Note: Answers to the exercises listed below and the code solution for Exercise 2 should be emailed in typewritten form (latex formatting preferred) by the deadline mentioned above to reedoei@illinois.edu.

1. Note that we can think of a relation \(R \subseteq A \times B \) as a “nondeterministic function from \(A \) to \(B \).” That is, given an element \(a \in A \), we can think of the result of applying \(R \) to \(a \) as the set of all \(b \)'s such that \((a, b) \in R \). Unlike for functions, the set \(R\{a\} \) may be empty, or may have more than one element.

Note that the powerset \(\mathcal{P}(B) \) allows us to view the “non-deterministic mapping” \(a \mapsto R\{a\} \) as a normal function from \(A \) to \(\mathcal{P}(B) \). More precisely, we can define \(\{_\} \) as the function:

\[
R\{_\} : A \ni a \mapsto \{ b \in B \mid (a, b) \in R \} \in \mathcal{P}(B).
\]

But since this can be done for any relation \(R \subseteq A \times B \), the mapping \(R \mapsto R\{_\} \) is then a function:

\[
\{_\} : \mathcal{P}(A \times B) \ni R \mapsto R\{_\} \in [A \to \mathcal{P}(B)].
\]

One can now ask an obvious question: are the notions of a relation \(R \in \mathcal{P}(A \times B) \) and of a function \(f \in [A \to \mathcal{P}(B)] \) essentially the same? That is, can we go back and forth between these two supposedly equivalent representations of a relation? But note that the idea of “going back and forth” between two equivalent representations is precisely the idea of a bijection.

Prove that the function \(\{_\} : \mathcal{P}(A \times B) \ni R \mapsto R\{_\} \in [A \to \mathcal{P}(B)] \) is bijective.

2. This problem is a good example of the motto:

\[
\text{Declarative Programming} = \text{Mathematical Modeling}
\]

Specifically, of how you can model discrete mathematics in a computable way by functional programs in Maude, so that what you get is a computable mathematical model of discrete mathematics. Furthermore, it will allow you to obtain a computable mathematical model of arrays and array lookup as a special case of your model.

Recall the function:

\[
\{_\} : \mathcal{P}(A \times B) \ni R \mapsto R\{_\} \in [A \to \mathcal{P}(B)]
\]

from Problem 1 above. Note that we then also have a function:

\[
\{_\} : \mathcal{P}(A \times B) \times A \ni (R, a) \mapsto R\{a\} \in \mathcal{P}(B)
\]

that applies the function \(R\{_\} \) to an element \(a \in A \) to get its image set under \(R \).

Define this latter function in Maude for \(A = \mathbb{N} \) the set of natural numbers, and \(B = \mathbb{Q} \) the set of rational numbers, and for finite relations \(R \subset \mathbb{N} \times \mathbb{Q} \) by giving recursive equations for it in the functional module below.

Define also in the same functional module the auxiliary functions: \(\text{dom} \), which assigns to each finite relation \(R \subset \mathbb{N} \times \mathbb{Q} \) the set \(\text{dom}(R) = \{ n \in \mathbb{N} \mid \exists (n, r) \in R \} \), and the predicate \(\text{pfun} \), which tests whether a relation \(f \subset \mathbb{N} \times \mathbb{Q} \) is a partial function. That is, whether \(f \) satisfies the uniqueness condition:

\[
(\forall n \in \mathbb{N}) \ (\forall p, q \in \mathbb{R}) \ [(n, p) \in f \land (n, q) \in f] \Rightarrow p = q.
\]

Note that the function \(R\{_\} \) is closely related to the function

\[
R\{_\} : \mathcal{P}(A) \ni A' \mapsto \{ b \in B \mid a \in A' \land (a, b) \in R \} \in \mathcal{P}(B)
\]

defined in STACS, namely, by the equation: \(R\{a\} = R\{\{a\}\} \). We are using a different notation \(R\{_\} \) and \(R[_] \) to distinguish them.
In Computer Science a *finite* partial function $f \subseteq \mathbb{N} \times \mathbb{Q}$ is called an *array* of rational numbers, or sometimes a *map*. Note that when f is an array, the result $f\{n\}$ is either a single rational number, or, if f is not defined for the index n, then mt. That is, $f\{n\}$ is *exactly* array lookup, which usually would be denoted $f[n]$ instead. In summary, the function $_\{_\}$ that you will define includes as a special case the *array lookup* function for arrays of rational numbers of arbitrary size.

Note: Notice Maude’s built-in module RAT contains NAT as a submodule, and has a subsort relation Nat $<$ Rat. You can use the automatically imported module BOOL and its built-in equality predicate $==$ and if-then-else if_then_else_fi as auxiliary functions.

```plaintext
fmod RELATION-APPLICATION is protecting RAT .
  sorts Pair NatSet RatSet Rel .
  subsort Pair $<$ Rel .
  subsort Nat $<$ NatSet $<$ RatSet .
  subsort Rat $<$ RatSet .
  op $[\_,\_] : \text{Nat Nat} \to \text{Pair}$ [ctor] .   *** Pair is cartesian product Nat x Nat
  op $\text{mt} : \to \text{NatSet}$ [ctor] .   *** empty set of naturals
  op $\text{null} : \to \text{Rel}$ [ctor] .   *** empty relation
  op $\_,\_ : \text{NatSet NatSet} \to \text{NatSet}$ [ctor assoc comm id: mt] .   *** union
  op $\_,\_ : \text{RatSet RatSet} \to \text{RatSet}$ [ctor assoc comm id: mt] .   *** union
  op $\_,\_ : \text{Rel Rel} \to \text{Rel}$ [ctor assoc comm id: null] .   *** union
  op $\_\{\_\} : \text{Nat NatSet} \to \text{RatSet}$ .   *** relation application to a number
  op $\text{dom} : \text{Rel} \to \text{NatSet}$ .   *** domain of a relation
  op $\text{pfun} : \text{Rel} \to \text{Bool}$ .   *** partial function predicate
  vars $n \ m : \text{Nat}$ . var $r : \text{Rat}$ . var $P : \text{Pair}$ . var $S : \text{NatSet}$ . var $R : \text{Rel}$ .
  eq $n,n = n$ .   *** idempotency
  eq $P,P = P$ .   *** idempotency
  eq $n \in \text{mt} = \text{false}$ .   *** membership

  eq $n \in (m,S) = (n == m)$ or $n \in S$ .   *** membership

  *** your equations defining the functions $\_\{\_\}$, dom, and pfun here
  *** if you need to declare any other variables or auxiliary
  *** functions besides those above, you can also do so
endfm
```

You can retrieve this module as a “skeleton” on which to give your answer from the course web page. Also, send a file with your module to reedoei2@illinois.edu.