
Program Verification: Lecture 7

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1

Local Confluence

Call a rewrite theory (Σ, B,R) locally confluent iff whenever

we have t −→R/B u and t −→R/B v, then u ↓R/B v.

Exercise. Prove that if (Σ, B,R) is terminating and locally

confluent, then it is confluent

Hint: use well-founded induction (see STACS) on the

well-founded relation −→R/B.

2

Checking Confluence: the Church-Rosser Checker

The Maude Church-Roser Checker, tries, under the

assumption of termination, to check the confluence

property by checking local confluence.

Given a B-terminating rewrite theory (Σ, B, ~E) (with Σ

B-preregular) as a input, two things can happen:

1. If (Σ, B, ~E) is both confluent and sort-decreasing, the

tool will respond confirming both properties.

2. Otherwise, the tool will provide counterexamples to

either confluence or sort-decreasingness.

In Case (2), (Σ, B, ~E), although not confluent, may still be

ground confluent, i.e., be OK for execution. More reasoning

will be needed to see if ground confluence holds or not.

3

Checking Confluence: the Church-Rosser Checker (II)

In case the check fails, the proof obligations returned can

be very useful for further analysis, either to establish ground

confluence, or to find a conterexample.

The Church-Rosser Checker is part of the Maude Formal

Environment. It extends Full Maude, and checks the

confluence of Full Maude functional modules (assuming

termination).

The module to be checked, say FOO, should have been

declared in Maude. We then give to the Church-Rosser

Checker the command,

Maude> (check Church-Rosser FOO .)

enclosed in parentheses (followed by carriage return).

4

Checking Confluence: the Church-Rosser Checker (III)

We can illustrate the use of the Church-Rosser Checker

with our running example of natural number addition.

fmod NAT-MIXFIX is

sort Natural .

op 0 : -> Natural [ctor] .

op s_ : Natural -> Natural [ctor] .

op _+_ : Natural Natural -> Natural .

vars N M : Natural .

eq N + 0 = N .

eq N + s M = s(N + M) .

endfm

5

Checking Confluence: the Church-Rosser Checker (IV)

Assuming a separate proof of termination, we can check

NAT-MIXFIX confluent and sort-decreasing by giving the

command:

(check Church-Rosser NAT-MIXFIX .)

Church-Rosser checking of NAT-MIXFIX

Checking solution :

The specification is Church-Rosser .

6

Ground Confluent but not Confluent

Sometimes a module will not pass the check, not because

there is any real problem with its equations, but simply

because it is ground confluent but not confluent.

In such a case, the tool will return a set of critical pairs as

proof obligations. Such critical pairs are equations t = t′

such that:

• E ∪B ⊢ t = t′, but

• the joinability property t ↓~E/B t′ fails.

But, as we shall see, these pairs are sufficient, as proof

obligations, to establish ground confluence. That is, if we

can show θ(t) ↓~E/B θ(t′) for each ground substitution θ, then

E is indeed ground confluent (assuming termination).

7

Ground Confluent but not Confluent (II)

We can illustrate ground confluence with the following

module,

fmod ANOTHER-NAT is

sorts Zero Natural .

subsort Zero < Natural .

op 0 : -> Zero .

op s_ : Natural -> Natural .

ops (_+_) (_*_) : Natural Natural -> Natural [comm] .

vars N M : Natural .

eq 0 + N = N .

eq s N + M = s (N + M) .

eq 0 * N = 0 .

eq s N * M = M + (N * M) .

endfm

8

Ground Confluent but not Confluent (II)

(check Church-Rosser ANOTHER-NAT .)

Church-Rosser checking of ANOTHER-NAT

Checking solution :

var N : Natural .

var N@ : Natural .

cp s (N + (N@ + (N * N@))) = s (N@ + (N + (N * N@)))

rewrites: 1368 in 0ms cpu (10ms real) (~ rewrites/second)

9

Ground Confluent but not Confluent (II)

Where does this critical pair come from? It comes from

applying the equation

eq s N * M = M + (N * M) .

modulo commutativity to the term s N * s M in two

different ways yielding terms that, after further

simplification,

s M + (N * s M) = s(M + (N + (N * M)))

s N + (M * s N) = s(N + (M + (N * M)))

cannot be further simplified, and therefore cannot be joined,

showing that the equations are not confluent. However,

every ground instance can be joined.

