
Program Verification: Lecture 8

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1



Overlaps as Unification Problems

We reduced confluence (under the termination assumption)

to joinability of context-free nested simplifications with

overlap. But note that we can have a context-free overlap

situation with equations u = v and u′ = v′ (again, with

disjoint variables) if and only if there is a nonvariable

position p in u and a substitution θ such that,

(†) upθ = u′θ.

Therefore, finding all possible context-free nested

simplifications with overlap can be reduced to finding, for

all pairs of equations u = v and u′ = v′ in E and all

nonvariable positions p in u, all solutions to (†). Problems of

the form (†) are called unification problems.

2



Unification

In general, the unification problem consists in, given terms t

and t′ whose sorts are in the same connected component,

finding a substitution θ that makes them equal, so that we

have identical terms, tθ = t′θ. The substitution θ is then

called a unifier of t and t′.

Under very reasonable conditions on Σ, such as finiteness ,

this problem is decidable in a very strong sense. Namely, we

can effectively find a finite set of unifiers {θ1, . . . θn}, that

are the most general possible, in the sense that for any

other substitution µ : vars(t = t′) −→ TΣ(V ) such that

tµ = t′µ, we can always find a θi, say,

θi : vars(t = t′) −→ TΣ(X), and a substitution ρ : X −→ TΣ(V )

such that for each x ∈ vars(t = t′) we have xµ = xθi ρ.

3



B-Unification

The standard unification problem is to try to unify two

terms. But we have already encountered situations, such as

the relation −→E/B, in which it is very useful to deal not

with terms, but with equivalence classes of terms modulo

some equational axioms B.

Therefore, it is natural, given a set of equational axioms B,

such as the associativity, commutativity, and identity of

some operators, to generalize the unification problem to the

following B-unification problem: given an equation t = t′ are

there substitutions θ such that

tθ =B t′θ.

4



B-Unification (II)

For B any combination of associativity, commutativity, and

identity axioms, there are known algorithms that can find a

family of most general unifiers for each given unification

problem t = t′. However, for the case of associativity alone,

or of associativity and identity alone, this family of most

general unifiers may be infinite.

In particular, for Σ a finite signature, if we choose B to be

any combination of associativity, commutativity and identity

axioms for different (subsort-overloaded) binary operators in

Σ, except associativity without commutativity, there is

indeed an algorithm that, given an B-unification problem,

either declares the problem unsolvable, or finds a finite set

of most general unifiers solving it. Such a B-unification

algorithm is used by the Church-Rosser Checker.

5



More on Unification

So far we have said nothing about unification algorithms,

that can effectively find a set of most general unifiers or

declare the corresponding problem unsolvable.

Unification is indeed a vast research area, and the more we

can do in this course is to give a flavor for the key ideas.

This can be done quite well by considering the simplest

version of the unification problem, for which, if the given

equation has a solution, then it has a unique most general

unifier.

6



More on Unification (II)

This simplest version is the case of a sensible many-sorted

signature Σ without ad-hoc overloading.

The key idea of a unification algorithm is to transform the

original equation we want to solve into a set of equations

equivalent to the original equation, in the sense that both

sets have the same solutions.

We then stop either with failure, or with a set of equations

in solved form, that is, equations having the shape,

{x1 = t1, . . . , xn = tn}, where the xi do not appear in the tj.

But this is just another garb for a substitution

θ = {(x1, t1), . . . , (xn, tn)}.

7



The Unification Algorithm

We can describe the unification algorithm, à la

Martelli-Montanari, as a set of inference rules, that

transform a set of equations E into another set of equations

that is equivalent to it from the solvability point of view, or

into the constant failure. The following inference rules

assume a many-sorted signature, make the equality symbol

commutative, and use a global set V of variables:

• Delete:
{E, t = t}

{E}

• Decompose:

{E, f(t1, . . . , tn) = f(t′1, . . . , t
′
n)}

{E, t1 = t′1, . . . , tn = t′n)}

8



The Unification Algorithm (II)

• Conflict:

{E, f(t1, . . . , tn) = g(t′1, . . . , t
′
m)}

failure

if f 6= g

• Coalesce:
{E, x = y}

{E{x 7→ y}, x = y}

if x, y ∈ vars(E), x 6= y

• Check:
{E, x = t}

failure

if x ∈ vars(t), x 6= t

9



The Unification Algorithm (III)

• Eliminate:
{E, x = t}

{E{x 7→ t}, x = t}

if x 6∈ vars(t), t 6∈ V, x ∈ vars(E).

