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Chapter 1

Introduction to Part I

“... we cannot improve the language of any science without at the same time improving the
science itself; neither can we, on the other hand, improve a science, without improving the
language or nomenclature which belongs to it.”
(Lavoisier, 1790, quoted in Goldenfeld and Woese [16])

I found the inadequacy of language to be an obstacle; no matter how unwieldly the expressions
I was ready to accept, I was less and less able, as the relations became more and more complex,
to attain the precision that my purpose required. This deficiency led me to the idea of the
present ideography. . . . I believe that I can best make the relation of my ideography to ordinary
language clear if I compare it to that which the microscope has to the eye. Because of the range
of its possible uses and the versatility with which it can adapt to the most diverse circumstances,
the eye is far superior to the microscope. Considered as an optical instrument, to be sure, it
exhibits many imperfections, which ordinarily remain unnoticed only on account of its intimate
connection with our mental life. But, as soon as scientific goals demand great sharpness of
resolution, the eye proves to be insufficient. The microscope, on the other hand, is prefectly
suited to precisely such goals, but that is just why it is useless for all others.
(Frege, 1897, Begriffsschrift, in [33], 5–6)

Language and thought are related in a deep way. Without any language it may become impossible to
conceive and express any thoughts. In ordinary life we use the different natural languages spoken on the
planet. But natural language, although extremely flexible, can be highly ambiguous, and it is not at all well
suited for science. Imagine, for example, the task of professionally developing quantum mechanics (itself
relying on very abstract concepts, such as those in the mathematical language of operators in a Hilbert
space) in ordinary English. Such a task would be virtually impossible; indeed, ridiculous: as preposterous
as trying to build the Eiffel tower in the Sahara desert with blocks of vanilla ice cream. Even the task of
popularization, that is, of explaining informally in ordinary English what quantum mechanics is, is highly
nontrivial, and must of necessity remain suggestive, metaphorical, and fraught with the possibility of gross
misunderstandings.

The point is that without a precise scientific language it becomes virtually impossible, or at least enor-
mously burdensome and awkward, to think scientifically. This is particularly true in mathematics. One
of the crowning scientific achievements of the 20th century was the development of set theory as a pre-
cise language for all of mathematics, thanks to the efforts of Cantor, Dedekind, Frege, Peano, Russell and
Whitehead, Zermelo, Fraenkel, Skolem, Hilbert, von Neumann, Gödel, Bernays, Cohen, and others. This
achievement has been so important and definitive that it led David Hilbert to say, already in 1925, that “no
one will drive us from the paradise which Cantor created for us” (see [33], 367–392, pg. 376). It was of
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course possible to think mathematically before set theory, but in a considerably more awkward and quite
restricted way, because the levels of generality, rigor and abstraction made possible by set theory are greater
than at any other previous time. In fact, many key mathematical concepts we now take for granted, such
a those of an abstract group or a topological space, could only be formulated after set theory, precisely
because the language needed to conceive and articulate those concepts was not available before.

Set theory is not really the only rigorous mathematical language. The languages of set theory and of
mathematical logic were developed together, so that, as a mathematical discipline, set theory is a branch of
mathematical logic. Technically, as we shall see shortly, we can view the language of set theory as a special
sublanguage of first-order logic. Furthermore, other theories such as category theory and intuitionistic type
theory have been proposed as alternatives to set theory to express all of mathematics.

There are various precise logical formalisms other than set theory which are particularly well-suited to
express specific concepts in a given domain of thought. For example, temporal logic is quite well-suited to
express properties satisfied by the dynamic behavior of a concurrent system; and both equational logic and
the lambda calculus are very well suited to deal with functions and functional computation. However, set
theory plays a privileged role as a mathematical language in which all the mathematical structures we need
in order to give a precise meaning to the models described by various other logical languages, and to the
satisfaction of formulas in such languages, can be defined.

All this has a direct bearing on the task of formal software specification and verification. Such a task
would be meaningless, indeed utter nonsense and voodoo superstition, without the use of mathematical
models and mathematical logic. And it is virtually impossible, or extremely awkward, to even say what
needs to be said about such mathematical models and logical properties without a precise mathematical
language. More importantly, it becomes virtually impossible to think properly without the conceptual tools
provided by such a language. Either set theory or some comparable language become unavoidable: it is
part of what any well educated computer scientist should be conversant with, like the air one breathes.

These notes include a review of basic set theory concepts that any well educated computer scientist
should be familiar with. Although they go beyond reviewing basic knowledge in various ways, nothing
except basic acquaintance with the use of logical connectives and of universal and existential quantification
in logic is assumed: the presentation is entirely self-contained, and many exercises are proposed to help
the reader sharpen his/her understanding of the basic concepts. The exercises are an essential part of these
notes, both because they are used in proofs of quite a few theorems, and because by solving problems in a
mathematical theory one avoids having a superficial illusion of understanding, and gains real understanding.
For those already well-versed in elementary set theory, these notes can be read rather quickly. However,
some topics such as well-founded relations, well-founded induction, well-founded recursive functions, and
I-indexed sets may be less familiar. Also, already familiar notions are here presented in a precise, axiomatic
way. This may help even some readers already thoroughly familiar with “naive” set theory gain a more
detailed understanding of it as a logically axiomatized theory. Becoming used to reason correctly within
an axiomatic theory —Euclidean geometry is the classical example, and axiomatic set theory follows the
same conceptual pattern— is the best way I know of learning to think in a precise, mathematical way.
Furthermore, a number of useful connections between set theory and computer science are made explicit in
these notes; connections that are usually not developed in standard presentations of set theory.

I should add some final remarks on the style of these notes. There are three particular stylistic features
that I would like to explain. First, these notes take the form of an extended conversation with the reader, in
which I propose and discuss various problems, why they matter, and throw out ideas on how to solve such
problems. This is because I believe that science itself is an ongoing critical dialogue, and asking questions
in a probing way is the best way to understand anything. Second, I do not assume the proverbial mathemat-
ical maturity on the part of the reader, since such maturity is precisely the quod erat demonstrandum, and
bringing it about is one of the main goals of these notes: I am convinced that in the 21st century mathemati-
cal maturity is virtually impossible without mastering the language of set theory. On the contrary, I assume
the potential mathematical immaturity of some readers. This means that, particularly in the early chapters,
there is a generous amount of what might be called mathematical spoon feeding, hand holding, and even
a few nursery tales. This does not go on forever, since at each stage I assume as known all that has been
already presented, that is, the mastery of the language already covered, so that in more advanced chapters,
although the conversational style, examples, and motivation remain, the discourse gradually becomes more
mature.
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The third stylistic feature I want to discuss is that the mindset of category theory, pervasive in modern
mathematics, is present everywhere in these notes, but in Parts I and II this happens in a subliminal way.
Categories and functors will be defined in Part III; but they are present from the beginning like a hidden mu-
sic. And functorial constructions make early cameo appearances in Part I (very much like Alfred Hitchcock
in his own movies) in several exercises.
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Chapter 2

Set Theory as an Axiomatic Theory

In mathematics all entities are studied following a very successful method, which goes back at least to
Euclid, called the axiomatic method. The entities in question, for example, points, lines, and planes (or
numbers, or real-valued functions, or vector spaces), are characterized by means of axioms that are postu-
lated about them. Then one uses logical deduction to infer from those axioms the properties that the entities
in question satisfy. Such properties, inferred from the basic axioms, are called theorems. The axioms,
together with the theorems we can prove as their logical consequences, form a mathematical, axiomatic
theory. It is in this sense that we speak of group theory, the theory of vector spaces, probability theory,
recursion theory, the theory of differentiable real-valued functions, or set theory.

The way in which set theory is used as a language for mathematics is by expressing or translating other
theories in terms of the theory of sets. In this way, everything can be reduced to sets and relations between
sets. For example, a line can be precisely understood as a set of points satisfying certain properties. And
points themselves (for example, in 3-dimensional space) can be precisely understood as triples (another
kind of set) of real numbers (the point’s coordinates). And real numbers themselves can also be precisely
understood as sets of a different kind (for example as “Dedekind cuts”). In the end, all sets can be built out
of the empty set, which has no elements. So all of mathematics can in this way be constructed, as it were,
ex nihilo.

But sets themselves are also mathematical entities, which in this particular encoding of everything as
sets we happen to take as the most basic entities.1 This means that we can study sets also axiomatically, just
as we study any other mathematical entity: as things that satisfy certain axioms. In this way we can prove
theorems about sets: such theorems are the theorems of set theory. We shall encounter some elementary set
theory theorems in what follows. Since set theory is a highly developed field of study within mathematics,
there are of course many other theorems which are not discussed here: our main interest is not in set theory
itself, but in its use as a mathematical modeling language, particularly in computer science.

