpv1jα | ψ1jαqρ|Y K “ Jpv1jα |
ψ1jα^ ϕqρ|Y K.

Indeed, since v1jα | ϕ^ ψ
1
jα Ñ

f
Ž

i vi | ψi is a closed subgoal in P, we must

have R |ù
@,nmin

T v1jα | ϕ^ ψ
1
jα Ñ

f
Ž

i vi | ψi. But, by (1), v1jα | ϕ^ ψ
1
jα Ñ

f

Ž

i vi | ψi has parameters Y and, by (2), ruk1s P Jpv1jα | ψ1jα^ ϕqρ|Y K. But since
the sequence ruk1s ÑR . . . ÑR runmin

s has length n ď nmin , there exist a k,
k1 ď k ď nmin , an i, and a ground substitution τ such that ruks “ rpvipρ|Y Z
τqq!s P Jpvi | ψiqρ|Y K, as desired.

To see (1), note that, by the parameter preservation assumption, we have
Y “ varspv1jα | ψ

1
jαqXvarsp

Ž

i vi | ψiq, so that Y Ď varspv1jα | ψ
1
jα^ ϕqX

varsp
Ž

i vi | ψiq. But since varspϕq “ pvarspϕq X Y q Z pvarspϕq X U0q, where
U0 “ UzY , if x P pvarspv1jα | ψ

1
jα^ ϕqXvarsp

Ž

i vi | ψiqqzY , then we must have
x P pvarspϕq XU0q, which is impossible, since U0 X varsp

Ž

i vi | ψiq “ H. To see



A Constructor-Based Reachability Logic for Rewrite Theories 69

(2), note that we always have Jpv1jα | ψ1jαqρ|Y K Ě Jpv1jα | ψ1jα^ ϕqρ|Y K. But since
pv1jα | ψ

1
jαq and pvarspϕq X U0q have disjoint variables, any rpv1jαpρ|Y Z θqq!s P

Jpv1jα | ψ1jαqρ|Y K has also the form rpv1jαpρ Z θqq!s, and since by assumption
E Y B |ù ϕρ, we get rpv1jαpρ|Y Z θqq!s P Jpv1jα | ψ1jα^ ϕqρ|Y K, and therefore
Jpv1jα | ψ1jαqρ|Y K Ď Jpv1jα | ψ1jα^ ϕqρ|Y K, as desired. This finishes the proof for
the Axiom case and for the lemma. 2

Now we prove the main result (Theorem 6) using Lemma 10. Indeed, assume
by contradiction that the theorem does not hold. Then, there must be a closed
goal pu | ϕ Ñf

Ž

i vi | ψiq P C such that rL, Cs $T u | ϕÑf
Ž

i vi | ψi is
a closed subgoal derived by our inference system for R, but R ��|ù u | ϕ Ñf

Ž

i vi | ψi P C. Further, we can choose such a closed subgoal in C with nmin

the smallest possible natural number such that R ��|ù
@

nmin
C. By T -consistency

of all goals in C we must have nmin ą 0. Then, R |ù
@,nmin´1
T C and, since by

hypothesis R |ù@nmin
L, we have, a fortiori, R |ù@,nmin

T L. Thus, by Lemma 10, we

have R |ù@,nmin

T ϕÑf
Ž

i ψi. This contradicts the assumption R��|ù
@

nmin
u | ϕÑf

Ž

i vi | ψi and completes the proof. 2

Proof of Lemma 6

Proof. Since ϕ is semantically equivalent to ψ _ φ we have Ju | ϕK “ Ju | ψK Y
Ju | φK. The lemma then follows easily from Definition 12, using the parameter
preservation condition. 2

Proof of Lemma 7

Proof. Let Y be the parameters in rA, Cs $T u | ϕÑf A. We have two
cases. (1) If x : s R Y , then Atx : s ÞÑ uiu “ A, 1 ď i ď k, and the re-
sult just follows from: (i) the parameters Y being the same in rA, Cs $T

u | ϕÑf A and in its k instances in the premise, and (ii) Ju | ϕK “
Ť

1ďiďkJpu |
ϕqtx : s ÞÑ uiuK. (2) If x : s P Y , then the parameters of each rA, Cs $T

pu | ϕqtx:s ÞÑ uiu Ñ
f Atx:s ÞÑ uiu are pY ´ tx : suq Y varspuiq. Observe that,

by the definition of pattern set for s, rYÑTΩs “
Ť

1ďiďkttx:s ÞÑ uiuτi | τi P

rpY ´ tx :suq Y varspuiqÑTΩsu. Therefore, R |ù@T rA, Cs $T u | ϕÑf A iff
@ ρ P rYÑTΩs R |ù@T prA, Cs $T u | ϕÑf Aqρ iff p@ i, 1 ď i ď kq p@ τi P
rpY ´ tx:suq Y varspuiqÑTΩsq R |ù@T prA, Cs $T u | ϕÑf Aqtx:s ÞÑ uiuτi iff
Ź