We can illustrate the use of these rules by finding the most

general unifier for a relatively simple, yet nontrivial,

unification problem, namely, solving the equation,

f(g(x, h(y)), z) = f(z, g(k(u), v))

for which the above rules give us the following

transformations:

{f(g(x, h(y)), z) = f(z, g(k(u), v))} −→ (Decompose)

10



The Unification Algorithm (IV)

{g(x, h(y)) = z, z = g(k(u), v)} −→ (Eliminate)

{g(x, h(y)) = g(k(u), v), z = g(k(u), v)} −→ (Decompose)

{x = k(u), v = h(y), z = g(k(u), v)} −→ (Eliminate)

{x = k(u), v = h(y), z = g(k(u), h(y))},

which is the desired most general unifier, yielding the

identity,

f(g(k(u), h(y)), g(k(u), h(y))) = f(g(k(u), h(y)), g(k(u), h(y))).

11



Unification Modulo Commutativity

To illustrate the case of B-unification in a many-sorted

signature Σ, let us assume that B = Comm is a collection of

commutativity axioms for some binary symbols Σcomm ⊆ Σ.

The inference rules for unification modulo commutativity

are:

• Delete:
{E, t = t}

{E}

• Decompose: (f ∈ (Σ− Σcomm))

{E, f(t1, . . . , tn) = f(t′1, . . . , t
′
n)}

{E, t1 = t′1, . . . , tn = t′n)}

12



Unification Modulo Commutativity (II)

• Decompose-C: (f ∈ Σcomm)

{E, f(t1, t2) = f(t′1, t
′
2)}

{E, t1 = t′1, t2 = t′2)} ∨ {E, t1 = t′2, t2 = t′1)}

• Conflict:

{E, f(t1, . . . , tn) = g(t′1, . . . , t
′
m)}

failure

if f 6= g

• Coalesce:
{E, x = y}

{E{x 7→ y}, x = y}

if x, y ∈ vars(E), x 6= y

13



Unification Modulo Commutativity (III)

• Check:
{E, x = t}

failure

if x ∈ vars(t), x 6= t

• Eliminate:
{E, x = t}

{E{x 7→ t}, x = t}

if x 6∈ vars(t), t 6∈ V, x ∈ vars(E).

Note that now, because of Rule Decompose-C, there can

be several solutions to a unification problem. Also, we

define failure as an identity element for ∨ .

We can illustrate the use of these rules by finding the most

general unifiers modulo commutativity when Σcomm = {g}.

14



Unification Modulo Commutativity (IV)

Let us apply these rules to solve the equation,

f(g(h(y), x), z) = f(z, g(k(u), v))

{f(g(h(y), x), z) = f(z, g(k(u), v))} −→ (Decompose)

{g(h(y), x) = z, z = g(k(u), v)} −→ (Eliminate)

{g(h(y), x) = g(k(u), v), z = g(k(u), v)} −→ (Decompose-C)

{x = v, k(u) = h(y), z = g(k(u), v)} ∨ {x = k(u), v = h(y), z =

g(k(u), v)} −→ (Conflict ∨ Eliminate)

failure ∨ {x = k(u), v = h(y), z = g(k(u), h(y))} =

{x = k(u), v = h(y), z = g(k(u), h(y))}

applying the resulting unifier we obtain the identity,

f(g(h(y), k(u)), g(h(y), k(u))) =comm f(g(k(u), h(y)), g(k(u), h(y))).

15



Where to Go from Here

We can only sketch how to go from here to more general

unification algorithms, such as B-unification in an

order-sorted signature Σ.

