
CS 476 Homework #4 Due 10:45am on 2/23

Note: Answers to the exercises listed below (in typewritten form, preferably using Latex) as well as the Maude code
for Problem 2, should be emailed by the above deadline to reedoei2@illinois.edu.

1. The addition function on the natural numbers:

+N : N2 → N

is a relation, and therefore a subset +N ⊂ N2×N. In decimal notation this subset cannot be explicitly described :
we need to invoke the addition algorithm to specify the set defined by this function. However, a nice feature
of the Peano representation of the naturals is that +N can be explicitly described as a set. It is the set:

+N = {((n, 0), n) ∈ N2 × N | n ∈ N} ∪ {((n, s(m)), sm(n)) ∈ N2 × N | n,m ∈ N}.

Consider now the following Maude functional module (in prefix notation):

fmod NATURAL is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op + : Nat Nat -> Nat .

vars N M : Nat .

eq +(N,0) = N .

eq +(N,s(M)) = s(+(N,M)) .

endfm

Adopting the Peano notation, any natural number n ∈ N is exactly a constructor term in the above module,
i.e., n is either 0, or has the form sk(0) for some k ≥ 1.

You are asked to do two things:

(A). Prove the following theorem:

Theorem. For any n,m ∈ N in Peano notation, the term +(n,m) has a unique terminating sequence of
equality steps:

+(n,m) = t1 = t2 = . . . = u

such that each step in the sequence is obtained by applying one of the two equations in NATURAL from left
to right as a simplification rule.1 Furthermore, the term u in which the sequence terminates is precisely the
constructor term +N(n,m) ∈ N.

Hint. Use induction!

(B). Use the above theorem to show that for (Σ, E) the equational theory specified by the above module
NATURAL, its canonical term algebra CΣ/E is exactly what one would expect: the algebra of the natural numbers
N in Peano notation, with the standard interpretation for the symbols {0, s,+}.

2. This exercise is about using lists of naturals to represent sets of naturals [in an obviously non-unique way,
since lists can have repeated elements, and, even if they do not, list elements may appear in different orders].
Specifically, you are asked to define functions:

1What this means is intuitively obvious: we have seen various examples. But, in any case, this process of left-to-right simplification
has been formally defined as term rewriting with the rules +(N, 0) → N and +(N, s(M)) → s(+(N,M)) in Lecture 5.

1

• insert to insert a number into a set.

• a predicate _in_ to test whether a number belongs to a set.

• _U_ to compute the union of two sets.

• simplify to obtain a list representation of a set that has no repeated elements.

• _/_ to compute the intersection of two sets.

• _-_ to compute the difference of two sets.

• equal-sets to test whether or not two lists represent the same set.

You can do so by adding the needed equations defining such functions [plus those for any other auxiliary
functions that you may need] to the module below, which imports NAT, the built-in naturals. This ensures that
you have various functions, such as if_then_else_fi, order comparison between numbers, Boolean operations,
and the built-in equality predicate _==_ (for both numbers and lists) already available to you.

fmod LIST-REPRESENTATION-OF-SETS is

protecting NAT .

sort List .

op nil : -> List [ctor] .

op _;_ : Nat List -> List [ctor] .

vars N M : Nat . vars L L1 L2 : List .

op insert : Nat List -> List . *** inserts a number into a "set"

*** add your equations here

op _in_ : Nat List -> Bool . *** "set" membership predicate

*** add your equations here

op _U_ : List List -> List . *** "set" union

*** add your equations here

op simplify : List -> List . *** returns "set" with no repetitions

*** add your equations here

op _/_ : List List -> List . *** "set" intersection

*** add your equations here

op _-_ : List List -> List . *** "set" difference

*** add your equations here

op equal-sets : List List -> Bool . *** two lists represent the same set

*** add your equations here

endfm

You can retrieve this module as a “skeleton” on which to give your answer from the course web page. Also,
send a file with your module and tests cases to reedoei2@illinois.edu.

2