1ďiďkrA, Cs $T pu | ϕqtx:s ÞÑ uiu Ñ
f Atx:s ÞÑ uiu, as desired. 2

Proof of Lemma 8

Proof. Suppose the Substitution rule is applied to u |
Ź

i wi “ w1i ^ ϕ Ñf

Ž

jPJ vj | φj having parameters Y . Let U “ varspu |
Ź

i wi “ w1i ^ ϕq, U0 “

varsp
Ź

i wi “ w1iq, and Z “ varsp
Ž

jPJ vj | φjq. Then Y “ UXZ. Let W “ ZzY .
Note that the following facts hold for each α P UnifE1YB1

p
Ź

i wi “ w1iq:

1. Jpu |
Ź

i wi “ w1i ^ ϕqαK “ Juα | ϕα^ pαK.
2. varsppu |

Ź

i wi “ w1i ^ ϕqαq X varspαpZqq “ varspαpY qq “ varspuα | ϕα ^
pαq X varspαpZqq.



70 S. Skeirik, A, Stefanescu and J. Meseguer

To see (1), note that, since α P UnifE1YB1
p
Ź

i wi “ w1iq, Jpu |
Ź

i wi “ w1i ^
ϕqαK “ Jpu | ϕqαK, and Jpu | ϕqαK Ě Juα | ϕα^ pαK. So we just need to show Jpu |
Ź

i wi “ w1i^ϕqαK Ď Juα | ϕα^ pαK. Indeed, suppose ρ P rpUzU0Z ranpαqqÑTΩs
is such that rpuαρq!s P Jpu |

Ź

i wi “ w1i^ϕqαK. Then TΣ{EYB |ù pαpρZpαρq|U0
q,

and therefore, rpuαρq!s “ rpuαpρZ pαρq|U0
qq!s P Juα | ϕα^ pαK, as desired.

To see (2), note that varsppu |
Ź

i wi “ w1i ^ ϕqαq “ pUzU0q Z ranpαq,
varspuα | ϕα^pαq “ UZranpαq, and varspαpZqq “WZpY zU0qZvarspαpYXU0qq.
Therefore, varsppu |

Ź

i wi “ w1i^ϕqαqXvarspαpZqq “ varspαpY qq “ ppUzU0qZ

ranpαqq XW Z pY zU0q Z varspαpY X U0qq “ pY zU0q Z varspαpY X U0qq “ pU Z
ranpαqq XW Z pY zU0q Z varspαpY X U0qq “ varspuα | ϕα^ pαq, as desired.

Now note that (1) and (2) yield the equivalence:

R |ù
@
T pu |

Ź

i wi “ w1i ^ ϕqαÑ
f
p
Ž

jPJ vj | φjqα
ô

R |ù
@
T uα | ϕα^ pαÑf

p
Ž

jPJ vj | φjqα.

The pðq implication in the Lemma’s proof now follows immediately from
the above equivalence and the following Instance Lemma, where ψ is chosen to
be the formula

Ź

i wi “ w1i ^ ϕ.

Lemma 9 (Instance Lemma) Suppose R |ù@T u | ψ Ñf
Ž

jPJ vj | φj with param-
eters Y , and let β be a substitution whose domain V is contained in varspu | ψq
and where the variables in ranpβq are all fresh. Then R |ù@T pu | ψqβ Ñf

p
Ž

jPJ vj | φjqβ.

Proof. Let U “ varspu | ψq. Note that, by the freshness assumption on β and
V Ď U , the formula pu | ψqβ Ñf p

Ž

jPJ vj | φjqβ has parameters varspβpY qq. We
then need to show that for each δ P rpUzV qZranpβqÑTΩs, ru0s “ rpuβδq!s P Jpu |
ψqpβδq|varspβpY qqK and T -terminating sequence ru0s ÑR ru1s . . . run´1s ÑR runs
there is a 0 ď k ď n such that ruks P Jp

Ž

jPJ vj | φjqpβδq|varspβpY qqK. But
pβδq|varspβpY qq “ δ|Y zV Zpβδq|varspβpYXV qq “ δ|Y zV Zpβ|YXV qpδ|varspβpYXV qqq “
δ|Y zV Zpβδq|YXV “ pβδq|Y . Therefore, ru0s “ rpuβδq!s P Jpu | ψqpβδq|Y K, so that,

by the assumption R |ù@T u | ψ Ñf
Ž

jPJ vj | φj with parameters Y , for the
same T -terminating sequence there is a 0 ď k ď n such that ruks P Jp

Ž

jPJ vj |
φjqpβδq|Y K “ Jp

Ž

jPJ vj | φjqpβδq|varspβpY qqK, as desired. 2

We now resume the proof of the pñq implication for Lemma 8. Recall that
U “ varspu |

Ź

i wi “ w1i ^ ϕq and Z “ varsp
Ž

jPJ vj | φjq, so that Y “ U X Z.
We need to show that for each ground substitution γ P rUÑTΩs such that
ru0s “ rpuγq!s P Ju |

Ź

i wi “ w1i^ϕK and each T -terminating sequence ru0s ÑR
ru1s . . . run´1s ÑR runs there is a 0 ď k ď n, a j P J , and a ground substitution
τ P rZzYÑTΩs such that ruks “ rpvjpρ|Y Z τqq!s P Jp