Mathematical logic, specifically the language of first-order logic, allows us to define axiomatic theories,
and then logically deduce theorems about such theories. Each first-order logic theory has an associated
formal language, obtained by specifying its constants (for example, 0) and function symbols (for example,
+ and · for the theory of numbers), and its predicate symbols (for example, a strict ordering predicate >).
Then, out of the constants, function symbols, and variables we build terms (for example, (x + 0) · y, and
(x+y) ·z are terms). By plugging terms as arguments into predicate symbols, we build the atomic predicates
(for example, (x + y) > 0 is an atomic predicate). And out of the atomic predicates we build formulas by
means of the logical connectives of conjunction (∧), disjunction (∨), negation (¬), implication (⇒), and
equivalence (⇔); and of universal (∀) and existential (∃) quantification, to which we also add the “there
exists a unique” (∃!) existential quantification variant. For example, the formula

(∀x)(x > 0⇒ (x + x) > x)

says that for each element x strictly greater than 0, x + x is strictly greater than x. This is in fact a theorem

1What things to take as the most basic entities is itself a matter of choice. All of mathematics can be alternatively developed in the
language of category theory (another axiomatic theory); so that sets themselves then appear as another kind of entity reducible to the
language of categories, namely, as objects in the category of sets (see, e.g., [18, 19] and [21] VI.10).
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for the natural numbers. Similarly, the formula

(∀x)(∀y)(y > 0 ⇒ ((∃!q)(∃!r)((x = (y · q) + r) ∧ (y > r))))

says that for all x and y, if y > 0 then there exist unique q and r such that x = (y · q) + r and y > r. This
is of course also a theorem for the natural numbers, where we determine the unique numbers called the
quotient q and the remainder r of dividing x by a nonzero number y by means of the division algorithm. In
first-order logic it is customary to always throw in the equality predicate (=) as a built-in binary predicate
in the language of formulas, in addition to the domain-specific predicates, such as >, of the given theory.
This is indicated by speaking about first-order logic with equality.

In the formal language of set theory there are no function symbols and no constants, and only one
domain-specific binary predicate symbol, the ∈ symbol, read belongs to, or is a member of, or is an element
of, which holds true of an element x and a set X, written x ∈ X, if and only if x is indeed an element of
the set X. This captures the intuitive notion of belonging to a “set” or “collection” of elements in ordinary
language. So, if Joe Smith is a member of a tennis club, then Joe Smith belongs to the set of members of that
club. Similarly, 2, 3, and 5 are members of the set Prime of prime numbers, so we can write 2, 3, 5 ∈ Prime
as an abbreviation for the logical conjunction (2 ∈ Prime) ∧ (3 ∈ Prime) ∧ (5 ∈ Prime). The language of
first-order formulas of set theory has then an easy description as the set of expressions that can be formed
out of a countable set of variables x, y, z, x′, y′, z′, . . . and of smaller formulas φ, φ′, etc., by means of the
following BNF-like grammar:

x ∈ y | x = y | (φ ∧ φ′) | (φ ∨ φ′) | (φ⇒ φ′) | (φ⇔ φ′) | ¬(φ) | (∀x)φ | (∃x)φ | (∃!x)φ

where we allow some abbreviations: ¬(x = y) can be abbreviated by x , y; ¬(x ∈ y) can be abbreviated
by x < y; ¬((∃x)φ) can be abbreviated by (∄x)φ (and is logically equivalent to (∀x)¬(φ)); (∀x1) . . . (∀xn)φ,
respectively (∃x1) . . . (∃xn)φ, can be abbreviated by (∀x1, . . . , xn)φ, respectively (∃x1, . . . , xn)φ; and x1 ∈

y ∧ . . . ∧ xn ∈ y can be abbreviated by x1, . . . , xn ∈ y.
As in any other first-order language, given a formula φ we can distinguish between variables that are

quantified in φ, called bound variables, unquantified variables, called free variables. For example, in the
formula (∃x) x ∈ y, x is bound by the ∃ quantifier, and y is free. More precisely, for x and y any two
variables (including the case when x and y are the same variable):

• x and y are the only free variables in x ∈ y and in x = y

• x is a free variable of ¬(φ) iff2 x is a free variable of φ

• x is a free variable of φ ∧ φ′ (resp. φ ∨ φ′, φ ⇒ φ′, φ ⇔ φ′) iff x is a free variable of φ or x is a free
variable of φ′

• x is neither a free variable of (∀x)φ, nor of (∃x)φ, nor of (∃!x)φ; we say that x is bound in these
quantified formulas.

For example, in the formula (∀x)(x = y ⇒ x < y) the variable x is bound, and the variable y is free, so y is
the only free variable.

Set theory is then specified by its axioms, that is, by some formulas in the above language that are
postulated as true for all sets. These are the axioms (∅), (Ext), (Sep), (Pair), (Union), (Pow), (Inf ), (AC),
(Rep), and (Found). All of them, except for (Rep) and (Found), will be stated and explained in the following
chapters. The above set of axioms is usually denoted ZFC (Zermelo Fraenkel set theory with Choice).
ZFC minus the Axiom of Choice (AC) is denoted ZF. As the axioms are introduced, we will derive some
theorems that follow logically as consequences from the axioms. Other such theorems will be developed in
exercises left for the reader.

The above set theory language is what is called the language of pure set theory, in which all elements of
a set are themselves simpler sets. Therefore, in pure set theory quantifying over elements and quantifying
over sets is exactly the same thing,3 which is convenient. There are variants of set theory where primitive
elements which are not sets (called atoms or urelements) are allowed.

2Here and everywhere else in these notes, “iff” is always an abbreviation for “if and only if.”
3Of course, this would not be the same thing if we were to quantify only over the elements of a fixed set, say A, as in a formula such

as (∀x ∈ A) x , ∅. But note that, strictly speaking, such a formula does not belong to our language: it is just a notational abbreviation
for the formula (∀x) ((x ∈ A) ⇒ (x , ∅)), in which x is now universally quantified over all sets.
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Let us now consider the process of logical deduction. Any first-order logic theory is specified by the
language L of its formulas (in our case, the above language of set theory formulas), and by a set Γ of
axioms, that is, by a set Γ of formulas in the language L, which are adopted as the axioms of the theory
(in our case, Γ is the set ZFC of Zermelo-Fraenkel axioms). Given any such theory with axioms Γ, first-
order logic provides a finite set of logical inference rules that allow us to derive all true theorems (and only
true theorems) of the theory Γ. Using these inference rules we can construct proofs, which show how we
can reason logically from the axioms Γ to obtain a given theorem φ by finite application of the rules. If a
formula φ can be proved from the axioms Γ by such a finite number of logical steps, we use the notation
Γ ⊢ φ, read, Γ proves (or entails) φ, and call φ a theorem of Γ. For example, the theorems of set theory are
precisely the formulas φ in the above-defined language of set theory such that ZFC ⊢ φ. Similarly, if GP is
the set of axioms of group theory, then the theorems of group theory are the formulas φ in GP’s language
such that GP ⊢ φ.

A very nice feature of the logical inference rules is that they are entirely mechanical, that is, they
precisely specify concrete, syntax-based steps that can be carried out mechanically by a machine such as a
computer program. Such computer programs are called theorem provers (or sometimes proof assistants);
they can prove theorems from Γ either totally automatically, or with user guidance about what logical
inference rules (or combinations of such rules) to apply to a given formula. For example, one such inference
rule (a rule for conjunction introduction) may be used when we have already proved theorems Γ ⊢ φ, and
Γ ⊢ ψ, to obtain the formula φ ∧ ψ as a new theorem. Such a logical inference rule is typically written

Γ ⊢ φ Γ ⊢ ψ

Γ ⊢ φ ∧ ψ

where Γ, φ, ψ, are completely generic; that is, the above rule applies to the axioms Γ of any theory, and
to any two proofs Γ ⊢ φ and Γ ⊢ ψ of any formulas φ and ψ as theorems from Γ; it can then be used to
derive the formula φ ∧ ψ as a new theorem of Γ. Therefore, the collection of proofs above the vertical bar
of such inference rules tells us what kinds of theorems we have already derived, and then what is written
below an horizontal bar yields a new theorem, which we can derive as a logical consequence of theorems
already derived. There are several logical inference systems, that is, several collections of logical inference
rules for first-order logic, all of equivalent proving power (that is, all prove the same theorems, and exactly
the true theorems); however, some inference systems are easier to use by humans than others. A very good
discussion of such inference systems, and of first-order logic, can be found in [2].

