
Program Verification: Lecture 2

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Equational Theories

Theories in equational logic are called equational theories. In
Computer Science they are sometimes referred to as algebraic
specifications.

An equational theory is a pair (Σ, E), where:

• Σ, called the signature, describes the syntax of the theory, that
is, what types of data and what operation symbols (function
symbols) are involved;

• E is a set of equations between expressions (called terms) in
the syntax of Σ.

2

Unsorted, Many-Sorted, and Order-Sorted Signatures

Our syntax Σ can be more or less expressive, depending on how
many types (called sorts) of data it allows, and what relationships
between types it supports:

• unsorted (or single-sorted) signatures have only one sort, and
operation symbols on it;

• many-sorted signatures allow different sorts, such as Integer,
Bool, List, etc., and operation symbols relating these sorts;

• order-sorted signatures are many-sorted signatures that, in
addition, allow inclusion relations between sorts, such as
Natural < Integer.

3

Maude Functional Modules

Maude functional modules are equational theories (Σ, E), declared
with syntax

fmod (Σ, E) endfm

Such theories can be unsorted, many-sorted, or order-sorted, or
even more general membership equational theories (to be discussed
later in the course).

In what follows we will see examples of unsorted, many-sorted and
order-sorted equational theories (Σ, E) expressed as Maude
functional modules, and of how one can use such theories as
functional programs by computing with the equations E.

4

Unsorted Functional Modules

*** prefix syntax

fmod NAT-PREFIX is
sort Natural .
op 0 : -> Natural [ctor] .
op s : Natural -> Natural [ctor] .
op + : Natural Natural -> Natural .
vars N M : Natural .
eq +(N,0) = N .
eq +(N,s(M)) = s(+(N,M)) .

endfm

Maude> red +(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : +(s(s(0)), s(s(0))) .
rewrites: 3 in -10ms cpu (0ms real) (~ rewrites/second)
result Natural: s(s(s(s(0))))
Maude>

5

Unsorted Functional Modules (II)

fmod NAT-MIXFIX is *** mixfix syntax
sort Natural .
op 0 : -> Natural [ctor] .
op s_ : Natural -> Natural [ctor] .
op _+_ : Natural Natural -> Natural .
op _*_ : Natural Natural -> Natural .
vars N M : Natural .
eq N + 0 = N .
eq N + s M = s(N + M) .
eq N * 0 = 0 .
eq N * s M = N + (N * M) .

endfm

Maude> red (s s 0) + (s s 0) .
reduce in NAT-MIXFIX : s s 0 + s s 0 .
rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>

6

Many-Sorted Functional Modules

fmod NAT-LIST is
protecting NAT-MIXFIX .
sort List .
op nil : -> List [ctor] .
op _._ : Natural List -> List [ctor] .
op length : List -> Natural .
var N : Natural .
var L : List .
eq length(nil) = 0 .
eq length(N . L) = s length(L) .

endfm

Maude> red length(0 . (s 0 . (s s 0 . (0 . nil)))) .
reduce in NAT-LIST : length(0 . s 0 . s s 0 . 0 . nil) .
rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>

7

Many-Sorted Signatures

The full signature Σ of the NAT-LIST example, that imports
NAT-MIXFIX, is then,

sorts Natural List .
op 0 : -> Natural .
op s_ : Natural -> Natural .
op _+_ : Natural Natural -> Natural .
op _*_ : Natural Natural -> Natural .
op nil : -> List .
op _._ : Natural List -> List .
op length : List -> Natural .

8

Many-Sorted Signatures as Labeled Multigraphs

We can naturally represent a many-sorted signature as a labeled
multigraphs whose nodes are the sorts, and whose labeled edges are
the operation symbols.

In a normal labeled graph a directed edge links an input node to an
outpt node. Instead, in a multigraph an edge links zero, one, or
several input nodes to an output node. So, we view an operator like

op _._ : Natural List -> List .

as a labeled edge having two input nodes and one output node (see
Picture 2.1). When all operations are unary, signatures are exactly
labeled graphs (see Picture 2.2)

9

Many-Sorted Signatures Mathematically

An many-sorted signature is a pair Σ = (S, F), with:

• S a set whose elements s, s′, s′′, . . . ∈ S are called sorts, and

• F , called the set of function symbols, is an S∗ × S-indexed set
F = {Fw,}(w,s)∈S∗×S , where if f ∈ Fs1...sn,s then we display it
as f : s1 . . . sn −→ s and call sequence of sorts s1 . . . sn ∈ S∗

the argument sorts, and s ∈ S the result sort. When n = 0, we
call f ∈ Fnil,s, with nil the empty sequence, a constant.

10

Many-Sorted Signatures Mathematically (II)

In full detail, the signature Σ in our NAT-LIST example has: set of
sorts S = {Natural, List}, and indexed family F of sets of
function symbols:

Fnil,Natural = {0}, Fnil,List = {nil}, FNatural,Natural =

{s_}, FNatural Natural,Natural = {_+_,_*_}, FNatural List,List =

{_._}, FList,Natural = {length}.

Similarly, the signature Σ in our NAT-PREFIX example has
S = {Natural} an indexed family G of sets of function symbols:

Gnil,Natural = {0}, GNatural,Natural = {s}, GNatural Natural,Natural =

{+}.

11

The Need for Order-Sorted Signatures

Many-sorted signatures are still too restrictive. The problem is that
some operations are partial, and there is no natural way of defining
them in just a many-sorted framework.

