
CS 476 Homework #8 Due 10:45am on 3/23

Note: Answers to the exercises listed below and the code solution for Exercise 2 should be emailed in typewritten
form (latex formatting preferred) by the deadline mentioned above to reedoei2@illinois.edu.

1. Recall that, by definition, u =E v iff u →∗
(
−→
E∪
←−
E )

v. This reduces equational deduction to term rewriting with

rules
−→
E ∪

←−
E .

You are asked to generalize this correspondence between rewriting and equational deduction to the modulo B
case by proving the following:

Lemma. Let (Σ, E ∪B) be an equational theory with Σ kind complete and sensible, and B a set of equational
axioms. Then, the following equivalence holds for any two Σ-terms u, v (possibly with variables):

u =E∪B v ⇔ u→∗
(
−→
E∪
←−
E )/B

v

Note. Recall that, by definition, u→∗
(
−→
E∪
←−
E )/B

v in 0 steps iff u =B v, that is, the case for 0 steps is not u = v,

but u =B v.

For Extra Credit. You can double the grade for this problem, and therefore your total grade for this
homework, (i.e., this first problem can count twice as much, if you solve it and solve the extra credit question

correctly) if, using the above lemma, you can prove the Church-Rosser Teorem in full generality, i.e., If ~E
is confluent modulo axioms B, then we have the equivalence:

u =E∪B v ⇔ u ↓~E/B v

2. (Exercise suggested by Peter Ölveczky). Do the following:

• Define a data type ListQid of lists of Qid-elements. In this exercise you will use both lists and sets, and
you are therefore advised to use a symbol other than _ _ for list concatenation. Use, e.g., _:_ or _ ; _

or whatever your favorite notation for list concatenation operator is.

• Define a data type Set-ListQid of sets of lists of quoted identifiers. Then define only those functions
needed to solve the next part of this exercise.

• Define a function

op perm : ListQid -> Set-ListQid .

which takes a list of Qids and returns the set of all permutations of this list. (A permutation of a list is
a list where the elements are the same but are rearranged.) For instance, the set of all permutations of
the list ’a : ’b : ’c (using _:_ as the list concatenation operator) is the set (using _ _ as set union
operator)

(’a : ’b : ’c) (’a : ’c : ’b) (’b : ’a : ’c)

(’b : ’c : ’a) (’c : ’a : ’b) (’c : ’b : ’a)

Hint: This exercise is somewhat harder than previous exercises. One idea to generate all permutations of a
list such as ’a : ’b : ’c is to generate ’a plus all permutations of ’b : ’c and ’b plus all permutations of
’a : ’c and ’c plus all permutations of ’a : ’b. That is, we gradually construct each permutation.

This suggests that the job of actually generating all permutations could be done by an auxiliary function
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op p : ListQid ListQid ListQid -> Set-ListQid .

where p(L1, L2,L3) generates the set of all permutations of L1 : L2 : L3 that begin with L1 followed by
a permutation of L2 : L3. It will do so by generating lists which start with L1, followed by an element chosen
from L2, followed by a permutation of L3 concatenated with the remaining elements of L2. But p may also
choose not to pick a given element of L2 as the next element after L1. So you need to think carefully about
how such a function p will work, and how to use the function’s third argument in recursive calls to p.

Last, but not least, you can achieve a very simple and elegant solution of this problem by taking full advantage
of suitable equational axioms like assoc, comm, and id: when defining lists and sets. Using these axioms, it is
possible to solve the above problem with just five equations! This is again another good example of the motto:

Declarative Programming = Mathematical Modeling

Obviously, you are not required to define the above auxiliary function p. You can give a different solution of
your own to solve this problem.
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