First of all, note that the presence of overloading and

subsorts will typically move us from a single most general

unifier to a finite set of them. This is because of the

presence of subsort overloaded operators, which may lead

to several different solutions. Note also that, in the

presence of subsorts, even apparently innocent equations

such as x : s = y : s′ may lead to failure, because the sorts s

and s′ may not have any common subsort. For example, in

an INT specification, an equation X = Y, with X of sort

NzNat, and Y of sort NzNeg will fail.

16



Where to Go from Here (II)

Chapter 15.1 of the Maude book gives a detail presentation

of the inference rules for order-sorted C-unification and

gives an implementation that you can use in Maude for

experimentation.

The latest version of Maude provides general order-sorted

unification algorithm modulo any combination of C and/or

A and/or U axioms. Since the set of A-unifiers of an

equation can be infinite, Maude provides a finite set and a

warning if more solutions may exist.

The Church-Rosser Checker uses unification modulo any

combinations of associativity, commutativity, and identity

axioms; but may not generate all critical pairs [giving a

warning] for associativity without commutativity axioms.

17



Where to Go from Here (III)

For a survey of unification algorithms modulo axioms see:

J.-P. Jouannaud and C. Kirchner, “Solving Equations in

Abstract Algebras,” in J.-L. Lassez and G.Plotkin, eds.,

Computational Logic: Essays in Honor of Alan Robinson.

For order-sorted B-unification see:

J. Meseguer, J.A. Goguen, and G. Smolka, “Order-Sorted

Unification,” J. Symbolic Computation, Volume 8, 1989,

pages 383–413.

J. Hendrix and J. Meseguer, “Equational Order-Sorted

Unification Revisited,” Electr. Notes Theor. Comput. Sci.,

Vol. 290, 2012, pages 37–50.

18



What Are Critical Pairs?

Theorem: Let (Σ, B ∪ E) be an order-sorted equational

theory, with Σ B-preregular, ~E sort-decreasing, and −→E/B

terminating. Let V = vars(E), and γ : V → V ′ a bijective,

sort-preserving renaming of variables with V ∩ V ′ = ∅. Then,
~E is confluent modulo B iff, for each pair of equationsa

u = v in E and u′ = v′ in Eγ (including (u′ = v′) ≡ (uγ = vγ))

for each nonvariable position p in u, and for each most

general order-sorted B-unifier θ such that upθ =B u′θ, we

have,

(♭) vθ ↓E/B u[v′]pθ.

The corresponding equations vθ = u[v′]pθ, are called the

critical pairs of the equations E modulo B.
aIf B contains associativity axioms, equations E should first be gen-

eralized to B-match “with extension,” Cf. §4.8 in All About Maude.

19



What Are Critical Pairs? (II)

Proof: (For B = ∅). We had already reduced checking

confluence to checking that, for each pair of equations

(u = v) ∈ E and (u′ = v′) ∈ Eγ, for each nonvariable position

p in u, and for each order-sorted unifier µ such that

upµ = u′µ, we have,

(♭) vµ ↓E u[v′]pµ.

But if Unif (up = u′) = {θ1, . . . , θn} is the set of most general

order-sorted B-unifiers for the equation up = u′, then we can

find a θi ∈ Unif B(up = u′) and a substitution ρ such that

µ = θi ρ.

Since we know that there is a w such that vθi →
∗
E w and

u[v′]pθi →
∗
E w, we will be done if we prove the following:

20



What Are Critical Pairs? (III)

Substitution Lemma: If t
∗

−→E t′ and ρ is a substitution,

then tρ
∗

−→E t′ρ.

Proof: It is enough to prove the case for t −→E t′, since

then the case t
∗

−→E t′ follows easily by induction on the

number of steps. But t −→E t′ means that there is an

equation (u = v) ∈ E, position q and a substitution θ such

that t = t[uθ]q and t′ = t[vθ]q.

But note that, by the definition of the function ρ, we can

easily prove that we have, tρ = tρ[uθρ]q, and t′ρ = tρ[vθρ]q.

