
Program Verification: Lecture 3

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1



Algebras

An (unsorted, many-sorted, or order-sorted) signature Σ is

just syntax: provides the symbols for a language; but what

is that language talking about? what is its semantics?

It is obviously talking about algebras, which are the

mathematical models in which we interpret the syntax of Σ,

giving it concrete meaning.

Unsorted algebras are the simplest example: children

become familiar with them from the early awakenings of

reason. They consist of a set of data elements, and various

chosen constants among those elements, and operations on

such data.

2



Algebras (II)

For example, for Σ the unsorted signature of the module

NAT-MIXFIX, that is, Σ = {0, s, + , ∗ }, we can define many

different algebras by:

• Choosing a set A of data elements of the algebra.

• Choosing for each function symbol f ∈ Σ with n

arguments its interpretation as a function fA : An → A.

For example:

1. IN, the algebra of natural numbers in whatever notation

we wish (Peano, binary, base 10, etc.) with 0

interpreted as the zero element, s interpreted as

successor, and + and * interpreted as natural number

addition and multiplication. E.g., 6 +IN 6 = 12.

3



2. INk, the algebra of residue classes modulo k, for k a

nonzero natural number. This is a finite algebra whose

set of elements can be represented as the set

{0, . . . , k − 1}. We interpret 0 as 0, and for the other

operations we perform them in IN and then take the

residue modulo k. For example, in IN7 we have

6 +IN7
6 = 5.

3. Z, the algebra of the integers, with 0 interpreted as the

zero element, s interpreted as successor, and + and *

interpreted as integer addition and multiplication.

4. Q, the algebra of the rational numbers, with 0

interpreted as the zero element, s interpreted as adding

1, and + and * interpreted as rational addition and

multiplication.

5. R, the algebra of the real numbers, with 0 interpreted

4



as the zero element, s interpreted as adding 1, and +

and * interpreted as real number addition and

multiplication.

6. C, the algebra of the complex numbers, with 0

interpreted as the zero element, s interpreted as adding

1, and + and * interpreted as complex number

addition and multiplication.

Similarly, for Σ the unsorted signature:

sort Boolean .

ops true false : -> Boolean .

op not : Boolean -> Boolean .

ops and or : Boolean Boolean -> Boolean .

we can define many algebras, including the following:

5



1. B the standard Boolean algebra, with just two elements,

say {0, 1}, with true interpreted as 1 and false as 0 and

with the standard interpretation of not, and, and or as

Boolean operations (specified by truth tables).

2. (Powersets) for X any set, we can define on its

powerset P(X) a Σ-algebra for this signature, by

interpreting: true as X, false as ∅, not interpreted as

complement (that is, not(Y ) = X − Y ), and with and,

and or interpreted, respectively, as set intersection ∩

and set union ∪.

3. Note the fact that we can also define an algebra for the

symbols Σ = {0, s, + , ∗ } on {0, 1}, by interpreting 0

as 0, s as negation, + as disjunction, and ∗ as

conjunction. Likewise, on P(X) we could interpret 0 as

∅, s as complement, + as ∪, and ∗ as ∩.

6



General Definition of Unsorted Algebras

For Σ an unsorted signature Σ = ({s}, F ), with single sort s,

an unsorted Σ-algebra is a pair A = (A, A), where the A,

called the interpretation of s, is a set specifying the data

elements in the algebra, and A is a symbol interpretation

function that maps:

• each constant a :−→ s in F to an element aA ∈ A

• each n-ary function symbol f : s n. . . s −→ s in F to a

function fA : An −→ A.

Note that we distinguish between the algebra A and the set

A, because each interpretation in A of the function symbols

F defines a different algebra: we can have: (A, A) 6= (A, A′).

7



Example: Dual Boolean Algebras

For two Boolean algebras: the standard one B = ({0, 1}, B),

and the powerset algebra P(X) = (P(X), P(X)) for X a set,

we can define their corresponding dual boolean algebras,

B◦ = ({0, 1}, B◦) and P◦(X) = (P(X), P◦(X)) as follows:

• B◦ = ({0, 1}, B◦), where B◦ interprets true as 0, false as

1, not as negation, and as disjunction, and or as

conjunction.

• P◦(X) = (P(X), P◦(X)), where P◦(X), interprets true as ∅,

false as X, not as complement, and as ∪, and or as ∩.

Any Boolean algebra A has an order defined by:

x ≤ y ⇔ x or y = y. The dual A◦ of A reverses this order:

x ≤ y in A iff y ≤ x in A◦. The point of this example is that

many different algebras can have the same data set A.

8



The algebra of Arithmetic Expressions

Consider the signature Σ = {0, s,+, ∗}. With its usual typing,

Σ defines a grammar, and therefore the set (“language”) TΣ

of all arithmetic expressions.