In actual mathematical practice, proofs of theorems are not fully formalized; that is, an explicit con-
struction of a proof as the result of a mechanical inference process from the axioms Γ is typically not given;
instead, and informal but rigorous high-level description of the proof is given. This is because a detailed
formal proof may involve a large amount of trivial details that are perfectly fine for a computer to take care
of, but would make a standard hundred-page mathematical book run for many thousands of pages. How-
ever, the informal mathematical proofs are only correct provided that in principle, if the proponent of the
proof is challenged, he or she could carry out a detailed formal, and machine verifiable proof leading to the
theorem from the axioms by means of the rules of logical deduction. In Part I we will follow the standard
mathematical practice of giving rigorous but informal proofs. However, in Part II proofs in equational logic
(a sublogic of first-order logic) will be fully formalized, and the soundness and completeness of equational
logic (the fact that it can prove only true theorems, and all true theorems) will be proved in detail.
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Chapter 3

The Empty Set, Extensionality, and
Separation

3.1 The Empty Set
The simplest, most basic axiom, the empty set axiom, can be stated in plain English by saying:

There is a set that has no elements.

This can be precisely captured by the following set theory formula, which we will refer to as the (∅) axiom:

(∅) (∃x)(∀y) y < x.

It is very convenient to introduce an auxiliary notation for such a set, which is usually denoted by ∅. Since
sets are typically written enclosing their elements inside curly brackets, thus {1, 2, 3} to denote the set whose
elements are 1, 2, and 3, a more suggestive notation for the empty set would have been {}. That is, we can
think of the curly brackets as a “box” in which we store the elements, so that when we open the box {} there
is nothing in it! However, since the ∅ notation is so universally accepted, we will stick with it anyway.

3.2 Extensionality
At this point, the following doubt could arise: could there be several empty sets? If that were the case, our
∅ notation would be ambiguous. This doubt can be put to rest by a second axiom of set theory, the axiom
of extensionality, which allows us to determine when two sets are equal. In plain English the extensionality
axiom can be stated as follows:

Two sets are equal if and only if they have the same elements.

Again, this can be precisely captured by the following formula in our language, which we will refer to as
the (Ext) axiom:

(Ext) (∀x, y)((∀z)(z ∈ x⇔ z ∈ y)⇒ x = y)

where it is enough to have the implication⇒ in the formula, instead of the equivalence⇔, because if two
sets are indeed equal, then logical reasoning alone ensures that they must have the same elements, that is,
we get the other implication⇐ for free, so that it needs not be explicitly stated in the axiom. Note that, as
already mentioned, extensionality makes sure that our ∅ notation for the empty set is unambiguous, since
there is only one such set. Indeed, suppose that we were to have two empty sets, say ∅1 and ∅2. Then since
neither of them have any elements, we of course have the equivalence (∀z)(z ∈ ∅1 ⇔ z ∈ ∅2). But then
(Ext) forces the equality ∅1 = ∅2.

The word “extensionality” comes from a conceptual distinction between a formula as a linguistic de-
scription and its “extension” as the collection of elements for which the formula is true. For example, in the
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theory of the natural numbers, x > 0 and x + x > x are different formulas, but they have the same exten-
sion, namely, the nonzero natural numbers. Extension in this sense is distinguished from “intension,” as the
conceptual, linguistic description. For example, x > 0 and x + x > x are in principle different conceptual
descriptions, and therefore have different “intensions.” They just happen to have the same extension for
the natural numbers. But they may very well have different extensions in other models. For example, if
we interpret + and > on the set {0, 1} with + interpreted as exclusive or, 1 > 0 true, and x > y false in the
other three cases, then the extension of x > 0 is the singleton set {1}, and the extension of x + x > x is the
empty set. As we shall see shortly, in set theory we are able to define sets by different syntactic expressions
involving logical formulas. But the extension of a set expression is the collection of its elements. The
axiom of extensionality axiomatizes the obvious, intuitive truism that two set expressions having the same
extension denote the same set.

The axiom of extensionality is intimately connected with the notion of a subset. Given two sets, A and
B, we say that A is a subset of B, or that A is contained in B, or that B contains A, denoted A ⊆ B, if and
only if every element of A is an element of B. We can precisely define the subset concept in our formal
language by means of the defining equivalence:

x ⊆ y ⇔ (∀z)(z ∈ x⇒ z ∈ y).

Using this abbreviated notation we can then express the equivalence (∀z)(z ∈ x⇔ z ∈ y) as the conjunction
(x ⊆ y ∧ y ⊆ x). This allows us to rephrase the (Ext) axiom as the implication:

(∀x, y)((x ⊆ y ∧ y ⊆ x)⇒ x = y)

which gives us a very useful method for proving that two sets are equal: we just have to prove that each is
contained in the other.

We say that a subset inclusion A ⊆ B is strict if, in addition, A , B. We then use the notation A ⊂ B.
That is, we can define x ⊂ y by the defining equivalence

x ⊂ y ⇔ (x , y ∧ (∀z)(z ∈ x⇒ z ∈ y)).

Exercise 1 Prove that for any set A, A ⊆ A; and that for any three sets A, B, and C, the following implications hold:

(A ⊆ B ∧ B ⊆ C) ⇒ A ⊆ C (A ⊂ B ∧ B ⊂ C) ⇒ A ⊂ C.

3.3 The Failed Attempt of Comprehension
Of course, with these two axioms alone we literally have almost nothing! More precisely, they only guar-
antee the existence of the empty set ∅, which itself has nothing in it.1 The whole point of set theory as a
language for mathematics is to have a very expressive language, in which any self-consistent mathematical
entity can be defined. Clearly, we need to have other, more powerful axioms for defining sets.

One appealing idea is that if we can think of some logical property, then we should be able to define
the set of all elements that satisfy that property. This idea was first axiomatized by Gottlob Frege at the
end of the 19th century as the following axiom of comprehension, which in our contemporary notation can
be described as follows: given any set theory formula φ whose only free variable is x, there is a set whose
elements are those sets that satisfy φ. We would then denote such a set as follows: {x | φ}. In our set theory
language this can be precisely captured, not by a single formula, but by a parametric family of formulas,

1 It is like having just one box, which when we open it happens to be empty, in a world where two different boxes always contain
different things (extensionality). Of course, in the physical world of physical boxes and physical objects, extensionality is always true
for nonempty boxes, since two physically different nonempty boxes, must necessarily contain different physical objects. For example,
two different boxes may each just contain a dollar bill, but these must be different dollar bills. The analogy of a set as box, and of the
elements of a set as the objects contained inside such a box (where those objects might sometimes be other (unopened) boxes) can be
helpful but, although approximately correct, it is not literally true and could sometimes be misleading. In some senses, the physical
metaphor is too loose; for example, in set theory there is only one empty set, but in the physical world we can have many empty boxes.
In other senses the metaphor is too restrictive; for example, physical extensionality for nonempty boxes means that no object can be
inside two different boxes, whereas in set theory the empty set (and other sets) can belong to (“be inside of”) several different sets
without any problem.
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called an axiom scheme. Specifically, for each formula φ in our language whose only free variable is x, we
would add the axiom

(∃!y)(∀x)(x ∈ y⇔ φ)

and would then use the notation {x | φ} as an abbreviation for the unique y defined by the formula φ. For
example, we could define in this way the set of all sets, let us call it the universe and denote it U , as the set
defined by the formula x = x, that is, U = {x | x = x}. Since obviously U = U , we have U ∈ U . Let us
call a set A circular iff A ∈ A. In particular, the universe U is a circular set.