10

Ground Confluent but not Confluent (III)

What can we do in such a situation? One of four things:

1. use the critical pair as useful information to transform

the equations into equivalent equations that are

confluent and pass the test; or

2. transform the theory, not by changing the equations,

but by adding some more axioms (here, adding assoc to

+ will work); or

3. prove an inductive theorem about the rewriting relation

−→E itself, not about equality!, showing that for each

ground instance the pair can be joined; or

4. find a conterexample disproving ground confluence.

11

Ground Confluent but not Confluent (IV)

In our example, alternative (1) yields a transformed module,

by realizing that the equation

eq s N * M = M + (N * M) .

is in a sense too general, since, the case M = 0 is covered by

the other equations for addition and multiplication.

Therefore, we can assume M = s M’, and replace the above

equation by the more specialized equation,

eq s N * s M = s((N + M) + (N * M)) .

to get the confluent transformed module,

12

Ground Confluent but not Confluent (V)

fmod CONFLUENT-NAT is

sorts Zero Natural .

subsort Zero < Natural .

op 0 : -> Zero .

op s_ : Natural -> Natural .

ops (_+_) (_*_) : Natural Natural -> Natural [comm] .

vars N M : Natural .

eq 0 + N = N .

eq s N + M = s (N + M) .

eq 0 * N = 0 .

eq s N * s M = s((N + M) + (N * M)) .

endfm

13

Ground Confluent but not Confluent (VI)

(check Church-Rosser CONFLUENT-NAT .)

Church-Rosser checking of CONFLUENT-NAT

Checking solution :

The specification is Church-Rosser .

14

Justification of the Church-Rosser Checker

The justification will be somewhat incomplete, since it will

be resticted to term rewriting systems (Σ, ~E) (i.e., B = ∅). A

full account of all the issues involved, covering both the

rewriting modulo B case and conditional rewrite rules, can

be found in:

F. Durán and J. Meseguer, “On the Church-Rosser and

Coherence Properties of Conditional Order-Sorted Rewrite

Theories,” JLAP, 81, 816–850, 2012. Tech Report version

available online at the UIUC IDEALS Repository:

http://hdl.handle.net/2142/17384

15

Justification of the Church-Rosser Checker (II)

The Church-Rosser Checker does two things:

• check that the equations are sort-decreasing; and

• check confluence (assuming termination) by checking

local confluence for all possible critical pairs.

Checking sort-decreasingness is relatively easy to do, since,

as explained in Lecture 6, assuming Σ is preregular, it

reduces to checking for each rewrite rule t → t′ that

ls(tρ) ≥ ls(t′ρ)

for each variable specializations ρ. This is easy, since if Σ is

finite there is only a finite number of such specializations.

16

Justification of the Church-Rosser Checker (III)

Consider, for example, that we want to check the

sort-decreasingness of an equation, with I of sort Integer,

eq I + 0 = I .

in a module INTEGER with two declarations of addition,

op _+_ : Natural Natural -> Natural .

op _+_ : Integer Integer -> Integer .

and with subsorts NzInteger, NzNatural, and Natural. Then,

to check that the equation is sort decreasing, it is enough

to check that the sort of the lefthand side is greater or

equal to that of the righthand side for the original equation,

and for the equations obtained replacing I by a variable in

each of the subsorts.

17

Justification of the Church-Rosser Checker (IV)

Why should we check sort-decreasingness as well as (local)

confluence? Because, besides being an important property,

lack of sort decreasingness can also cause lack of

confluence.

The rewrite rules shown in Lecture 6,

~E = {c → d, f(f(x : C)) → f(x : C)} with c : C, d : D, and

C < D, have lefthand sides with no symbols in comon. As

we shall see, this is the best possible situation for

confluence, since then there are no critical pairs.

However, ~E is not confluent. Indeed, we can rewrite f(f(c))

to both f(d) and f(f(d)), which cannot be further rewritten.

18

Justification of the Church-Rosser Checker (V)

So, the main questions remaining are:

• what is a critical pair? and

• why is checking joinability of critical pairs sufficient for

checking confluence under the termination (and the

already checked sort-decreasingness) assumptions?

19

Justification of the Church-Rosser Checker (VI)

As mentioned earlier in the lecture, a set E of equations

that is locally confluent and terminating is confluent.

