
CS 476 Homework #7 Due 10:45am on 3/16

Note: Answers to the exercises listed below in typewritten form (latex formatting preferred) as well as code
solutions should be emailed by the above deadline to reedoei2@illinois.edu.

1. Call a function f : A2 → A commutative iff (∀(x, y) ∈ A2) f(x, y) = f(y, x). Commutative binary functions on
A define a subset [A2 → A]c ⊆ [A2 → A] of the function set [A2 → A], namely,

[A2 → A]c = {f ∈ [A2 → A] | (∀(x, y) ∈ A2) f(x, y) = f(y, x)}.

You are asked to do the following:

• Assume that A is finite with cardinality, say, |A| = n. Give a formula, depending on n, for the cardinality
|[A2 → A]c| of the finite set [A2 → A]c.

Hint. If |A| = n, then there is a bijective function b : A → [n], where [n] = {1, . . . , n}. Therefore,
f : A2 → A is commutative iff (b−1 × b−1); f ; b : [n]2 → [n] is commutative. Therefore, you can assume,
without loss of generality, that A = [n], and can just give a formula for |[[n]2 → [n]]c|.
• Let Σ be a finite unsorted signature, i.e., for each arity k, the set Σk of function symbols of k arguments

is finite, and Σk = ∅ for any k > kmax. That is, there are no function symbols with more than kmax

arguments. Let Σc
2 ⊆ Σ2 be a subset of binary symbols. Assume |A| = n. Then, give a formula, depending

on n, Σ and Σc
2, computing the total number of different Σ-algebras of the form A = (A, A) such that for

each f ∈ Σc
2, the function fA is commutative.

Remark on Terminology. In algebraic terminology, an algebra A = (A, A) such that for each f ∈
Σc

2, the function fA is commutative is described as an algebras A = (A, A) that satisfies the set of
commutativity equations: {f(x, y) = f(y, x) | f ∈ Σc

2}.

2. Consider the following module (available in the course web page) of lists with a list append functions that is
associative and has an identity, but where associativity and identity are explicitly defined by equations:

fmod LIST-EXAMPLE is

sorts Elt NeList List .

subsorts Elt < NeList < List .

op a : -> Elt [ctor] .

op b : -> Elt [ctor] .

op c : -> Elt [ctor] .

op nil : -> List [ctor] .

op _;_ : List List -> List .

op _;_ : Elt NeList -> NeList [ctor] .

vars L P Q : List . vars R S T : NeList . vars X Y Z : Elt .

vars L’ P’ Q’ : List .

.

eq (L ; P) ; Q = L ; (P ; Q) .

eq L ; nil = L .

eq nil ; L = L .

endfm

The main goal of this exercise is to help you check your understanding of the algorithm that checks that a
theory is confluent assuming it is terminating. The above equations are indeed terminating. You are not
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required to prove this: as we shall see, there are methods and tool to do so. Instead, you are asked to prove,
under the termination assumption, that the above equations E, when oriented as rules ~E, are confluent. Recall
that this requires checking two things:

(a) The rules ~E are sort-decreasing.

(b) The rules ~E are locally confluent, which by the Main Theorem in page 19 of Lecture 8 can be checked by

checking that all the critical pairs associated to the rules ~E are joinable.

For (a), since checking sort-decreasingness for the associativity equation involves a relatively long number of
sort specializations, which can be tedious, you are asked to just check sort decreasingness for:

• The equation L ; nil = L (for all its sort specializations).

Hint. You can use the variables of sorts NeList and Elt already declared in the module for this purpose.
For example, the substitution {L 7→ R} specializes L of sort List to R of sort NeList.

• The equation (L ; P) ; Q = L ; (P ; Q) only for the sort specialization {L 7→ X, P 7→ Y, Q 7→ T},
where the sorts of the variables are as declared in the module.

Recall that to check sort decreasingness of an equation u = v for a sort specialization ρ one has to check
ls(uρ) ≥ ls(vρ). But this can be substantially automated by using the parse command in Maude. The parse

command does not evaluate a term t: it just parses t with its least sort ls(t). For example:

Maude> parse (a ; b) ; c .

List: (a ; b) ; c

Maude> parse a ; (b ; c) .

NeList: a ; (b ; c)

For (b), to make your life easier, note the V = vars(E) = {L,P,Q}, and that for V ′ = {L′, P ′, Q′} the renaming
of variables γ : V → V ′ defined by: γ = {L 7→ L′, P 7→ P ′, Q 7→ Q′}, is both bijective and sort-preserving,
and with V ∩ V ′ = ∅. This allows you to easily produce renamed copies Eγ of the module’s equations E.

Recall, also, that critical pairs are constructed by considering all pairs of equations (u = v) ∈ E and (u′ = v′) ∈
Eγ (including the case (u′ = v′) ≡ (uγ, vγ), where u′ = v′is just a variable renaming of u = v), all non-variable
positions p in u, and all most general order-sorted unifiers θ of the equation up = u′.

In the case B = ∅ when, as in this example, there are no axioms, there are, however, some critical pairs that
are trivial, that is, they are always joinable, namely, the case when (u′ = v′) ≡ (uγ, vγ), and p = ε is the root
position of u. You can omit those trivial cases of self-overlap of a rule u→ v with (a renamed version of) itself
at the root position ε of u. However, you should consider all other cases, including all other cases of self-overlap
of a rule with itself at non-root non-variable positions.

A lot of your work can be automated, because of Maude’s unify command computes the set of most general
order-sorted unifiers of an equation. For example, we can compute the order-sorted unifiers of the equation:
(L ; P ) ; Q = L′ ; nil by typing in Maude:

Maude> unify (L ; P) ; Q =? L’ ; nil .

Solution 1

L --> #1:List

P --> #2:List

Q --> nil

L’ --> #1:List ; #2:List

which in this case has a single solution. Unifiers in Maude are computed mapping the variables of the given
equation to fresh new variables introduced by Maude. Unifiers can always be expressed this way. Therefore,
using the unify command you can automatically compute all the most general unifiers for equalities of the
form: up = u′, and then use such unifiers to compute the corresponding critical pairs.

A further economy of effort, is that you do not need to even compute the unifiers of an equality up = u′ when
the top symbols of up and u′ are different. For example, the equation L ; P = nil has no unifiers, so there is no
need to even try to compute them.
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Finally, you can also automate checking the joinability t ↓E t′ of each critical pair thus computed, say t = t′,
since you can just give in Maude the command:

red t == t’ .

so that the critical pair will be joinable iff the result is true and not joinable iff the result is false.

A “hidden goal” of this exercise is to let you see how —thanks to subsorts and subsort overloading of operators—
an operator like _;_ can be both a constructor with the typing _;_ : Elt NeList -> NeList [ctor] and
a defined symbol, defined by the above three equations, with the typing _;_ : List List -> List . Of
course, this is impossible to do in a many-sorted (also called “simply typed”) setting.

Note that this exactly means that the only data in this module are —as one would expect— the constructor
terms, that is, nil , and the terms of the form a1 ; (a2 ; . . . (an−1 ; an) . . .), with ai ∈ {a, b, c}, 1 ≤ i ≤ n, and
n ≥ 1. That is, (up to a slight change of representation) the data in this module is the set of strings {a, b, c}∗.
If you use Maude to help you in all these ways, you should include a screenshot of the answers you get from
Maude for each problem you ask Maude to help you with.
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