Unfortunately for Frege, his comprehension axiom was inconsistent. This was politely pointed out in
1902 by Bertrand Russell in a letter to Frege (see [33], 124–125). The key observation of Russell’s was
that we could use Frege’s comprehension axiom to define the set of noncircular sets as the unique set NC
defined by the formula x < x. That is, NC = {x | x < x}. Russell’s proof of the inconsistency of Frege’s
system, his “paradox,” is contained in the killer question: is NC itself noncircular? That is, do we have
NC ∈ NC? Well, this is just a matter of testing whether NC itself satisfies the formula defining NC, which
by the comprehension axiom gives us the equivalence:

NC ∈ NC ⇔ NC < NC

a vicious contradiction dashing to the ground the entire system built by Frege. Frege, who had invested
much effort in his own theory and can be considered, together with the Italian Giuseppe Peano and the
American Charles Sanders Peirce, as one of the founders of what later came to be known as first-order logic,
was devastated by this refutation of his entire logical system and never quite managed to recover from it.
Russell’s paradox (and similar paradoxes emerging at that time, such as the Burali-Forti paradox (see [33],
104–112), showed that we shouldn’t use set theory formulas to define other sets in the freewheeling way
that the comprehension axiom allows us to do: the concept of a set whose elements are those sets that are
not members of themselves is inconsistent; because if such a set belongs to itself, then it does not belong to
itself, and vice versa. The problem with the comprehension axiom is its unrestricted quantification over all
sets x satisfying the property φ(x).

Set theory originated with Cantor (see [6] for an excellent and very readable reference), and Dedekind.
After the set theory paradoxes made the “foundations problem” a burning, life or death issue, all subsequent
axiomatic work in set theory has walked a tight rope, trying to find safe restrictions of the comprehension
axiom that do not lead to contradictions, yet allow us as much flexibility as possible in defining any self-
consistent mathematical notion. Russell proposed in 1908 his own solution, which bans sets that can be
members of themselves by introducing a theory of types (see [33], 150–182). A simpler solution was given
the same year by Zermelo (see [33], 199–215), and was subsequently formalized and refined by Skolem
(see [33], 290–301), and Fraenkel (see [33], 284–289), leading to the so-called Zermelo-Fraenkel set theory
(ZFC). ZFC should more properly be called Zermelo-Skolem-Fraenkel set theory and includes the already-
given axioms (∅) and (Ext). In ZFC the comprehension axiom is restricted in various ways, all of them
considered safe, since no contradiction of ZFC has ever been found, and various relative consistency results
have been proved, showing for various subsets of axioms Γ ⊂ ZFC that if Γ is consistent (i.e., has no
contradictory consequences) then ZFC is also consistent.

3.4 Separation
The first, most obvious restriction on the comprehension axiom is the so-called axiom of separation. The
restriction imposed by the separation axiom consists in requiring the quantification to range, not over all
sets, but over the elements of some existing set. If A is a set and φ is a set theory formula having x as its only
free variable, then we can use φ to define the subset B of A whose elements are all the elements of A that
satisfy the formula φ. We then describe such a subset with the notation {x ∈ A | φ}. For example, we can
define the set {x ∈ ∅ | x < x}, and this is a well-defined set (actually equal to ∅) involving no contradiction
in spite of the dangerous-looking formula x < x.

Our previous discussion of extensionality using the predicates x > 0 and x+ x > x can serve to illustrate
an interesting point about the definition of sets using the separation axiom. Assuming, as will be shown
later, that the set of natural numbers is definable as a setN in set theory, that any natural number is itself a set,
and that natural number addition + and strict ordering on numbers > can be axiomatized in set theory, we
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can then define the sets {x ∈ N | x > 0} and {x ∈ N | x+ x > x}. Note that, although as syntactic descriptions
these expressions are different, as sets, since they have the same elements, the (Ext) axiom forces the set
equality {x ∈ N | x > 0} = {x ∈ N | x + x > x}. That is, we use a syntactic description involving the syntax
of a formula to denote an actual set, determined exclusively by its elements. In particular, formulas φ and
φ′ that are logically equivalent (for example, (ϕ ⇒ ϕ′) and (¬(ϕ) ∨ ϕ′) are logically equivalent formulas)
always define by separation the same subset of the given set A, that is, if φ and φ′ are logically equivalent
we always have the equality of sets {x ∈ A | φ} = {x ∈ A | φ′}.

We can describe informally the separation axiom in English by saying:

Given any set A and any set theory formula φ(x) having x as its only free variable, we can
define a subset of A consisting of all elements x of A such that φ(x) is true.

The precise formalization of the separation axiom is as an axiom scheme parameterized by all set theory
formulas φ whose only free variable is x. For any such φ the separation axiom scheme adds the formula

(Sep) (∀y)(∃!z)(∀x)(x ∈ z⇔ (x ∈ y ∧ φ)).

The unique set z asserted to exist for each y by the above formula is then abbreviated with the notation
{x ∈ y | φ}. But this notation does not yet describe a concrete set, since it has the variable y as parameter.
That is, we first should choose a concrete set, say A, as the interpretation of the variable y, so that the
expression {x ∈ A | φ} then defines a corresponding concrete set, which is a subset of A. For this reason, the
separation axiom is sometimes called the subset axiom.

Jumping ahead a little, and assuming that we have already axiomatized the natural numbers in set theory
(so that all number-theoretic notions and operations have been reduced to our set theory notation), we can
illustrate the use of the (Sep) axiom by choosing as our φ the formula (∃y)(x = 3 · y). Then, denoting by N
the set of natural numbers, the set {x ∈ N | (∃y) (y ∈ N) ∧ (x = 3 · y)} is the set of all multiples of 3.

Exercise 2 Assuming that the set N of natural numbers has been fully axiomatized in set theory, and in particular that
all the natural numbers 0, 1, 2, 3, etc., and the multiplication operation2 · on natural numbers have been axiomatized
in this way, write a formula that, using the axiom of separation, can be used to define the set of prime numbers as a
subset of N.

Russell’s Paradox was based on the argument that the notion of a set NC of all noncircular sets is
inconsistent. Does this also imply that the notion of a set U that is a universe, that is, a set of all sets is also
inconsistent? Indeed it does.

Theorem 1 There is no set U of all sets. That is, the formula

(∄U )(∀x) x ∈ U

is a theorem of set theory.

Proof. We reason by contradiction. Suppose such a set U exists. Then we can use (Sep) to define the set of
noncircular sets as NC = {x ∈ U | x < x}, which immediately gives us a contradiction because of Russell’s
Paradox. □

2Here and in what follows, I will indicate where the arguments of an operation like · or + appear by underbars, writing, e.g., · or
+ . The same convention will be followed not just for basic operations but for more general functions; for example, multiplication

by 2 may be denoted 2 · .
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Chapter 4

Pairing, Unions, Powersets, and Infinity

Although the separation axiom allows us to define many sets as subsets of other sets, since we still only
have the empty set, and this has no other subsets than itself, we clearly need other axioms to get the whole
set theory enterprise off the ground. The axioms of pairing, union, powerset, and infinity allow us to build
many sets out of other sets, and, ultimately, ex nihilo, out of the empty set.

4.1 Pairing
One very reasonable idea is to consider sets whose only element is another set. Such sets are called singleton
sets. That is, if we have a set A, we can “put it inside a box” with curly brackets, say, {A}, so that when we
open the box there is only one thing in it, namely, A. The set A itself may be big, or small, or may even be
the empty set; but this does not matter: each set can be visualized as a “closed box,” so that when we open
the outer box {A} we get only one element, namely, the inner box A. As it turns out, with a single axiom,
the axiom of pairing explained below, we can get two concepts for the price of one: singleton sets and
(unordered) pairs of sets. That is, we can also get sets whose only elements are other sets A and B. Such
sets are called (unordered) pairs, and are denoted {A, B}. The idea is the same as before: we now enclose A
and B (each of which can be pictured as a closed box) inside the outer box {A, B}, which contains exactly
two elements: A and B, provided A , B. What about {A, A}? That is, what happens if we try to enclose
A twice inside the outer box? Well, this set expression still contains only one element, namely A, so that,
by extensionality, {A, A} = {A}. That is, we get the notion of a singleton set as a special case of the notion
of a pair. But this is all still just an intuitive, pretheoretic motivation: we need to define unordered pairs
precisely in our language.

In plain English, the axiom of pairing says:

Given sets A and B, there is a set whose elements are exactly A and B.

In our set-theory language this is precisely captured by the formula:

(Pair) (∀x, y)(∃!z)(∀u)(u ∈ z⇔ (u = x ∨ u = y)).

We then adopt the notation {x, y} to denote the unique z claimed to exist by the axiom, and call it the
(unordered) pair whose elements are x and y. Of course, by extensionality, the order of the elements does
not matter, so that {x, y} = {y, x}, which is why these pairs are called unordered. We then get the singleton
concept as the special case of a pair of the form {x, x}, which we abbreviate to {x}.

Pairing alone, even though so simple a construction, already allows us to get many interesting sets. For
example, from the empty set we can get the following, interesting sequence of sets, all of them, except ∅,
singleton sets:

∅ {∅} {{∅}} {{{∅}}} {{{{∅}}}} . . .

