
CS 476 Homework #12 Due 10:45am on 4/20

Note: Answers to the exercises listed below and screenshots of all tool interaction should be sent by email to
reedoei2@illinois.edu.

1. The most basic formulas of equational logic are of course equations u = v. The quantifier-free (QF) formulas are
Boolean combinations of such equations by negation (¬) (where ¬(u = v) is abbreviated to u 6= v), conjunctions
(∧) and disjunction (∨). For example, u 6= u′ ∨ (v = v′ ∧ w = w′) is a QF formula, which given the Boolean
equivalence ¬(A)∨B ≡ A⇒ B, could also be written as u = u′ ⇒ (v = v′∧w = w′). The notion of satisfaction
A |= u = v of an equation by an algebra, extends naturally to QF formulas, say, ϕ, ψ, etc., as follows: A |= ϕ
iff for all assignments a ∈ [X → A], (A, a) |= ϕ holds, where: (i) if ϕ ≡ u = v this exactly means u a = v a, i.e.,
the usual notion of equation satisfaction. Otherwise, satisfaction is defined inductively by:

• (A, a) |= ¬ϕ iff (A, a) |= ϕ does not hold.

• (A, a) |= ϕ ∧ ψ iff (A, a) |= ϕ and (A, a) |= ψ.

• (A, a) |= ϕ ∨ ψ iff (A, a) |= ϕ or (A, a) |= ψ.

More generally, we can consider arbitrary formulas in first-order logic, where we do not only close the basic
formulas (i.e., equations) by Boolean combinations, but also by universal (∀x) and existential (∃x) quantifica-
tion. We can likewise define the notion of satisfaction A |= ϕ for ϕ any first-order formula, but we shall not
do so here. There is, however, a very easy and very useful thing to say at this point. For ϕ a QF formula, let
∀ϕ denote its universal closure, i.e., we universally quantify all the variables appearing in ϕ (for example, the
goals given to the ITP are always expressed as universal closures). Then we have the equivalence:

A |= ϕ ⇔ A |= ∀ϕ

which reduces satisfaction of universal closures of QF formulas to that of QF formulas themselves.

If you have understood the above definition of satisfaction of a QF formula in an algebra A, you can surely
do the following exercise: Consider the unsorted signature ΣD = {0, s} called the “Dedekind” signature in
STACS. Now consider the following very simple functional module:

fmod MOD-2 is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

var x : Natural .

eq s(s(x)) = x .

endfm

Since the equation s(s(x)) = x is term-size-decreasing, this module is terminating. It is also very easy to
check that it is confluent: you can check the critical pairs themselves (note that there is a non-trivial case of
“self-overlap” of the rule with itself at position 1); or you can do so automatically with Maude’s the Church-
Rosser Checker. As you may have guessed this is one of the simplest possible models of the natural numbers
modulo 2. Furthermore, it does have not only an initial algebra TΣD/E2

, where E2 is the single equation
s(s(x)) = x, but, thanks to being convergent, it has also a canonical term algebra CΣD/E2

.

As a simple exercise to test your understanding of the notion of satisfaction of a QF formula, you are asked to
prove two simple theorems about the initial algebra TΣD/E2

. Prove (by yourself, not using any tools) that:
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(a) TΣD/E2
|= s(x) 6= x

(b) TΣD/E2
|= x = 0 ∨ x = s(0).

Hints. (A) Since we have the isomorphism TΣD/E2
∼= CΣD/E2

and isomorphic algebras satisfy the same
formulas, in proving (a) and (b) above you can replace TΣD/E2

by CΣD/E2
. (B) Note that: (B.1) all notions

related to formula satisfaction in an algebra A are expressed in terms of assignments a ∈ [X→A], (B.2) note that
the cardinality of the algebra CΣD/E2

is exactly 2, and (B.3) note that, even if X is an infinite set of variables,
the only variables that matter for a given formula ϕ are those in the finite set Y of variables appearing in ϕ:
that is, for any two assignments a, a′ ∈ [X→A] for an algebra A such that a|Y = a′|Y we have the equivalence:
(A, a) |= ϕ iff (A, a′) |= ϕ.