Consider for example defining a function first that takes the first
element of a list of natural numbers, or a predecessor function p
that assigns to each natural number its predecessor. What can we
do? If we define,

op first : List -> Natural .
op p_ : Natural -> Natural .

we have then the awkward problem of defining the values of
first(nil) and of p 0, which in fact are undefined.

12

The Need for Order-Sorted Signatures (II)

A much better solution is to recognize that these functions are
partial with the typing just given, but become total on appropriate
subsorts NeList < List of nonempty lists, and NzNatural <
Natural of nonzero natural numbers. If we define,

op s_ : Natural -> NzNatural .
op _._ : Natural List -> NeList .
op first : NeList -> Natural .
op p_ : NzNatural -> Natural .

everything is fine. Subsorts also allow us to overload operator
symbols. For example, Natural < Integer, and

op _+_ : Natural Natural -> Natural .
op _+_ : Integer Integer -> Integer .

13

Order-Sorted Functional Modules

fmod NATURAL is
sorts Natural NzNatural .
subsorts NzNatural < Natural .
op 0 : -> Natural [ctor] .
op s_ : Natural -> NzNatural [ctor] .
op p_ : NzNatural -> Natural .
op _+_ : Natural Natural -> Natural .
op _+_ : NzNatural NzNatural -> NzNatural .
vars N M : Natural .
eq p s N = N .
eq N + 0 = N .
eq N + s M = s(N + M) .

endfm

Maude> red p((s s 0) + (s s 0)) .
reduce in NATURAL : p (s s 0 + s s 0) .
rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNatural: s s s 0

14

Order-Sorted Functional Modules (II)

fmod NAT-LIST-II is
protecting NATURAL .
sorts NeList List .
subsorts NeList < List .
op nil : -> List [ctor] .
op _._ : Natural List -> NeList [ctor] .
op length : List -> Natural .
op first : NeList -> Natural .
op rest : NeList -> List .
var N : Natural .
var L : List .
eq length(nil) = 0 .
eq length(N . L) = s length(L) .
eq first(N . L) = N .
eq rest(N . L) = L .

endfm

15

Order-Sorted Signatures Mathematically

An order-sorted signature Σ is a pair Σ = ((S,<), F) where (S, F)

is a many-sorted signature, and where < is a partial order relation
on the set S of sorts called subsort inclusion.

That is, < is a binary relation on S that is:

• irreflexive: ¬(x < x)

• transitive: x < y and y < z imply x < z

Any such relation < has an associated ≤ relation that is reflexive,
antisymmetric, and transitive. We will move back and forth
between < and ≤ (see STACS 7.4).

Note: Unless specified otherwise, by a signature we will always
mean an order-sorted signature.

16

Connected Components of the Poset of Sorts

Given a signature Σ, we can define an equivalence relation (see
STACS 7.6) ≡≤ between sorts s, s′ ∈ S as the smallest relation
such that:

• if s ≤ s′ or s′ ≤ s then s ≡≤ s′

• if s ≡≤ s′ and s′ ≡≤ s′′ then s ≡≤ s′′

We call the equivalence classes modulo ≡≤ the connected
components of the poset order (S,≤). Intuitively, when we view
the poset as a directed acyclic graph, they are the connected
components of the graph (see STACS 7.6, Exercise 68).

17

Connected Components Example

NzNatural

NzInteger

Integer

Natural

#
#

#
##

#
#

#
##

NeList

List

Bool

Prop

S/ ≡≤ = {{NzNatural,Natural,NzInteger, Integer}, {Nelist, List}, {Bool, Prop}}

18

Subsort vs. Ad-hoc Overloading

In general, the same operator name may have different declarations
in the same signature Σ. For example, in the NATURAL module we
have,

op _+_ : Natural Natural -> Natural .
op _+_ : NzNatural NzNatural -> NzNatural .

When we have two operator declarations, f : w −→ s, and
f : w′ −→ s′, with w and w′ strings of equal length, then: (1) if
w ≡≤ w′ and s ≡≤ s′, we call them subsort overloaded; (2)
otherwise, e.g, _+_ for Natural and for exclusive or in Bool, we call
them ad-hoc overloaded.

19

Order-Sorted Signatures as Labelled Multigraphs

Since an order-sorted signature is a many-sorted signature whose
set of nodes is a poset, we can describe them graphically as labeled
multigraphs whose set of nodes is a poset.

We can picture subsort inclusions as usual for partial orders, and
operators, as before, as labeled edges in the multigraph. For
example, the order-sorted signature of the module NAT-LIST-II is
depicted this way in Picture 2.3

20

Exercises

Ex.2.1. Define in Maude the following functions on the naturals:

• > and ≥ as Boolean-valued binary functions importing the
built-in module BOOL with single sort Bool.

• max and min, that yield the maximum, resp. minimum, of two
numbers,

• even and odd as Boolean-valued functions on the naturals,

• factorial, the factorial function.

21

Exercises (II)

Ex.2.2. Define in Maude the following functions on list of natural
numbers:

• append and reverse, which appends two lists, resp. reverses the
list,

• max and min that computes the biggest (resp. smallest)
number in the list,

• get.even, which extracts the lists of even numbers of a list,

• odd.even, which, given a lists, produces a pair of list: the first
the sublist of its odd numbers and the second the sublist of its
even numbers.

22