That is, we enclose the empty set into more and more “outer boxes,” and this gives rise to an unending
sequence of different sets. We could actually choose these sets to represent the natural numbers in set
theory, so that we could define: 0 = ∅, 1 = {∅}, 2 = {{∅}}, . . ., n + 1 = {n}, . . .. In this representation we
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could think of a number as a sequence of nested boxes, the last of which is empty. The number of outer
boxes we need to open to reach the empty box is precisely the number n that the given singleton set in the
above sequence represents. Of course, if there are no outer boxes to be opened, we do not have a singleton
set but the empty set ∅, representing 0. This is a perfectly fine model of the natural numbers in set theory,
due to Zermelo (see [33], 199–215). But it has the drawback that in this representation the number n+1 has
a single element. As we shall see shortly, there is an alternative representation of the natural numbers, due
to John von Neumann,1 in which the natural number n is a set with exactly n elements. This is of course a
more appealing representation, particularly because it is the basis of a wonderful analogy (and more than
an analogy: a generalization!) between computing with numbers and computing with sets.

What about ordered pairs? For example, in the plane we can describe a point as an ordered pair (x, y)
of real numbers, corresponding to its coordinates. Can pairs of this kind be also represented in set theory?
The answer is yes. Following an idea of Kuratowski, we can define an ordered pair (x, y) as a special kind
of unordered pair by means of the defining equation

(x, y) = {{x}, {x, y}}.

The information that in the pair (x, y) x is the first element of the pair and y the second element is here
encoded by the fact that when x , y we have {x} ∈ (x, y), but {y} < (x, y), since {y} , {x} and we have a
proper inclusion {y} ⊂ {x, y}. Of course, when x = y we have (x, x) = {{x}, {x, x}} = {{x}, {x}} = {{x}}. That
is, the inclusion {y} ⊆ {x, y} becomes an equality iff x = y, and then x is both the first and second element of
the pair (x, x). For example, in the above, Zermelo representation of the natural numbers, the ordered pair
(1, 2) is represented by the unordered pair {{{∅}}, {{∅}, {{∅}}}}, and the ordered pair (1, 1) by the unordered
pair {{{∅}}, {{∅}, {∅}}} = {{{∅}}, {{∅}}} = {{{∅}}}, which is of course a singleton set.

A key property of ordered pairs is a form of extensionality for such pairs, namely, the following

Lemma 1 (Extensionality of Ordered Pairs). For any sets x, x′, y, y′, the following equivalence holds:

(x, y) = (x′, y′) ⇔ (x = x′ ∧ y = y′).

Proof. The implication (⇐) is obvious. To see the implication (⇒) we can reason by cases. In case x , y
and x′ , y′, we have (x, y) = {{x}, {x, y}} and (x′, y′) = {{x′}, {x′, y′}}, with the subset inclusions {x} ⊂
{x, y} and {x′} ⊂ {x′, y′}, both strict, so that neither {x, y} nor {x′, y′} are singleton sets. By extensionality,
(x, y) = (x′, y′) means that as sets they must have the same elements. This means that the unique singleton
set in (x, y), namely {x}, must coincide with the unique singleton set in (x′, y′), namely {x′}, which by
extensionality applied to such singleton sets forces x = x′. As a consequence, we must have {x, y} = {x, y′},
which using again extensionality, plus the assumptions that x , y and x , y′, forces y = y′. The cases
x = y and x′ , y′, or x , y and x′ = y′, are impossible, since in one case the ordered pair has a single
element, which is a singleton set, and in the other it has two different elements. This leaves the case x = y
and x′ = y′, in which case we have (x, x) = {{x}}, and (x′, x′) = {{x′}}. Extensionality applied twice then
forces x = x′, as desired. □

One could reasonably wish to distinguish between the abstract concept of an ordered pair (x, y), and a
concrete representation of that concept, such as the set {{x}, {x, y}}. Lemma 1 gives strong evidence that this
particular choice of representation faithfully models the abstract notion. But we could choose many other
representations for ordered pairs (for two other early representations of ordered pairs, due to Wiener and to
Hausdorff, see [33] 224–227). One simple alternative representation is discussed in Exercise 3 (1). Further
evidence that the above definition provides a correct set-theoretic representation of ordered pairs, plus a
general way of freeing the abstract notion of ordered pair of any “representation bias,” is given in Exercise
29.

Exercise 3 Prove the following results:

1. The alternative definition of an ordered pair as:

(x, y) = {{x, y}, {y}}

provides a different, correct representation of ordered pairs, in the sense that it also satisfies the extensionality
property stated in Lemma 1.

1Yes, the same genius who designed the von Neumann machine architecture! This should be an additional stimulus for computer
scientists to appreciate set theory.
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2. The extensionality property of ordered pairs does not hold for unordered pairs. That is, show that there exists an
instantiation of the variables x, y, x′, y′ by concrete sets such that the formula

{x, y} = {x′, y′} ⇔ (x = x′ ∧ y = y′)

is false of such an instantiation.

4.2 Unions
Another reasonable idea is that of gathering together the elements of various sets into a single set, called
their union, that contains exactly all such elements. In its simplest version, we can just consider two sets,
A and B, and define their union A ∪ B as the set containing all the elements in A or in B. For example, if
A = {1, 2, 3} and B = {3, 4, 5}, then A ∪ B = {1, 2, 3, 4, 5}. One could consider giving an axiom of the form

(∀x, y)(∃!z)(∀u)(u ∈ z⇔ (u ∈ x ∨ u ∈ y))

and then define x∪ y as the unique z claimed to exist by the existential quantifier, and this would be entirely
correct and perfectly adequate for finite unions of sets.

However, the above formula can be generalized in a very sweeping way to allow forming unions not
of two, or three, or n sets, but of any finite or infinite collection of sets, that is, of any set of sets. The
key idea for the generalization can be gleaned by looking at the union of two sets in a somewhat different
way: we can first form the pair {A, B}, and then “open” the two inner boxes A and B by “dissolving”
the walls of such boxes. What we get in this way is exactly A ∪ B. For example, for A = {1, 2, 3} and
B = {3, 4, 5}, if we form the pair {A, B} = {{1, 2, 3}, {3, 4, 5}} and then “dissolve” the walls of A and B we
get: {1, 2, 3, 3, 4, 5} = {1, 2, 3, 4, 5} = A ∪ B. But {A, B} is just a set of sets, which happens to contain two
sets. We can, more generally, consider any (finite or infinite) set of sets (and in pure set theory any set
is always a set of sets), say {A1, A2, A3, . . .}, and then form the union of all those sets by “dissolving” the
walls of the A1, A2, A3, . . .. In plain English, such a union of all the sets in the collection can be described
informally by the following union axiom:

Given any collection of sets, there is a set such that an element belongs to it if and only if it
belongs to some set in the collection.

This can be precisely captured by the following set theory formula:

(Union) (∀x)(∃!y)(∀z)(z ∈ y⇔ (∃u)(u ∈ x ∧ z ∈ u)).

We introduce the notation
⋃

x to denote the unique set y claimed to exist by the above formula, and call it
the union of the collection of sets x. For example, for X = {{1, 2, 3}, {2, 4, 5}, {2, 3, 5, 7, 8}} we have⋃

X = {1, 2, 3, 4, 5, 7, 8}.

Of course, when X is an unordered pair of the form {A, B}, we abbreviate
⋃
{A, B} by the notation A ∪ B.

Once we have unions, we can define other boolean operations as subsets of a union, using the axiom of
separation (Sep). For example, the intersection

⋂
x of a set x of sets is of course the set of elements that

belong to all the elements of x, provided x is not the empty set (if x = ∅, the intersection is not defined).
We can define it using unions and (Sep) as the set⋂

x = {y ∈
⋃

x | (∀z ∈ x) y ∈ z}.

For example, for X = {{1, 2, 3}, {2, 4, 5}, {2, 3, 5, 7, 8}}, we have
⋂

X = {2}.
Note that, as with union, this is a very general operation, by which we can intersect all the sets in a

possibly infinite set of sets. In the case when we intersect an unordered pair of sets, we adopt the usual no-
tation

⋂
{A, B} = A∩B, and the above, very general definition specializes to the simpler, binary intersection

definition
A ∩ B = {x ∈ A ∪ B | x ∈ A ∧ x ∈ B}.