Ž

jPJ vj | φjqγ|Y K.
This can be shown as follows. Let U0 “ varsp

Ź

i wi “ w1iq. Since γ unifies
Ź

i wi “ w1i, there must be a unifier α P UnifE1YB1
p
Ź

i wi “ w1iq and a ground
substitution δ P rpUzU0q Z ranpαqÑTΩs such that γ “EΩYBΩ αδ. Therefore,
by our earlier Fact (1), ru0s “ rpuγq!s “ rpuαδq!s P Ju |

Ź

i wi “ w1i ^ ϕ ^ pαK.
And, since we assume that R |ù@T puα | ϕα ^ pα Ñf p

Ž

jPJ vj | φjqα (with
parameters varspαpY qq by Fact (2)), there is a 0 ď k ď n, a j P J , and a



A Constructor-Based Reachability Logic for Rewrite Theories 71

ground substitution τ P rZzYÑTΩs “ rpvarspαpZqqzvarspαpY qqqÑTΩs such that
ruks “ rpvjαpδ|varspαpY qq Z τqq!s P Jp

Ž

jPJ vj | φjqαδ|varspαpY qqK. But since (i)
p
Ž

jPJ vj | φjqα “ p
Ž

jPJ vj | φjqα|Y , and (ii) α|Y δ|varspαpY qq “ pαδq|Y “EΩYBΩ
γ|Y , we have ruks “ rpvjpγ|Y Z τqq!s P Jp

Ž

jPJ vj | φjqγ|Y K, as desired. 2

B Command Grammar

Here we provide a BNF grammar of the commands that can be given as in-
puts to our prototype Maude tool. In the grammar below, boldface words
represent themselves (i.e. terminals) while xwords in angle bracketsy represent
non-terminals. A nonterminal surrounded by square brackets, e.g., rxnumberys,
represents an optional argument. BNF grammar alternatives are separated by
vertical bars (|). Whenever we use a reserved symbol as a terminal, we surround
it in double quotes, e.g. “|”. The horizontal lines delimit the three basic cate-
gories of commands: (i) proof setup, (ii) adding invariants and adding goals, and
(iii) applying proof steps or simple proof strategies.

xouter-cmdy ::= ( xinner-cmdy . )
xinner-cmdy ::= select xmodule-namey

| declare-vars xvar-sety
| def-term-set xpattern-formy
| use tool xtool-namey for validity on xmodule-namey
| start-proof

| inv xgoalnamey to xop-idy [with xvar-sety] on xpattern-formy
| add-goal xgoalnamey : xreach-formy

| auto [xnumbery]
| auto*
| list-goals
| focus xgoal-idy
| case xgoal-idy on xvar-namey using xterm-sety
| split xgoal-idy by xeqformy [and xeqformy]
| replace xgoal-idy by xeqformy
| subsume xgoal-idy by xgoal-idy
| on xgoal-idy use strat xgoal-name-sety

Category (i) commands let the user select a module defining a rewrite relation we
wish to reason over, initialize a tool backend, to declare variables which can be
used in commands of type (i) and (iii), and to start/stop proofs. The commands
in category (ii) are also straightforward: inv takes a bracket operator-id prsq, a
set of shared variables V , and a pattern form P and adds a goal to be solved of
the form Pσ Ñf rP s where σpvq “ v ô v P V ; we can also use the lower-level
add-goal command to add goals directly, i.e. reachability formulas. Finally, type
(iii) commands let the user apply the default strategy using the auto command



72 S. Skeirik, A, Stefanescu and J. Meseguer

for one or more steps as well as applying the case analysis derived rule using case
and split derived rules using split and replace. Focusing on a goal eliminates all
other goals from the proof state; obviously, this is unsound. The intent, however,
is not to continue the proof process, but to restart it after such focusing. The
focus command enables the user to focus attention on some proof goals that
seem to lead to looping so that, for example, the proof can be restarted with some
additional lemmas (e.g., some strengthened invariants) to help its completion, or
some bug in the original set of goals may be detected. The use strat command
allows the user to select the set of axioms that will be tried when applying the
Axiom rule to the specified goal as well as any of its descendants.

The grammar below defines the syntactic categories used by tool commands.
Some non-terminals are marked as special. These non-terminals are handled by
built-in parsers as part of the Maude runtime.

xreach-formy ::= xpattern-formy => xpattern-formy
xpattern-formy ::= xpattern-formy \/ xpattern-formy

| xtermy “|” xeqformy
xeqformy ::= xeqformy \/ xeqformy | xeqformy /\ xeqformy

| xtermy = xtermy | xtermy =/= xtermy
xterm-sety ::= ( xtermy ) xterm-sety | ( xtermy )
xvar-sety ::= ( xvar-namey ) xvar-sety | ( xvar-namey )
xgoal-name-sety ::= xgoal-namey xgoal-name-sety | xgoal-namey
xgoal-idy ::= xnaty
xgoal-namey ::= special
xop-idy ::= special
xmodule-namey ::= special
xtool-namey ::= special
xvar-namey ::= special
xtermy ::= special
xnaty ::= special


	A Constructor-Based Reachability Logic for Rewrite Theories