Therefore, tρ −→E t′ρ holds by applying u = v at position q

with substitution θ; ρ, as desired. q.e.d.

This finishes the proof of the Theorem (for B = ∅). q.e.d.

21



In Summary

What the Church-Rosser Checker does is:

• it checks that the equations E are sort-decreasing;

• it forms all the critical pairs for the equations E and

tries to join them;

• it returns as proof obligations those equation

specializations that it could not prove sort-decreasing,

and those simplified critical pairs that it could not join.

The arguments in Lecture 7 and in this lecture have shown

that this method is correct for checking confluence, under

the termination assumption.

22



Checking Sufficient Completeness

We need methods to check that an equational theory (Σ, E)

is sufficiently complete. For arbitrary equational theories

sufficient completeness is in general undecidable. This is

not so bad: it just means that we may have to do some

inductive theorem proving.

Sufficient completeness is decidable for a very broad class of

order-sorted theories, namely, unconditional theories of the

form (Σ, E ∪B) with: (iv) B a set of axioms for operators

allowing any combination of associativity and/or

commutativity and/or identity, except associativity without

commutativity, and E: (i) left-linear; (ii) sort-decreasing;

and (iii) terminating.

23



Checking Sufficient Completeness (II)

Furthermore, even for cases satisfying the above

requirements (i)–(iii), but where B includes operators that

are only associative, or associative and identity, sufficient

completeness, although undecidable in theory, becomes

decidable in practice for many specifications of interest

using specialized heuristic algorithms.

Left-linearity (i) means that if t = t′ ∈ E, then t has no

repeated variables. This fails, e.g., for the idempotency

equation x ∪ x = x. Properties (ii)–(iii) (modulo B) we are

alredy familiar with.

24



Tree Automata

For equational theories satisfying the above requirements

(i)–(iii) we can use decidability results from tree automata

theory to cast the sufficient completeness problem into a

tree automata problem and decide the problem that way.

An ordinary finite-state automaton A has a finite set Q of

states and accepts strings of inputs when they lead the

automaton to a subset Q0 ⊆ Q of accepting states. The

language L(A) of the automaton is then the set of all strings

accepted by A. Such languages are called regular languages

and have nice decidablity results: they are closed under

Boolean operations (we can construct automata for each

such operation); and we can decide whether L(A) is empty.

25



Tree Automata (II)

All this is generalized by finite-state tree automata, which

accept terms in an unsorted term algebra TΣ instead of just

strings. A tree automaton is a tuple A = (Σ, Q,Q0, R) with Σ

an unsorted signature, Q a set of extra constants not in Σ

called states, Q0 ⊆ Q a subset of accepting states, and R a

set of transition rules, which can be of two forms:

• f(q1, . . . , qn) → q, with q1, . . . , qn, q ∈ Q, f ∈ Σ and

f(q1, . . . , qn) ∈ TΣ(Q) (for n = 0 f can be a constant)

• q → q′, with q, q′ ∈ Q (epsilon transition)

26



Tree Automata (III)

Notice that we can view the transition rules R as ground

rewrite rules and can use them to rewrite terms in the term

algebra TΣ(Q). Notice also that we have an inclusion

TΣ ⊆ TΣ(Q). We then define the language L(A) as the subset

L(A) ⊆ TΣ of those t ∈ TΣ such that there is a q ∈ Q0 such

that t →∗
R q. A subset L ⊆ TΣ is called regular iff there is a

finite-state tree automaton A such that L = L(A).

Tree automata have the same decidablity results as string

automata: they are closed under Boolean operations (we

can construct automata for each such operation); and we

can decide whether L(A) is empty.

27



Tree Automata as Order-Sorted Signatures

Automata are labeled graphs. Tree automata are labeled

multigraphs, actually, order-sorted signatures. Any tree

automaton A = (Σ, Q,Q0, R) is, graphically, the order-sorted

signature: ΣA = ((Q,<), FA), where, by definition,

q < q′ ⇔ q →+
Rǫ

q′

where Rǫ are the epsilon transitions (w.l.o.g. may assume

Rǫ terminating). And for each q1, . . . , qn, q ∈ Q we have:

f(q1, . . . , qn) → q in R ⇔ f : q1, . . . , qn → q in FA

If the accepting states are Q0 = {q1, . . . , qk}, then the regular

language L(A) is:

L(A) = TΣA,q1
∪ . . . ∪ TΣA,qk

.