Exercise 4 Prove that
⋃
∅ = ∅, and that for any nonempty set x we have the identities:

⋃
{x} =

⋂
{x} = x.
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Given two sets A and B, we say that they are disjoint if and only if A ∩ B = ∅. For an arbitrary set of
sets2 X, the corresponding, most useful notion of disjointness is not just requiring

⋂
X = ∅, but something

much stronger, namely, pairwise disjointness. A set of sets X is called a collection of pairwise disjoint sets
if and only if for any x, y ∈ X, we have the implication x , y ⇒ x ∩ y = ∅. In particular, partitions are
pairwise disjoint sets of sets obeying some simple requirements.

Definition 1 Let X be a collection of pairwise disjoint sets and let Y =
⋃

X. Then X is called a partition of
Y iff either (i) X = Y = ∅; or (ii) X , ∅ ∧ ∅ < X. That is, a partition X of Y =

⋃
X is either the empty

collection of sets when Y = ∅, or a nonempty collection of pairwise disjoint nonempty sets whose union is
Y.

For example the set U = {{1, 2, 3}, {2, 4, 5}, {3, 5, 7, 8}}, even though
⋂

U = ∅, is not a collection of pairwise
disjoint sets, because {1, 2, 3} ∩ {2, 4, 5} = {2}, {2, 4, 5} ∩ {3, 5, 7, 8} = {5}, and {1, 2, 3} ∩ {3, 5, 7, 8} = {3}.
Instead, the set Z = {{1, 2, 3}, {4}, {5, 7, 8}} is indeed a collection of pairwise disjoint sets, and, furthermore,
it is a partition of

⋃
Z = {1, 2, 3, 4, 5, 7, 8}. A partition X divides the set

⋃
X into pairwise disjoint pieces,

just like a cake can be partitioned into pieces. For example, the above set Z = {{1, 2, 3}, {4}, {5, 7, 8}} divides
the set

⋃
Z = {1, 2, 3, 4, 5, 7, 8} into three pairwise disjoint, nonempty pieces.

Exercise 5 Given a set A of n elements, let k = 0 if n = 0, and assume 1 ≤ k ≤ n if n ≥ 1. Prove that the number
of different partitions of A into k mutually disjoint subsets, denoted S (n, k), satisfies the following recursive definition:
S (0, 0) = 1; S (n, n) = S (n, 1) = 1 for n ≥ 1; and for n > k > 1, S (n, k) = S (n -1, k-1) + (k · S (n -1, k)). That is, you
are asked to prove that such a recursive formula for S (n, k) is correct for all natural numbers n and all k satisfying the
already mentioned constraints.

Exercise 6 Jumping ahead a little, let N denote the set of all natural numbers for which we assume that multiplication
· has already been defined. For each n ∈ N, n ≥ 1, define the set

•
n of multiples of n as the set

•
n = {x ∈ N | (∃k)(k ∈

N ∧ x = n · k)}. Then for 1 ≤ j ≤ n − 1 consider the sets
•
n + j = {x ∈ N | (∃y)(y ∈

•
n ∧ x = y + j)}. Prove that the set

of sets N/n = {
•
n,
•
n +1, . . . ,

•
n +(n − 1)} is pairwise disjoint, so that it provides a partition of N into n disjoint subsets,

called the residue classes modulo n.

The last exercise offers a good opportunity for introducing two more notational conventions. The point
is that, although in principle everything can be reduced to our basic set theory language, involving only the ∈
and = symbols and the logical connectives and quantifiers, notational conventions allowing the use of other
symbols such as ∅, ∪, ∩, etc., and abbreviating the description of sets, are enormously useful in practice.
Therefore, provided a notational convention is unambiguous, we should feel free to introduce it when this
abbreviates and simplifies our descriptions. The first new notational convention, called quantification over
a set, is to abbreviate a formula of the form (∀y)((y ∈ x) ⇒ φ) by the formula (∀y ∈ x) φ. Similarly, a
formula of the form (∃y)((y ∈ x) ∧ φ) is abbreviated by the formula (∃y ∈ x) φ, where in both cases we
assume that x is not a free variable of φ. With this abbreviation the set

•
n = {x ∈ N | (∃k)(k ∈ N ∧ x = n · k)}

can be written in a more succinct way as
•
n = {x ∈ N | (∃k ∈ N) x = n · k}.

The second notational convention, which can be called separation with functional expressions, abbrevi-
ates an application of the (Sep) axiom defining a set of the form {x ∈ Z | (∃x1, . . . , xn)(x = exp(x1, . . . , xn) ∧
φ)}, where x is not a free variable of φ, by the more succinct notation {exp(x1, . . . , xn) ∈ Z | φ}, where
exp(x1, . . . , xn) is a functional expression which uniquely defines a set in terms of the sets x1, . . . , xn. Using
this convention, we can further abbreviate the description of the set

•
n = {x ∈ N | (∃k ∈ N) x = n · k} to just

•
n = {n · k ∈ N | k ∈ N}. Similarly, we can simplify the description of the set

•
n + j = {x ∈ N | (∃y)(y ∈

•
n ∧ x = y + j} to just

•
n + j = {y + j ∈ N | y ∈

•
n}.

So far, we have seen how intersections can be obtained from unions. Using the (Sep) axiom, we can
likewise define other boolean operations among sets. For example, the set difference A− B of two sets, that
is, the set whose elements are exactly those elements of A that do not belong to B, is defined using union
and the (Sep) axiom as the set

A − B = {x ∈ A ∪ B | x ∈ A ∧ x < B}.
2In pure set theory, since the elements of a set are always other sets, all sets are sets of sets. The terminology, “set of sets,” or

“collection of sets” is just suggestive, to help the reader’s intuition.
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Similarly, the symmetric difference of two sets A ⊞ B can be defined by the equation

A ⊞ B = (A − B) ∪ (B − A).

Exercise 7 Prove that the binary union operation A∪ B satisfies the equational axioms of: (i) associativity, that is, for
any three sets A, B,C, we have the set equality

(A ∪ B) ∪C = A ∪ (B ∪C)

(ii) commutativity, that is, for any two sets A and B, we have the set equality

A ∪ B = B ∪ A

(iii) the empty set ∅ acts as an identity element for union, that is, for any set A, we have the equalities

A ∪ ∅ = A ∅ ∪ A = A

and (iv) idempotency, that is, for any set A, we have the set equality

A ∪ A = A.

Furthermore, given any two sets A and B, prove that the following equivalence always holds:

A ⊆ B ⇔ A ∪ B = B.

Exercise 8 Prove that the binary intersection operation A ∩ B satisfies the equational axioms of: (i) associativity, (ii)
commutativity; and (iii) idempotency. Prove also that union and intersection satisfy the two following distributivity
equations (of ∩ over ∪, resp., of ∪ over ∩):

A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C)

A ∪ (B ∩C) = (A ∪ B) ∩ (A ∪C)

plus the following two absorption equations:

A ∩ (A ∪C) = A A ∪ (A ∩C) = A

plus the equation
A ∩ ∅ = ∅.

Furthermore, given any two sets A and B, prove that the following equivalence always holds:

A ⊆ B ⇔ A ∩ B = A.

Exercise 9 Prove that the symmetric difference operation A ⊞ B satisfies the equational axioms of associativity and
commutativity plus the axioms:

A ⊞ ∅ = A

A ⊞ A = ∅

and that, furthermore, it satisfies the following equation of distributivity of ∩ over ⊞:

A ∩ (B ⊞C) = (A ∩ B) ⊞ (A ∩C).

Note that, because of the associativity and commutativity of binary union, binary intersection, and
symmetric difference, we can extend those operations to n sets, for any natural number n ≥ 2, by writing
A1 ∪ . . . ∪ An, A1 ∩ . . . ∩ An, and A1 ⊞ . . . ⊞ An, respectively, with no need for using parentheses, and where
the order chosen to list the sets A1, . . . , An is immaterial.

Of course, with set union, as well as with the other boolean operations we can define based on set union
by separation, we can construct more sets than those we could build with pairing, separation, and the empty
set axiom alone. For example, we can associate to any set A another set s(A), called its successor, by
defining s(A) as the set s(A) = A ∪ {A}. In particular, we can consider the sequence of sets

∅ s(∅) s(s(∅)) s(s(s(∅))) . . .

