
CS 476 Homework #14, due at 10:45am on 5/4

Note: Answers to the exercises listed below should be emailed to reedoei2@illinois.edu in typewritten form
(latex formatting preferred) by the deadline mentioned above. You should also email to reedoei2@illinois.edu

the Maude code and screenshots for Problem 2.

1. Part I. Let A = (A,→A) be a Σ-transition system. Let a ∈ A[s] be a state, and let a′ ∈ ReachA(a). Logically
speaking, as for any other two sets, for any such A, a ∈ A[s] and a′ ∈ ReachA(a), there are three possibilities:

(a) ReachA(a′) ⊇ ReachA(a),

(b) ReachA(a′) ⊆ ReachA(a), or

(c) ReachA(a′) ∪ ReachA(a) 6= ReachA(a′) and ReachA(a′) ∪ ReachA(a) 6= ReachA(a).

Does any of those three possibilities always hold for any A, a ∈ A[s] and a′ ∈ ReachA(a)? If so, give a proof;
and if not, give a counterexample.

Part II. Suppose, as above, a Σ-transition system A = (A,→A) where A protects the Boolean data type, i.e.,
the signature ΣBool of Boolean operations is a subsignature ΣBool ⊆ Σ, and A|ΣBool

∼= B, with B the standard,
two-element Boolean Algebra. Let a ∈ A[s] and a′ ∈ ReachA(a), and let I be a unary Boolean-valued predicate
whose input kind is [s]. Prove that there is implication relation [in one of the directions] between the following
two statements:

A, a |= 2I ?? A, a′ |= 2I

and give a counterexample showing that the inverse implication does not hold in general. Hint. Note that
if Σ is unsorted and its set F of function symbols is empty, a Σ-transition system is just a transition system,
i.e., a directed graph (see STACS, §7.2). Therefore, your counterexample can just be a simple directed graph
example.

For Extra Credit. (Backwards Reachability Analysis). You can earn 10 more points on Problem 1 if you
solve correctly the following problem. The problem’s solution is not just of theoretical interest: it is eminently
practical, since it is the basis of the so-called backwards reachability analysis of a system’s properties. Let
A = (A,→A), a ∈ A[s], and I, a state predicate, be exactly as in Part II above. Suppose that I is an invariant
from initial state a, i.e., A, a |= 2I. Let J¬IKA = {a ∈ A[s] | I(a) = falseA}. By the protecting Booleans
assumption, we of course have, J¬IKA = A[s] \ JIKA, i.e., J¬IKA is the set of states in A[s] where I does not
hold. Call J¬IKA, a co-invariant from initial state a (in the exact sense that its complement is an invariant
from a).

Let A−1 = (A,→−1
A) be the inverse, or reverse, Σ-transition system of A, where for each kind [s], →−1

A,[s] is the

inverse relation of →A,[s], i.e., for each a, a′ ∈ A[s] we have the equivalence,

a→A,[s] a
′ ⇔ a′ →−1

A,[s] a.

Prove the following equivalence:

A, a |= 2I ⇔ (∀ a′ ∈ J¬IKA) a 6∈ ReachA−1(a′).

2. Consider the following dining philosophers example, that you can retrieve from the course web page:

1

fmod NAT/4 is

protecting NAT .

sort Nat/4 .

op [_] : Nat -> Nat/4 .

op _+_ : Nat/4 Nat/4 -> Nat/4 .

op _*_ : Nat/4 Nat/4 -> Nat/4 .

op p : Nat/4 -> Nat/4 .

vars N M : Nat .

ceq [N] = [N rem 4] if N >= 4 .

eq [N] + [M] = [N + M] .

eq [N] * [M] = [N * M] .

ceq p([0]) = [N] if s(N) := 4 .

ceq p([s(N)]) = [N] if N < 4 .

endfm

mod DIN-PHIL is

protecting NAT/4 .

sorts Oid Cid Attribute AttributeSet Configuration Object Msg .

sorts Phil Mode .

subsort Nat/4 < Oid .

subsort Attribute < AttributeSet .

subsort Object < Configuration .

subsort Msg < Configuration .

subsort Phil < Cid .

op __ : Configuration Configuration -> Configuration

[assoc comm id: none] .

op _‘,_ : AttributeSet AttributeSet -> AttributeSet

[assoc comm id: null] .

op null : -> AttributeSet .

op none : -> Configuration .

op mode‘:_ : Mode -> Attribute [gather (&)] .

op holds‘:_ : Configuration -> Attribute [gather (&)] .

op <_:_|_> : Oid Cid AttributeSet -> Object .

op Phil : -> Phil .

ops t h e : -> Mode .

op chop : Nat/4 Nat/4 -> Msg [comm] .

op init : -> Configuration .

op make-init : Nat/4 -> Configuration .

vars N M K : Nat .

var C : Configuration .

ceq init = make-init([N]) if s(N) := 4 .

ceq make-init([s(N)])

= < [s(N)] : Phil | mode : t , holds : none > make-init([N]) (chop([s(N)],[N]))

if N < 4 .

ceq make-init([0]) =

< [0] : Phil | mode : t , holds : none > chop([0],[N]) if s(N) := 4 .

rl [t2h] : < [N] : Phil | mode : t , holds : none > =>

< [N] : Phil | mode : h , holds : none > .

crl [pickl] : < [N] : Phil | mode : h , holds : none > chop([N],[M])

=> < [N] : Phil | mode : h , holds : chop([N],[M]) > if [M] = [s(N)] .

2

rl [pickr] : < [N] : Phil | mode : h , holds : chop([N],[M]) >

chop([N],[K]) =>

< [N] : Phil | mode : h , holds : chop([N],[M]) chop([N],[K]) > .

rl [h2e] : < [N] : Phil | mode : h , holds : chop([N],[M])

chop([N],[K]) > => < [N] : Phil | mode : e ,

holds : chop([N],[M]) chop([N],[K]) > .

rl [e2t] : < [N] : Phil | mode : e , holds : chop([N],[M])

chop([N],[K]) > => chop([N],[M]) chop([N],[K])

< [N] : Phil | mode : t , holds : none > .

endm

There are four philosophers, that you can imagine eating in a circular table. Initially they are all in thinking
mode (t), but they can go into hungry mode (h), and after picking the left and right chopsticks (they eat
Chinese food) into eating mode (e), and then can return to thinking.

The identities of the philosophers are naturals modulo 4, with contiguous philosophers arranged in increasing
order from left to right (but wrapping around to 0 at 4). The chopsticks are numbered, with each chopstick
indicating the two philosophers next to it.

Prove, by giving appropriate search commands from the initial state init, the following properties:

• (contiguous mutual exclusion): it is never the case that two contiguous philosophers are eating simulta-
neously.

• (mutual non-exclusion): it is however possible for two philosophers to eat simultaneously.

• (three exclusion): it is impossible for three philosophers to eat simultaneously.

• (deadlock) the system can deadlock.

3