This is because, for each q ∈ Q, t ∈ TΣA,q
iff t →∗

R q

28



Tree Automata for Sufficient Completeness

The key observation is that, for theories (Σ, E ∪B) satisfying

conditions (i)–(iii), the following sets of ground Σ-terms are

regular sets:

• the set Ds of terms of sort s having a defined symbol

on top and constructor terms as arguments;

• the set Cs of constructor terms of sort s; and

• the set Red of terms reducible by the equations E

(modulo B), i.e., terms not in normal form.

Under conditions (i)–(iii) (Σ, E ∪B) is sufficiently complete

iff for each sort s we have Ds − (Red ∪ Cs) = ∅, which can be

decided by deciding emptiness of the corresponding tree

automaton.

29



Tree Automata Modulo B

Of course, in general we need to consider tree automata

modulo B, that is, tuples A = (Σ, B,Q,Q0, R), where

(Σ, Q,Q0, R) is an ordinary tree automaton, and B is a set of

equational Σ-axioms such as associativity, commutativity,

and identity of some symbols. The language of A is then a

subset L(A) ⊆ TΣ, now defined by rewriting with R modulo

B. That is, L(A) ⊆ TΣ is the set of those t ∈ TΣ such that

there is a q ∈ Q0 such that t →∗

R/B q.

Hendrix, Ohsaki, and Viswanathan show that the tree

automata decidablity results generalize to the modulo B

case, for B any combination of associativity and/or

commutativity and/or identity, except associativity without

commutativity.

30



Tree Automata Modulo A (II)

Even for the case of associativity alone, or associativity and

identity alone, for which some tree automata questions like

emptiness become undecidable, the sufficient completeness

problem can still be decided in practice for many cases of

interest by specialized heuristic algorithms (Hendrix, Ohsaki,

and Viswanathan, Proc. RTA 2006, Springer LNCS).

All this means that in practice we can decide the sufficient

completeness of most left-linear unconditional order-sorted

specifications of interest.

31



An Example

To see how the desired tree automata needed to decide

sufficient completeness can be built, we can use a simple

example, our usual unsorted specification for addition for

the Peano natural numbers with a single sort Nat, with 0

and s as constructors, and with equations x+ 0 = x and

x+ s(y) = s(x+ y). This specification satisfies conditions

(i)–(iii), since it is left-linear, confluent, sort-decreasing, and

terminating.

To recognize each of the regular sets Red, DNat, and CNat

we need three tree automata ARed, ADNat
, and ACNat

.

32



An Example (II)

The tree automata ARed, ADNat
, and ACtor have the same

signature Σ (that of the natural numbers), set of states

Q = {Nat,Red,DNat,Ctor ,Zero,NzCtor}, and transitions R:

• s(Nat) → Nat, Nat+Nat → Nat, and (ǫ-transitions):

Ctor → Nat, Red → Nat, DNat → Nat,

Zero → Ctor , NzCtor → Ctor .

• (constructor transitions): 0 → Zero, s(Ctor) → NzCtor

• (defined function transition): Ctor + Ctor → DNat

• (reducibility transitions): Ctor + Zero → Red,

Ctor +NzCtor → Red.

They only differ in their respective accepting state: Red,

DNat, and Ctor .

33



An Example (III)

The point now is that each Boolean operation on regular

tree languages has a corresponding operation on their

associated tree automata. Therefore, out of the automata

ARed, ADNat
, and ACtor we can construct an automaton that

recognizes the language DNat − (Red ∪ Ctor). Let us call this

automaton ADNat−(Red∪Ctor). Now we know that under

conditions (i)–(iii) our specification is sufficiently complete

iff DNat − (Red ∪ Ctor) = ∅. Therefore, we can decide this

property by testing ADNat−(Red∪Ctor) for emptiness. If the

test (as for this example) succeeds, we are done. If it

doesn’t, we get very useful counterexample terms, showing

us where sufficient completeness fails.