Set theoretically, TΣ can be inductively defined as the

smallest set such that (using prefix notation to avoid

ambiguity in parsing):

• 0 ∈ TΣ

• t ∈ TΣ ⇒ s(t) ∈ TΣ

• t1, t2 ∈ TΣ ⇒ +(t1, t2) ∈ TΣ ∧ ∗(t1, t2) ∈ TΣ.

We can now use TΣ as the data set of a Σ-algebra of

arithmetic expressions TΣ = (TΣ, TΣ
) defined as follows:

9



The algebra of Arithmetic Expressions (II)

The symbol interpretation function TΣ
of TΣ = (TΣ, TΣ

)

maps:

• 0 to 0TΣ
= 0 ∈ TΣ

• s to the unary function sTΣ
: TΣ ∋ t 7→ s(t) ∈ TΣ.

• +, resp. ∗, to the binary functions:

+TΣ
: T 2

Σ ∋ (t1, t2) 7→ +(t1, t2) ∈ TΣ, resp.,

∗TΣ
: T 2

Σ ∋ (t1, t2) 7→ ∗(t1, t2) ∈ TΣ.

The most intuitive way to understand these operations is to

represent t by its abstract syntax tree. Then, these are

tree-building operations: sTΣ
makes t a subtree of a tree

with root s, and +TΣ
(resp. ∗TΣ

) make t1, t2 subtrees of a

tree with root + (resp. ∗).

10



Term Algebra: the General Definition

Arithmetic expressions are just one example. The same

construction works for any unsorted signature Σ = ({s}, F ).

It defines the term Σ-algebra TΣ = (TΣ, TΣ
) as follows.

(1). The set TΣ of Σ-terms is the smallest set such that: (i)

a ∈ TΣ for each constant a in F , and (ii) if t1, . . . , tn ∈ TΣ,

then f(t1, . . . , tn) ∈ TΣ for each f : s n. . . s −→ s in F , n ≥ 1.

(2). The symbol interpretation function TΣ
maps:

• each constant a in F to aTΣ
= a ∈ TΣ.

• each f : s n. . . s −→ s in F to the function:

fTΣ
: Tn

Σ ∋ (t1, . . . , tn) 7→ f(t1, . . . , tn) ∈ TΣ, n ≥ 1.

Again, the fTΣ
, f ∈ F , are just tree-building operations on

the abstract syntax trees belonging to TΣ.

11



The Algebra Defined by a Functional Module

Million-Dollar Question: What is the meaning (i.e.,

semantics) of a Maude functional module fmod (Σ, E) endfm?

Million-Dollar Answer: For reasonable (Σ, E) is an algebra,

denoted CΣ/E, and called its canonical term algebra.

The algebra CΣ/E is the most intuitive thing imaginable: it

is the model the programmer has in mind and intends for

his/her program fmod (Σ, E) endfm.

For example, the canonical term algebra CΣ/E when

Σ = {0, s,+, ∗} and fmod (Σ, E) endfm is the NAT-MIXFIX

module is exactly the algebra N of the natural numbers (in

Peano notation) described in slide 3 of this lecture.

I define CΣ/E first for the NAT-MIXFIX module, and then do

so in general. First: what are the data elements of CΣ/E?

12



Constructor Terms = the Data Elements of CΣ/E

Recall that in the signature Σ = {0, s,+, ∗} of NAT-MIXFIX,

the opertors in Ω = {0, s} were declared with the [ctor]

declaration, that is, as data constructors.

This exactly means that the intended data elements of

NAT-MIXFIX are precisely the Peano natural numbers 0, s(0),

s(s(0)), ..., that is, the set TΩ, called the constructor terms.

Q: Why are the operators 0 and s in Ω called constructors?

A: Because in the term algebra TΩ = (TΩ, TΩ
) the constant

0 and the tree-building function sTΩ
are used to build or

construct all the Peano natural numbers as trees.

Therefore, the canonical term algebra CΣ/E has the form:

CΣ/E = (TΩ, CΣ/E
). The pending question is: How is its

symbol interpretation function CΣ/E
defined?

13



Properties Needed to Define CΣ/E

Defining the symbol interpretation function CΣ/E
of

CΣ/E = (TΩ, CΣ/E
) requires two properties of the equations:

eq N + 0 = N .

eq N + s(M) = s(N + M) .

eq N * 0 = 0 .

eq N * s(M) = N + (N * M) .

(1). Unique Termination. Given any Σ-term t, the

application of the above equations to t as left-to-right

simplification rules always terminates with a unique result.

Therefore, the Maude command “red t .” doesn’t loop.

(2). Sufficient Completeness. The simplification of any

Σ-term t always terminates in a constructor term. This

would fail if any of the above equations had been omitted.

14



Defining CΣ/E for NAT-MIXFIX

I claim that the equations E in NAT-MIXFIX satisfy the

Unique Termination and Sufficient Completeness

properties. We shall see that both properties can be

checked automatically with Maude tools.

