
CS 476 Homework #13 Due 10:45am on 4/27

Note: Answers and screenshots for the exercises listed below should be emailed in pdf format and in typewritten
form (latex formatting preferred) by the deadline mentioned above to reedoei2@illinois.edu. You should also
include in your email to reedoei2@illinois.edu the Maude code for the exercises.

1. Consider the following system module, whose purpose is to generate all permutations of a list L as the final
states reachable by rewriting with the rules in the module the initial state perm(L). Note that all functions in
the module, except for the l2mset function, are constructors. In particular, perm is also a constructor term.
This is because the permutations of L are not computed by “evaluating” perm(L) with some equations, but by
changing instead the initial state perm(L) to other states by rewrite rules.

You are asked to specify the rewrite rules (three rules are actually enough) that will make it the case that the
final states reachable from perm(L) are exactly the permutations of L. Some sample search computations and
the number of solutions you should get in each case are included for your convenience. Note that if a list has
length n and all its elements are different, then there are n! permutations of it.

*** if perm(L) is the initial state, then each final state is a permutations of L

mod PERMUTATIONS is protecting QID .

sorts List State MSet .

subsort Qid < List < State .

subsort Qid < MSet .

op nil : -> List [ctor] .

op _:_ : List List -> List [ctor assoc id: nil] .

op mt : -> MSet [ctor] .

op __ : MSet MSet -> MSet [ctor assoc comm id: mt] .

op l2mset : List -> MSet . *** converts a list to a multiset

op perm : List -> State [ctor] . *** perm(L) initial state, final states all L permutations

op [_,_] : List MSet -> State [ctor] . *** list-multiset pairs

var I : Qid . var L : List . var S : MSet .

eq l2mset(nil) = mt .

eq l2mset(I : L) = I l2mset(L) .

*** define here the transitions from perm(L) by some rules, so that the final

*** states reachable from perm(L) are exactly the permutations of L

endm

search perm(nil) =>! L . *** 1 solution

search perm(’a) =>! L . *** 1 solution

search perm(’a : ’b) =>! L . *** 2 solutions

search perm(’a : ’b : ’c) =>! L . *** 6 solutions

search perm(’a : ’b : ’c : ’d) =>! L . *** 24 solutions

search perm(’a : ’b : ’c : ’d : ’d) =>! L . *** 60 solutions

search perm(’a : ’b : ’c : ’d : ’e) =>! L . *** 120 solutions

1

2. In this problem you are asked to define a sorting algorithm for lists of natural numbers, not with equations,
but with (transition) rules that rewrite a list to another list with the same multiset of elements but “closer” to
the sorted version of the list. If L is the initial state, there should be a single final state, namely, the sorted
version of L. You then can just compute such a sorted version of L by typing in Maude:

rewrite L .

However, since the passing from a list L to its sorted version is a deterministic process having a single answer,
as a sanity check to test your rules, you should check that they are correct by checking that you always get a
single final state for each initial state L. To help you do that, some sample search commands have also been
included.

Write your solution by specifying the (possibly conditional) rule or rules needed to sort a list in the system
module below, so that for each list L the single final state will the its sorted version.

Note. Remark that all operators in this module are constructors. This is because no equations are used at all,
so that all terms in the module are already in normal form by the (non-existent) equations. All computations
are performed by the rule or rules that you are asked to specify, not by equations (except, perhaps, for the use
made of some equations in NAT for checking an equational condition in a rule).

Hint. A single conditional rule is enough to solve this problem.

mod SORTING is

protecting NAT .

sort List .

subsort Nat < List .

op nil : -> List [ctor] .

op _;_ : List List -> List [ctor assoc id: nil] .

vars N M : Nat . vars L Q : List .

*** include here your rule or rules

endm

*** testing by search that your rule or rules are DETERMINISTIC (yield a single final result)

search 5 ; 4 ; 3 ; 2 ; 1 ; 0 =>! L . *** SINGLE solution should be 0 ; 1 ; 2 ; 3 ; 4 ; 5

search 3 ; 4 ; 3 ; 5 ; 1 ; 0 =>! L . *** SINGLE solution should be 0 ; 1 ; 3 ; 3 ; 4 ; 5

search 3 ; 4 ; 3 ; 5 ; 1 ; 4 =>! L . *** SINGLE solution should be 1 ; 3 ; 3 ; 4 ; 4 ; 5

search 3 ; 4 ; 3 ; 4 ; 1 ; 4 =>! L . *** SINGLE solution should be 1 ; 3 ; 3 ; 4 ; 4 ; 4

*** testing that your rules yield the correct result

rewrite 5 ; 4 ; 3 ; 2 ; 1 ; 0 . *** should be 0 ; 1 ; 2 ; 3 ; 4 ; 5

rewrite 3 ; 4 ; 3 ; 5 ; 1 ; 0 . *** should be 0 ; 1 ; 3 ; 3 ; 4 ; 5

rewrite 3 ; 4 ; 3 ; 5 ; 1 ; 4 . *** should be 1 ; 3 ; 3 ; 4 ; 4 ; 5

rewrite 3 ; 4 ; 3 ; 4 ; 1 ; 4 . *** should be 1 ; 3 ; 3 ; 4 ; 4 ; 4

For Extra Credit. You can get as much as 10 more points on Problem 2 is you solve the following variant of
the above sorting problem using a different representation of the natural numbers with 0 and 1 as constructors
and with + as ACU constructor with 0 as unit element, provided you can solve the problem in this case with
a single unconditional rule. Also, you do not need to define any auxiliary functions or anything : you just need
to write the appropriate rule. The key point is that, in this representation of the natural numbers, you do not
need to restrict the application of the sorting rule by checking a condition: the rule’s lefhand side can do that.

2

mod SORTING-UNCONDITIONAL is

sorts Nat List .

subsort Nat < List .

ops 0 1 : -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

op nil : -> List [ctor] .

op _;_ : List List -> List [ctor assoc id: nil] .

vars N M : Nat . vars L Q : List .

*** include here your UNCONDITIONAL rule

endm

*** testing by search that your rule is DETERMINISTIC (has a single final result)

search (1 + 1 + 1);(1 + 1) ; 1 ; 0 =>! L .

*** SINGLE solution should be 0 ; 1 ; (1 + 1);(1 + 1 + 1)

search (1 + 1 + 1);(1 + 1);(1 + 1 + 1) ; 1 ; 0 =>! L .

*** SINGLE solution should be 0 ; 1 ; (1 + 1);(1 + 1 + 1);(1 + 1 + 1)

*** testing that your rules yield the correct result

rewrite (1 + 1 + 1);(1 + 1) ; 1 ; 0 . *** should be 0 ; 1 ; (1 + 1);(1 + 1 + 1)

rewrite (1 + 1 + 1);(1 + 1);(1 + 1 + 1) ; 1 ; 0 .

*** should be 0 ; 1 ; (1 + 1);(1 + 1 + 1);(1 + 1 + 1)

What these two examples illustrate is the expressiveness of concurrent rewriting as a general semantic frame-
work for concurrency: the single sorting rule (conditional in the first case, and unconditional in the second
representation) can be applied in parallel in different places of a list to achieve the parallel sorting of the list.

3