Therefore, under the termination assumption, all we need to

do is to convince ourselves that, given a term t, and given

two one-step simplifications t −→E t′, and t −→E t′′, we

always can join t′ and t′′. That is, we always have, t′ ↓E t′′.

The crucial point, then, is to analyze where in t do the

rewrites t −→E t′, and t −→E t′′ happen. For this we need to

talk about positions in a term.

20

Term Positions and Subterm Occurences

Each Σ-term can be viewed as a tree in the obvious way.

Each position in the tree can be denoted by a string of

natural numbers, indicating the path that we must follow to

go down in the tree and reach the position.

At each level, the corresponding number in the string

indicates the argument position on which we must go down,

to finally reach the desired position. For example, the term

f(h(d), q(b, a), g(a, k(c))) has the subterm k(c) at position 3.2.

Given a Σ-term t and a position p we denote by tp the

subterm occuring at that position; thus,

f(h(d), q(b, a), g(a, k(c)))3.2 = k(c).

21

Notation for Term Decomposition at a Position

Given a position p ∈ (N− {0})∗ in a term t we denote by t[]p

the context obtained by placing a hole [] at position p. For

example, f(h(d), q(b, a), g(a, k(c)))[]3.2 = f(h(d), q(b, a), g(a, [])).

Therefore, if p is a position in t, we obtain a

context-subterm decomposition of t as the pair (t[]p, tp), For

example, f(h(d), q(b, a), g(a, k(c))) decomposes at 3.2 as the

contex-subterm pair (f(h(d), q(b, a), g(a, [])), k(c))

Given a context t[]p and a term u, the result of replacing the

hole by u, that is, the term (t[]p)[u] is abbreviated to t[u]p.

Of course, if u = tp we have the identity t = t[tp]p.

22

Justification of the Church-Rosser Checker (VII)

Recall that a simplification step with E must happen at a

given position p in t. Therefore, for t −→E t′, and t −→E t′′

we must have two positions, p and q in t and two oriented

equations u = v and u′ = v′ in E with substitutions θ and µ

such that:

• t = t[uθ]p = t[u′µ]q;

• t′ = t[vθ]p;

• t′′ = t[v′µ]q.

all now hinges upon where p and q are located in t.

23

Justification of the Church-Rosser Checker (VIII)

There are essentially three possibilities (see the picture):

1. nested simplification with overlap: there is a path r

such that q = p.r (or p = q.r, but this case is symmetric)

and r is a nonvariable position in u;

2. nested simplification without overlap: there is a

path r such that q = p.r, but r is not a nonvariable

position in u;

3. sideways simplification: there isn’t such an r at all.

24

Three Possibilities for p and q

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁
✁
✁
✁
✁
✁✁

❆
❆
❆
❆
❆
❆
❆❆

✁
✁
✁
✁
✁✁

❆
❆
❆
❆
❆❆

❈❈
✂
✂
❈❈
✄✄
❈❈

t =

p

q

u

u
′

✁
✁
✁
✁
✁
✁

✁
✁
✁
✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁
✁
✁
✁
✁

✁✁

❆
❆
❆
❆
❆
❆
❆❆

✁
✁
✁

❆
❆
❆

❈❈
✂
✂
❈❈
✆
✆
❅❅
✁
✁

t =

p

q

u

u
′

✁
✁

✁
✁
✁
✁
✁
✁
✁
✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁
✁

❆
❆
❆
❆

✁
✁

✁
✁

❆
❆
❆
❆

✄✄
❊
❊

��
✂
✂
✂✂

❊
❊
❊❊
☎
☎
☎❍❍❍

t =

p q

u u
′

25

Justification of the Church-Rosser Checker (IX)

In the sideways case, where neither q = p.r, nor p = q.r, the

positions are totally independent, in the sense that we have:

t = (t[uθ]p)[u
′µ]q = (t[u′µ]q)[uθ]p.

Therefore, we have:

• t′ = t[vθ]p = (t[u′µ]q)[vθ]p = (t[vθ]p)[u
′µ]q; and

• t′′ = t[v′µ]q = (t[uθ]p)[v
′µ]q = (t[v′µ]q)[uθ]p.