34



The Maude SCC Tool

The Maude Sufficient Completeness Checker (SCC) is a

tool developed by Joseph Hendrix at UIUC. It uses a library

of tree automata modulo B operations also developed by

him, and reduces the sufficient completeness problem of

specification (Σ, E ∪ B) satisfying conditions (i)–(iii) to the

emptiness problem for the tree automaton ADs−(Red∪Cs) for

each sort s in Σ. It outputs either “success” or a set of

counterexample terms.

Instructions to acces SCC can be found in the course web

page. Its use is essentially very simple. One: (1) loads the

module scc.maude; (2) loads the module to be checked, say

FOO; (3) types “select SCC-LOOP .” and “loop init-scc .”

and (4) gives to the SCC the command “(scc FOO .)”.

35



The Maude SCC Tool (II)

We can illustrate the use of the SCC with some examples

already encountered previously in the course. Consider the

module

fmod NATURAL is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars X Y : Nat .

eq X + 0 = X .

eq X + s(Y) = s(X + Y) .

endfm

36



The Maude SCC Tool (III)

This module is indeed successfully checked by SCC:

Maude> load scc .

Maude> in natural .

==========================================

fmod NATURAL

Maude> select SCC-LOOP .

Maude> loop init-scc .

Starting the Maude Sufficient Completeness Checker.

Maude> (scc NATURAL .)

Checking sufficient completeness of NATURAL ...

Warning: This module has equations that are not

left-linear. The sufficient completeness checker will

rename variables as needed to drop the non-linearity

conditions.

Success: NATURAL is sufficiently complete under the

assumption that it is weakly-normalizing, confluent,

and sort-decreasing.

37



The Maude SCC Tool (IV)

Consider the module

fmod MY-LIST is

protecting NAT .

sorts NzList List .

subsorts Nat < NzList < List .

op _;_ : List List -> List [assoc] .

op _;_ : NzList NzList -> NzList [assoc ctor] .

op nil : -> List [ctor] .

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat) = N:Nat .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .

endfm

38



The Maude SCC Tool (V)

when checked by the SCC gives us the counterexample

Maude> load scc

Maude> in mylist

==========================================

fmod MY-LIST

Maude> select SCC-LOOP .

Maude> loop init-scc .

Starting the Maude Sufficient Completeness Checker.

Maude> (scc MY-LIST .)

Checking sufficient completeness of MY-LIST ...

Warning: This module has equations that are not

left-linear. The sufficient completeness checker will

rename variables as needed to drop the non-linearity

conditions.

Failure: The term 0 ; nil is a counterexample as it is a

irreducible term with sort List in MY-LIST that does

not have sort List in the constructor subsignature.

39



The Maude SCC Tool (VI)

We can correct this problem revising our module:

fmod MY-LIST2 is

protecting NAT .

sorts NzList List .

subsorts Nat < NzList < List .

op _;_ : List List -> List [assoc] .

op _;_ : NzList NzList -> NzList [assoc ctor] .

op nil : -> List [ctor] .

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat) = N:Nat .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .

eq nil ; L:List = L:List .

eq L:List ; nil = L:List .

endfm

40



The Maude SCC Tool (VII)

which is now successfully checked by SCC:

Maude> load scc

Maude> in mylist2

==========================================

fmod MY-LIST2

Maude> select SCC-LOOP .

Maude> loop init-scc .

Starting the Maude Sufficient Completeness Checker.

Maude> (scc MY-LIST2 .)

Checking sufficient completeness of MY-LIST2 ...

Warning: This module has equations that are not

left-linear. The sufficient completeness checker will

rename variables as needed to drop the non-linearity

conditions.

Success: MY-LIST2 is sufficiently complete under the

assumption that it is weakly-normalizing, confluent,

and sort-decreasing.

41