23



which is the sequence of von Neumann natural numbers. This is an alternative representation for the natural
numbers within set theory, in which we define 0 = ∅, and n+1 = s(n) = n∪{n}. If we unpack this definition,
the von Neumann natural number sequence looks as follows:

0 = ∅, 1 = {∅} = {0}, 2 = {∅, {∅}} = {0, 1}, 3 = {∅, {∅}, {∅, {∅}}} = {0, 1, 2}, . . .

giving us the general pattern: n + 1 = {0, 1, . . . , n}. That is, each number is precisely the set of all the
numbers before it. Two important features of this representation of numbers as sets are: (i) unlike the
case for the Zermelo representation in §4.1, now the number n is a set with exactly n elements, which are
precisely the previous numbers; and (ii) n < m iff n ∈ m. These are two very good properties of the von
Neumann representation, since it is very intuitive to characterize a number as a set having as many elements
as that number, and to think of a bigger number as a set containing all the smaller numbers.

4.3 Powersets
Yet another, quite reasonable idea to build new sets out of previously constructed ones is to form the set of
all subsets of a given set A, called its powerset, and denoted P(A). For example, given the set 3 = {0, 1, 2},
its subsets are: itself, {0, 1, 2}, the empty set ∅, the singleton sets {0}, {1}, {2}, and the unordered pairs {0, 1},
{0, 2}, and {1, 2}. That is,

P(3) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.

This gives us a total of 23 = 8 subsets. The existence of a power set P(A) for any given set A is postulated
by the powerset axiom, which in English can be informally stated thus:

Given any set, the collection of all its subsets is also a set.

This can be captured precisely in our formal set theory language by the formula

(Pow) (∀x)(∃!y)(∀z)(z ∈ y ⇔ z ⊆ x).

We then use the notation P(x) to denote the unique set y postulated to exist, given x, by this formula.
It is trivial to show that if U,V ∈ P(X), then U ∪ V,U ∩ V,U − V,U ⊞ V ∈ P(X), that is, P(X) is closed

under all boolean operations. Furthermore, there is one more boolean operation not defined for sets in
general, but defined for sets in P(X), namely, complementation. Given U ∈ P(X), its complement, denoted
U, is, by definition, the set U = X − U. As further developed in Exercises 10 and 11, P(X) satisfies both
the equations of a boolean algebra, and, in an alternative formulation, those of a boolean ring.

Note that this closure under boolean operations can be extended to arbitrary unions and arbitrary in-
tersections. To define such arbitrary unions and intersections, we need to consider sets of sets U whose
elements are subsets of a given set X. But what are such sets? Exactly the elements of P(P(X)). Given
U ∈ P(P(X)), its union is always a subset of X, that is,

⋃
U ⊆ X, or, equivalently,

⋃
U ∈ P(X). If

U ∈ P(P(X)) is a nonempty set of subsets of X, then we likewise have
⋂
U ⊆ X, or, equivalently,⋂

U ∈ P(X). Recall that when U = ∅, the intersection
⋂
U is not defined. However, we can in the

context of P(X) extend the intersection operation also to the empty family by fiat, defining it as:
⋂
∅ = X.

Intuitively, the more sets we intersect, the smaller the intersection:⋂
{U} ⊇

⋂
{U,V} ⊇

⋂
{U,V,W} ⊇ . . .

Following this reasoning, since for any U ⊆ X we have ∅ ⊆ {U}, we should always have
⋂
∅ ⊇
⋂
{U} = U.

Since we know that the biggest set in P(X) is X itself, it is then entirely natural to define
⋂
∅ = X, as we

have done.

Exercise 10 Prove that, besides the equational laws for union and intersection already mentioned in Exercises 7 and
8, for any U,V ∈ P(X), the following additional complement laws hold:

U ∩ U = ∅ U ∪ U = X

and also the following two De Morgan’s laws:

U ∪ V = U ∩ V U ∩ V = U ∪ V .

The equations in Exercises 7 and 8, plus the above equations make P(X) into a boolean algebra.
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Exercise 11 Prove that, besides the equations for ⊞ already mentioned in Exercise 9, plus the equations of associativity,
commutativity, and idempotency of ∩ and the equation U ∩ ∅ = ∅ in Exercise 8, for any U ∈ P(X), the following
additional equational law holds:

U ∩ X = U.

These laws make P(X) into a boolean ring, with ⊞ as the addition operation having ∅ as its identity element, and with
∩ as the multiplication operation having X as its identity element.

Prove that the operations of union and complementation on P(X) can be defined in terms of these, boolean ring
operations as follows:

U ∪ V = (U ∩ V) ⊞ (U ⊞ V)

U = U ⊞ X.

That is, instead of adopting ∪, ∩, and complementation as our basic operations on P(X), we may alternatively choose
⊞ and ∩ as the basic operations.

Exercise 12 Describe in detail the sets P(∅), P(P(∅)), and P(P(P(∅))).
Prove that if A is a finite3 set with n elements, then P(A) has 2n elements.

Exercise 13 Prove that for any sets A and B, and set of sets X, we have:

A ⊆ B ⇒ P(A) ⊆ P(B)

P(A) ∪ P(B) ⊆ P(A ∪ B)

P(A) ∩ P(B) = P(A ∩ B)⋃
{P(x) ∈ P(P(

⋃
X)) | x ∈ X} ⊆ P(

⋃
X)⋂

{P(x) ∈ P(P(
⋃

X)) | x ∈ X} = P(
⋂

X).

Once we have powersets, we can define many other interesting sets. For example, given sets A and B,
we can define the set A ⊗ B of all unordered pairs {a, b} with a ∈ A and b ∈ B as the set

A ⊗ B = {{x, y} ∈ P(A ∪ B) | (x ∈ A ∧ y ∈ B)}.

Similarly, we can define the set A × B of all ordered pairs (a, b) with a ∈ A and b ∈ B, called the cartesian
product of A and B, as the set

A × B = {{{x}, {x, y}} ∈ P(P(A ∪ B)) | (x ∈ A ∧ y ∈ B)}.

Given sets A1, . . . , An, with n ≥ 2, we define their cartesian product A1×
n. . . × An as the iterated binary

cartesian product A1 × (A2 × (. . . × (An−1 × An) . . .)); and given x1 ∈ A1, . . . , xn ∈ An, we define the n-tuple
(x1, . . . , xn) ∈ A1×

n. . . × An as the element (x1, (x2, (. . . , (xn−1, xn) . . .))). When A1 = A2 = . . . = An = A, we
further abbreviate A× n. . . × A to An.

Using cartesian products, we can also construct the disjoint union of two sets A and B. The idea of the
disjoint union is to avoid any overlaps between A and B, that is, to force them to be disjoint before building
their union. Of course, A and B may not be disjoint. But we can make them so by building “copies” of A
and B that are disjoint. This is what the cartesian product construction allows us to do. We can form a copy
of A by forming the cartesian product A × {0}, and a disjoint copy of B by forming the cartesian product
B × {1}. These sets are respectively just like A or B, except that each element a ∈ A has now an extra
marker “0” and is represented as the ordered pair (a, 0); and each b ∈ B has now an extra marker “1” and is
represented as the ordered pair (b, 1). Then, by using either Lemma 1 or Exercise 15 below, it is immediate
to check that (A × {0}) ∩ (B × {1}) = ∅. We then define the disjoint union of A and B as the set

A ⊕ B = (A × {0}) ∪ (B × {1}).
3We say that a set A is finite iff either A = ∅, or A is a finite union of singleton sets, that is, there are singleton sets {a1}, . . . , {an},

such that A = {a1}∪ . . .∪{an}, where by the associativity and commutativity of set union (see Exercise 7) the order and the parentheses
between the different union operators are immaterial. We then use the notation A = {a1, . . . , an} for such a set. Of course, by
extensionality we remove repeated elements. For example, if a1 = a2, we would have A = {a1, a2, . . . , an} = {a2, . . . , an}. The number
of elements of A is of course the number of different elements in A. For an equivalent definition of finite set later in these notes see
Definition ?? in §??.
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Exercise 14 Prove that for A, B, C, and D any sets, the following formulas hold:

A ⊗ B = B ⊗ A

A ⊗ ∅ = ∅

A ⊗ (B ∪C) = (A ⊗ B) ∪ (A ⊗C)

(A ⊆ B ∧ C ⊆ D) ⇒ A ⊗C ⊆ B ⊗ D.

Exercise 15 Prove that for A, B, C, and D any sets, the following formulas hold:

A × ∅ = ∅ × A = ∅

A × (B ∪C) = (A × B) ∪ (A ×C)

(A ∪ B) ×C = (A ×C) ∪ (B ×C)

(A ∩ B) × (C ∩ D) = (A ×C) ∩ (B × D)

A × (B −C) = (A × B) − (A ×C)

(A − B) ×C = (A ×C) − (B ×C)

(A ⊆ B ∧ C ⊆ D) ⇒ A ×C ⊆ B × D.