26

Justification of the Church-Rosser Checker (X)

Therefore we have a term w of the form (see the picture):

w = t′[v′µ]q = (t[vθ]p)[v
′µ]q = (t[v′µ]q)[vθ]p = t′′[vθ]p.

and therefore, t′ −→E w, and t′′ −→E w.

27

Sideways Simplification

✁
✁
✁
✁

✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁✁

❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

✆
✆
❉❉

�
�

❈
❈❈
✄✄
❅
❅p q

u u
′

✁
✁
✁
✁

✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁✁

❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

✆
✆
❉❉

�
�

❈
❈❈
✄✄
❅
❅p q

v v
′

✁
✁
✁
✁
✁
✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁✁

❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

✆
✆
❉❉

�
�

❈
❈❈
✄✄
❅
❅p q

v u
′

✁
✁
✁
✁
✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁

✁✁

❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

✆
✆
❉❉

�
�

❈
❈❈
✄✄
❅
❅p q

u v
′

✚
✚❂

❩
❩
❩⑦

❩
❩⑦

✚
✚

✚❂

28

Justification of the Church-Rosser Checker (XI)

The case of nested simplification without overlap is also

always joinable. The detailed proof is left as an exercise;

but note that, since a single variable in u may occur several

times in v, the occurrence of u′ underneath u may be copied

several times by the simplification with the equation u = v.

This means that to reach a common w from t′ several steps

of simplification may be needed (see the picture).

29

Nested Simplification without Overlap

✁
✁
✁
✁

✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁
✁

✁
✁

❆
❆
❆
❆
❆
❆

✁
✁✁
❆
❆❆

❉❉
☎☎
❊
❊
✆
✆

p

q

u

u
′

✁
✁
✁
✁

✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁
✁

✁
✁

❆
❆
❆
❆
❆
❆

✁
✁
❆
❆

✁
✁
❆
❆

❉❉
☎☎

. . .

v

v
′

v
′

✁
✁
✁
✁
✁
✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆

✁
✁✁
❆
❆❆

❉❉
☎☎
❊
❊
✆
✆

p

q

u

v
′

✁
✁
✁
✁
✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆

✁
✁
❆
❆

✁
✁
❆
❆

❉❉
☎☎

. . .

v

u
′

u
′

✚
✚❂

❩
❩
❩⑦

❩
❩⑦

✚
✚

✚❂
**

30

Nested Simplifications with Overlap

Therefore, we have reduced the confluence property

(assuming termination) to the joinablilty problem for nested

simplifications with overlap in which we have equations u = v

and u′ = v′ in E (Note: u′ = v′ could be the same equation

u = v considered twice!) and should consider terms t with

positions p and p.r, and a substitution α = θ ⊎ ρ such that:

1. tp = uα;

2. r is a nonvariable position in u, and tp.r = (uα)r = u′α.

This formulation of the overlap situation assumes that the

variables in u and u′ are disjoint, or have been made so by

renaming their variables, even in the case when the

equation u = v is considered twice (self-overlap).

31

Context-Free Nested Simplifications with Overlap

The joinabiliy problem for nested simplifications with

overlap then consists in showing,

(∗) t[vα]p ↓E (t[uα[v′α]r]p).

Our next reduction of the problem comes from the

observation that the context t in which all this happens is

irrelevant. That is, we can reduce the problem to that of

checking joinability for all context-free nested simplifications

with overlap of the form,

(♭) vα ↓E uα[v′α]r.

32

Context-Free Nested Simplifications with Overlap (II)

Of course, (∗) ⇒ (♭), but we also have (♭) ⇒ (∗), because of

the following,

Context Lemma: Let t = t[u]p ∈ TΣ(X), and suppose that

we have, u
∗

−→E v. Then we have, t[u]p
∗

−→E t[v]p.

Proof: It is obviously enough to check it for one step

(−→E), that is, for u −→E v. But by sort-decreasingness of

−→E we then have a well-formed term t[v]p ∈ TΣ(X), where

if the rewriting of u happened at, say, position r, then the

rewriting of t = t[u]p now happens at position p.r and yields,

t[u]p −→E t[v]p. q.e.d.

33

Justification of the Church-Rosser Checker (XII)

Therefore, we have so far reduced the problem of confluence

(under the termination assumption) to the considerably

simpler problem of joinability of context-free nested

simplifications with overlap, and the question still remains,

What is a critical pair? Stay tuned!

34

