
CS 476 Homework #3 Due 10:45am on 2/16

Note: Answers to the exercises listed below should be emailed to Reed Oei reedoei2@illinois.edu in typewritten
form (latex formatting preferred) by the deadline mentioned above. You should also email the Maude code for
Problem 2 to reedoei2@illinois.edu.

1. Solve Exercise 3.2 in page Lecture 3.

2. Consider the following skeleton of a functional module for (binary) trees and (non-empty) lists of natural num-
bers. For your convenience, it imports the module NAT in the Maude prelude, which has all the usual numerical
functions and predicates on numbers that you might need, as well as the Booleans and if_then_else-fi that
are also available.

fmod LIST+TREE is protecting NAT .

sorts NeList Tree .

subsort Nat < NeList .

subsort Nat < Tree .

op _._ : Nat NeList -> NeList [ctor] .

op _#_ : Tree Tree -> Tree [ctor] .

vars N M : Nat . vars T T1 T2 : Tree . vars L L1 L2 : NeList .

op _@_ : NeList NeList -> NeList . *** list append

*** include your equations defining _@_ here

op rev : NeList -> NeList . *** list reverse

*** include your equations defining rev here

op sort : NeList -> NeList . *** list sort

*** include your equations defining sort here

op add : NeList -> Nat . *** adds numbers in list

*** include your equations defining add here

op trev : Tree -> Tree . *** tree reverse

*** include your equations defining trev here

op add : Tree -> Nat . *** adds numbers in tree

*** include your equations for add here

op t2l : Tree -> NeList . *** converts tree into list

*** include your equations defining t2l here

1

op l2t : NeList -> Tree . *** converts lists to trees

*** include your equations defining l2t here

endfm

Note that natural numbers are a subsort of both non-empty lists and binary trees. Except for the imported
module NAT, only the data, that is, the constructor terms, of this module are defined. What you are asked to
do is to define the following functions on such data:

• _@_ appends to non-empty lists

• rev reverses a non-empty list

• sort sorts a non-empty list

• add adds all the numbers in a non-empty list

• trev reverses a binary tree with numbers as leaves; geometrically, it returns the mirror image of the
original tree.

• add adds all the numbers in the leaves of a binary tree

• t2l converts a tree into a (non-empty) list, preserving the left-to-right order in which the numbers appear
in the tree into the left-to-right order in which they appear in the resulting list.

• l2t converts a (non-empty) list into a tree, preserving the left-to-right order in which the numbers appear
in the list into the left-to-right order in which they appear in the resulting tree.

Even giving this left-to-right order-preservation requirement, the l2t is not completely determined by such
a requirement: more than one definition is possible (although one option seems the easiest to define and
the most natural). That is, several trees may reasonably represent the same list preserving the left-to-right
order of elements. You can give any definition you wish, provided the left-to-right order of elements is
preserved.

Notes. (1) For defining some functions, the if_then_else-fi operator may be useful. (2) If needed, you
can also define some auxiliary functions beyond those listed above. For example, this may be helpful to define
the sort function. (3) It may help you in testing your functions to also test that they are consisten with
each other. For example, have the following built-in equality predicate expressions should all evaluate to true

when you replace the variables T and L by any concrete treess and non-empty lists. This means that these
equality predicates, viewed as equations, arealgebraic laws that should hold between the corresponding functions
mentioned in each such equality predicates.

rev(t2l(T)) == t2l(trev(T)) .

add(t2l(T)) == add(T) .

add(L) == add(l2t(L)) .

t2l(l2t(L)) == L .

You can retrieve from the course web page this module as a “skeleton” on which to fill in your answers. Also,
send a file with your solution module and your test cases to reedoei2@illinois.edu.

2

