CS 476 Homework #6 Due 10:45am on 3/9

Note: Answers to the exercises listed below and the code solution for Exercise 2 should be emailed in *typewritten* form (latex formatting preferred) by the deadline mentioned above to reedoei2@illinois.edu.

1. Note that we can think of a relation $R \subseteq A \times B$ as a "nondeterministic function from A to B." That is, given an element $a \in A$, we can think of the result of applying R to a, let us denote it $R\{a\}$, as the set of all b's such that $(a, b) \in R$. Unlike for functions, the set $R\{a\}$ may be empty, or may have more than one element.

Note that the powerset $\mathcal{P}(B)$ allows us to view the "non-deterministic mapping" $a \mapsto R\{a\}$ as a normal function from A to $\mathcal{P}(B)$. More precisely, we can define $R\{_-\}$ as the function:

$$R\{ _\} : A \ni a \mapsto \{b \in B \mid (a, b) \in R\} \in \mathcal{P}(B).$$

But since this can be done for any relation $R \subseteq A \times B$, the mapping $R \mapsto R\{ . \}$ is then a function:

 $\{-\}: \mathcal{P}(A \times B) \ni R \mapsto R\{-\} \in [A \to \mathcal{P}(B)].$

One can now ask an obvious question: are the notions of a relation $R \in \mathcal{P}(A \times B)$ and of a function $f \in [A \to \mathcal{P}(B)]$ essentially the same? That is, can we go back and forth between these two supposedly equivalent representations of a relation? But note that the idea of "going back and forth" between two equivalent representations is precisely the idea of a *bijection*.

Prove that the function $_{-} : \mathcal{P}(A \times B) \ni R \mapsto R_{-} \in [A \to \mathcal{P}(B)]$ is bijective.

2. This problem is a good example of the motto:

Declarative Programming = Mathematical Modeling

Specifically, of how you can model *discrete mathematics* in a computable way by functional programs in Maude, so that what you get is a *computable mathematical model* of discrete mathematics. Furthermore, it will allow you to obtain a *computable mathematical model of arrays and array lookup* as a special case of your model. Recall the function:

the fulletion:

 $\{-\}: \mathcal{P}(A \times B) \ni R \mapsto R\{-\} \in [A \to \mathcal{P}(B)]$

from Problem 1 above. Note that we then also have a function:

 $\{-\}: \mathcal{P}(A \times B) \times A \ni (R, a) \mapsto R\{a\} \in \mathcal{P}(B)$

that applies the function $R\{ _{-} \}$ to an element $a \in A$ to get its image set under R.

Define this latter function in Maude for $A = \mathbf{N}$ the set of natural numbers, and $B = \mathbf{Q}$ the set of rational numbers, and for *finite* relations $R \subset \mathbf{N} \times \mathbf{Q}$ by giving recursive equations for it in the functional module below.

Define also in the same functional module the auxiliary functions: dom, which assigns to each finite relation $R \subset \mathbf{N} \times \mathbf{Q}$ the set $dom(R) = \{n \in \mathbf{N} \mid \exists (n, r) \in R\}$, and the predicate pfun, which tests wether a relation $f \subset \mathbf{N} \times \mathbf{Q}$ is a partial function. That is, whether f satisfies the uniqueness condition:

 $(\forall n \in \mathbf{N}) \ (\forall p, q \in \mathbf{R}) \ [(n, p) \in f \land (n, q) \in f] \Rightarrow p = q.$

 $R[_]: \mathcal{P}(A) \ni A' \mapsto \{b \in B \mid a \in A' \land \in (a, b) \in R\} \in \mathcal{P}(B)$

defined in STACS, namely, by the equation: $R\{a\} = R[\{a\}]$. We are using a different notation $(R\{ -\} and R[-])$ to distinguish them.

¹Note that the function $R\{_{-}\}$ is *closely related* to the function

In Computer Science a *finite* partial function $f \subset \mathbf{N} \times \mathbf{Q}$ is called an *array* of rational numbers, or sometimes a *map*. Note that when f is an array, the result $f\{n\}$ is either a single rational number, or, if f is not defined for the index n, then \mathtt{mt} . That is, $f\{n\}$ is *exactly* array lookup, which usually would be denoted f[n] instead. In summary, the function $_{\{-\}}$ that you will define includes as a special case the *array lookup* function for arrays of rational numbers of arbitrary size.

Note: Notice Maude's built-in module RAT contains NAT as a submodule, and has a subsort relation Nat < Rat. You can use the automatically imported module BOOL and its built-in equality predicate == and if-then-else if_then_else_fi as auxiliary functions.

```
fmod RELATION-APPLICATION is protecting RAT .
sorts Pair NatSet RatSet Rel .
subsort Pair < Rel .</pre>
subsort Nat < NatSet < RatSet .</pre>
subsort Rat < RatSet .</pre>
op [_,_] : Nat Rat -> Pair [ctor] . *** Pair is cartesian product Nat x Rat
op mt : -> NatSet [ctor] .
                                      *** empty set of naturals
op null : -> Rel [ctor] .
                                       *** empty relation
op _,_ : NatSet NatSet -> NatSet [ctor assoc comm id: mt] . *** union
op _,_ : RatSet RatSet -> RatSet [ctor assoc comm id: mt] . *** union
op _,_ : Rel Rel -> Rel [ctor assoc comm id: null] .
                                                        *** union
                             *** partial function predicate
op pfun : Rel -> Bool .
vars n m : Nat . var r : Rat . var P : Pair . var S : NatSet . var R : Rel .
eq n, n = n.
                                      *** idempotency
eq P,P = P.
                                      *** idempotency
eq n in mt = false.
                                      *** membership
eq n in (m,S) = (n == m) or n in S . *** membership
*** your equations defining the functions _{_}, dom, and pfun here
*** if you need to declare any other variables or auxiliary
```

*** functions besides those above, you can also do so

endfm

You can retrieve this module as a "skeleton" on which to give your answer from the course web page. Also, send a file with your module to reedoei20illinois.edu.