Q: Assuming these two properties, how is the symbol

interpretation function CΣ/E
defined?

A: Using the red command! Assuming those two properties

exactly means that the process of simplifying a Σ-term t to

termination with the equations E always results in a single

constructor term, denoted t!E. This defines a function:

!E : TΣ ∋ t 7→ t!E ∈ TΩ

which is precisely the function implemented in Maude by

the red command. How is CΣ/E
defined? See the next slide.

15



Defining CΣ/E for NAT-MIXFIX (II)

The definition of the canonical term algebra

CΣ/E = (TΩ, CΣ/E
) is then easy. CΣ/E

maps:

• 0 to 0CΣ/E
= 0!E = 0 ∈ TΩ

• s to sCΣ/E
: TΩ ∋ t 7→ s(t)!E = s(t) ∈ TΩ, and

• + (resp. ∗) to the function:

+CΣ/E
: T 2

Ω ∋ (t1, t2) 7→ +(t1, t2)!E ∈ TΩ

(resp. ∗CΣ/E
: T 2

Ω ∋ (t1, t2) 7→ ∗(t1, t2)!E ∈ TΩ).

This just means that, e.g., +CΣ/E
(s(s(0)), s(s(0))) is the result

returned by red s(s(0)) + s(s(0)) . That is, s(s(s(s(0)))).

16



Defining CΣ/E in General

Let fmod (Σ, E) endfm be a functional module with unsorted

signature Σ and constructor subsignature Ω, were the E

satisfy: (1) Unique Termination and (2) Sufficient

Completeness, so that there is a simplification function

!E : TΣ ∋ t 7→ t!E ∈ TΩ. Furthermore, ∀t ∈ TΩ, t!E = t. Then,

the semantics of fmod (Σ, E) endfm is the canonical term

algebra CΣ/E = (TΩ, CΣ/E
), where CΣ/E

maps:

• any constant a in Σ to aCΣ/E
= a!E ∈ TΩ.

• any f : s n. . . s −→ s in Σ, n ≥ 1, to the function:

fCΣ/E
: Tn

Ω ∋ (t1, . . . , tn) 7→ f(t1, . . . , tn)!E ∈ TΩ.

Again, this has a clear, very intuitive meaning: it just means

that for any t1, . . . , tn ∈ TΩ, fCΣ/E
(t1, . . . , tn) is the result

returned by the Maude command red f(t1,...,tn) .

17



Getting to Use Maude

You should begin writing functional modules of your own

with syntax as exemplified in the examples in lectures. An

easy and reusable way is to write such modules in files and

reading them in with Maude’s in command.

Download Maude from the Maude web page

http://maude.cs.uiuc.edu. Read Setion 1.7 of “All About

Maude” for suggestions on how beginners can become

acquainted with Maude as soon as possible.

To enter a module into Maude can use cut and paste, or

the “in filename” command inside Maude, and can change

or list directories using Unix commands.

18



Some Common Mistakes

• not ending declarations for sorts, operators, etc. with a

space followed by a period, e.g.,

sort Natural

op 0 : -> Natural.

op s : Natural -> Natural

• not putting enough parentheses to disambiguate

expressions, e.g., p s s 0 + 0

• not leaving spaces between a mixfix operator and its

arguments, e.g., 0+0

19



Readings and Exercises

Before the next lecture try to:

• Follow the reading suggestions for beginners in 1.7 of

“All About Maude,” and try to get as deep as possible

this way into Chapter 4.

• Continue playing with Maude. Define other functions

on commonly used data types. For example, define

binary trees that have natural numbers in their leaves,

and define three functions: (i) tree reverse, (ii) max

and min (give the biggest, resp. smallest, number

stored in the tree), and (iii) insert, which inserts a

number in the tree, so that numbers to its left in the

tree will be smaller.

20



Readings and Exercises (II)

Ex.3.1. Give examples of Maude functional modules such

that:

1. The module is not terminating.

2. The module is terminating, but not uniquely so; that is,

one can choose a term such that, depending on the

order in which the equations are applied, the simplified

term obtained from simplifying the chosen term may be

different.

3. The module is not sufficiently complete; that is, one

can choose a non-constructor term whose simplified

form is also a non-constructor term.

21



Readings and Exercises (III)

Ex.3.2. Let Σ be the signature:

sort Natural .

op 0 : -> Natural .

op s : Natural -> Natural .

And let A = {a, b, c}. How many different Σ-algebra

structures can be defined on the set A? That is, how many

different Σ-algebras of the form A = (A, A) are there?

(Explain, and also state the total number of such algebras).

Can you justify why the number comes out that way? For

example, can your supposed justification predict (without

having to explicitly construct them) exactly how many such

algebras will there be on A if we add to the above Σ a

binary function, say,

op _+_ : Natural Natural -> Natural .

22