2. In Inductive Theorem Proving, one would like to use theorems one has already proved to prove new theorems.
This can of course be done by using such previous theorems as lemmas. But often one can do even better than
that: one can, so to speak, internalize an already proved lemma into the functional module used to prove the
next theorem. This is because of the following, important result, whose proof will be provided elsewhere:

Lemma. For any equational theory (Σ, E) with Σ a sensible, kind complete signature with no empty sorts, if
TΣ/E |= u = v, then TΣ/E = TΣ/E∪{u=v}.

The way the above Lemma can be used to “internalize” a proved inductive theorem u = v is that if our original
functional module was, say, fmod (Σ, E) endfm and we now want to prove another inductive theorem, say t = t′,
we can do so starting with the module: fmod (Σ, E ∪{u = v}) endfm where the proved theorem u = v has been
“internalized.” Of course, this might break the executability conditions of our original module, so this is not
always wise to do. But we can safely do this when:1

• u = v is an attribute like associativity, or commutativity, or identity, which we could add declaring such
new attribute in the module (assuming the module’s equations remain terminating), or

• the set of equations E ∪ {u = v} is still (ground) confluent and terminating.

For example, in Lecture 13 we proved associativity and commutativity of natural number addition. Why not
add them as axioms to then prove distributivity of multiplication? That is, in the following module, where such
axioms have been added and multiplication is defined:

fmod NATURAL is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

op _+_ : Natural Natural -> Natural [assoc comm] .

op _*_ : Natural Natural -> Natural .

vars N M : Natural .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

eq N * 0 = 0 .

eq N * s(M) = N + (N * M) .

endfm

use the Maude ITP to prove the distributivity property goal:

(goal dist : NATURAL

|- A{N:Natural ; J:Natural ; K:Natural}

((N * (J + K)) = ((N * J) + (N * K))) .)

Note. Detailed instructions to use the ITP can be found in the Course’s web page. Here is an additional
remark to help you use the tool. You may get some warnings when running loop init-itp like, for example,

1Much weaker conditions can be given for internalizing u = v, but those given here will suffice for our present purposes.
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Warning: sort declarations for operator _;_ failed preregularity check on 15 out of 2116 sort tuples. First such tuple is (AtomicTermSet, TermQid).

Warning: sort declarations for operator if_then_else_fi failed preregularity check on 12 out of 4232 sort tuples. First such tuple is (Bool, AtomicTermSet, TermQid).

Warning: sort declarations for associative operator _;_ are non-associative on 153 out of 97336 sort triples. First such triple is (TermSet, AtomicTermSet, TermQid).

You can safely ignore these warnings.

For Extra Credit. (You can double your grade for Problem 2 if you solve this additional exercise). But why
not doing the same again? Suppose that we now want to prove that multiplication is associative. If you try to
do it by hand (or with the ITP), you will soon see that you need to use distributivity. But we have already
proved distributivity! Why not add it as a rule to the above module to get the extended module:

fmod NATURAL+DIST is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

op _+_ : Natural Natural -> Natural [assoc comm] .

op _*_ : Natural Natural -> Natural .

vars N M J K : Natural .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

eq N * 0 = 0 .

eq N * s(M) = N + (N * M) .

eq N * (J + K) = (N * J) + (N * K) . *** dist added as proved lemma

endfm

Use now the Maude ITP to prove in this extended module the associativity of multiplication goal:

(goal *-assoc : NATURAL+DIST

|- A{N:Natural ; J:Natural ; K:Natural}

(((N * J) * K) = (N * (J * K))) .)

You can just extract the two modules and their corresponding goals from the Latex, but the files for these will
also be posted with this homework. You should include a screenshot of your interactions with the ITP and
email your code as well to reedoei2@illinois.edu.
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