Exercise 16 Prove that if A and B are finite sets, with A having n elements and B m elements, then:

• A × B has n · m elements, and

• A ⊕ B has n + m elements.

This shows that the notations A × B and A ⊕ B are well-chosen to suggest multiplication and addition, since cartesian
product and disjoint union generalize to arbitrary sets the usual notions of number multiplication and addition.

4.4 Infinity
The set theory axioms we have considered so far only allow us to build finite sets, like the number4 7 , the
powersets P(7) and P(P(7)), the sets P(7) × 7, and P(7) ⊗ 7, and so on. It is of course very compelling to
think that, if we have all the natural numbers 1, 2, 3, . . ., n, . . ., as finite sets, there should exist an infinite
set containing exactly those numbers, that is, the set of all natural numbers. Note that this set, if it exists,
satisfies two interesting properties: (i) 0 = ∅ belongs to it; and (ii) if x belongs to it, then s(x) = x ∪ {x}
also belongs to it. We call any set satisfying conditions (i) and (ii) a successor set. Of course, the set of
natural numbers, if it exists, is obviously a successor set; but one can construct other sets bigger than the
set of natural numbers that are also successor sets.

Even though in a naive, unreflective way of doing mathematics the existence of the natural numbers
would be taken for granted, in our axiomatic theory of sets it must be explicitly postulated as a new axiom,
called the axiom of infinity, which can be informally stated in English as follows:

There is a successor set.

This can be precisely formalized in our set theory language by the axiom:

(Inf ) (∃y)(∅ ∈ y ∧ (∀x ∈ y)((x ∪ {x}) ∈ y)).

Note that the successor set y asserted to exist by this axiom is not unique: there can be many successor
sets. So this axiom does not directly define for us the natural numbers. However, it does define the natural
numbers indirectly. To see why, first consider the following facts:

Exercise 17 Prove that:

• If S and S ′ are successor sets, then S ∪ S ′ and S ∩ S ′ are also successor sets.

• If S is a successor set, then the set of all successor sets S ′ such that S ′ ⊆ S can be precisely defined as the
following subset of P(S ):

{S ′ ∈ P(S ) | (∅ ∈ S ′ ∧ (∀x ∈ S ′)((x ∪ {x}) ∈ S ′))}.

4In what follows, all numbers will always be understood to be represented as sets in the von Neumann representation.
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This set is of course nonempty (S belongs to it) and its intersection⋂
{S ′ ∈ P(S ) | (∅ ∈ S ′ ∧ (∀x ∈ S ′)((x ∪ {x}) ∈ S ′))}

is a successor set.

Exercise 18 Prove that if X is a set having an element z ∈ X such that for all x ∈ X we have z ⊆ x, then
⋂

X = z.

We can then use these easy facts to define the set N of natural numbers. Let S be a successor set, which
we know it exists because of the (Inf ) axiom. We define N as the intersection:

N =
⋂
{S ′ ∈ P(S ) | (∅ ∈ S ′ ∧ (∀x ∈ S ′)((x ∪ {x}) ∈ S ′))}

which we know is a successor set because of Exercise 17.
The key question, of course, is the uniqueness of this definition. Suppose we had chosen a different

successor set T and had used the same construction to find its smallest successor subset. Can this intersec-
tion be different from the set N that we just defined for S ? The answer is emphatically no! It is the same!
Why is that? Because by Exercise 17, for any successor set T , S ∩ T is also a successor set. And, since
S ∩ T ⊆ S , this implies that N ⊆ (S ∩ T ) ⊆ T . That is, any successor set contains N as a subset. Then,
using Exercise 18, we get that for any successor set T

N =
⋂
{T ′ ∈ P(T ) | (∅ ∈ T ′ ∧ (∀x ∈ T ′)((x ∪ {x}) ∈ T ′))}

as claimed. The fact that any successor set contains N as a subset has the following well-known induction
principle as an immediate consequence:

Theorem 2 (Peano Induction) If T ⊆ N is a successor set, then T = N.

The above induction principle is called Peano Induction after Giuseppe Peano, who first formulated it in
his logical axiomatization of the natural numbers. It is an indispensable reasoning principle used routinely
in many mathematical proofs: to prove that a property P holds for all natural numbers, we consider the
subset T ⊆ N for which P holds; then, if we can show that P(0) (that is, that 0 ∈ T ) and that for each n ∈ N
we have the implication P(n) ⇒ P(s(n)) (that is, that n ∈ T ⇒ s(n) ∈ T ), then we have shown that P holds
for all n ∈ N. Why? Because this means that we have proved that T is a successor set, and then by Peano
Induction we must have T = N.

Note that, although a successor set must always contain all the natural numbers, in general it could also
contain other elements that are not natural numbers. The set N we have defined, by being the smallest
successor set possible, contains all the natural numbers and only the natural numbers.

Exercise 19 Recall that in the von Neumann natural numbers we have n < m iff n ∈ m. Use Peano induction to prove
that the < relation is a “linear order” on N, that is, to prove the formula

(∀n,m ∈ N) n < m ∨ m < n ∨ n = m.

(Hint: Note that the property P(n) stated by the formula (∀m ∈ N) n < m ∨ m < n ∨ n = m, defines a subset T ⊆ N of
the natural numbers).
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Chapter 5

Relations, Functions, and Function Sets

Relations and functions are pervasive, not just in mathematics but in natural language and therefore in
ordinary life: we cannot open our mouth for very long without invoking a relation or a function. When
someone says, “my mother is Judy Tuesday,” that person is invoking a well-known function that assigns
to each non-biologically-engineered human being his or her natural mother. Likewise, when someone says
“our four grandparents came for dinner,” he/she is invoking a well-known relation of being a grandparent,
which holds between two human beings x and z iff z is a child of some y who, in turn, is a child of x. One
of the key ways in which set theory is an excellent mathematical modeling language is precisely by how
easily and naturally relations and functions can be represented as sets. Furthermore, set theory makes clear
how relations and functions can be composed, giving rise to new relations and functions.

5.1 Relations and Functions

How does set theory model a relation? Typically there will be two sets of entities, say A and B, so that the
relation “relates” some elements of A to some elements of B. In some cases, of course, we may have A = B.
For example, in the “greater than” relation, >, between natural numbers, we have A = B = N; but in general
A and B may be different sets.

So, what is a relation? The answer is quite obvious: a relation is exactly a set of ordered pairs in some
cartesian product. That is, a relation is exactly a subset of a cartesian product A × B, that is, an element of
the powerset P(A × B) for some sets A and B. We typically use capital letters like R, G, H, etc., to denote
relations. By convention we write R : A =⇒ B as a useful, shorthand notation for R ∈ P(A × B), and say
that “R is a relation from A to B,” or “R is a relation whose domain1 is A and whose codomain2 (or range)
is B.” Sometimes, instead of writing (a, b) ∈ R to indicate that a pair (a, b) is in the relation R, we can use
the more intuitive infix notation a R b. This infix notation is quite common. For example, we write 7 > 5,
to state that 7 is greater than 5, instead of the more awkward (but equivalent) notation (7, 5) ∈ >.

Note that given a relation R ⊆ A × B we can define its inverse relation R−1 ⊆ B × A as the set
R−1 = {(y, x) ∈ B × A | (x, y) ∈ R}. The idea of an inverse relation is of course pervasive in natural
language: “grandchild” is the inverse relation of “grandparent,” and “child” is the inverse relation of “par-
ent.” Sometimes an inverse relation R−1 is suggestively denoted by the mirror image of the symbols for R.
For example, >−1 is denoted <, and ≥−1 is denoted ≤. It follows immediately from this definition that for
any relation R we have, (R−1)−1 = R.

What is a function? Again, typically a function f will map an element x of a set A to corresponding
elements f (x) of a set B. So the obvious answer is that a function is a special kind of relation. Which kind?
Well, a function f is a relation that must be defined for every element x ∈ A, and must relate each element
x of A to a unique element f (x) of B. This brings us to the following question: we know that, given sets
A and B, the set of all relations from A to B is precisely the powerset P(A × B). But what is the set of all
functions from A to B? Obviously a subset of P(A × B), which we denote [A→B] and call the function set

1This does not necessarily imply that R is “defined” for all a ∈ A, that is, we do not require that (∀a ∈ A)(∃b ∈ B)(a, b) ∈ R.
2This does not necessarily imply that for each b ∈ B there is an a ∈ A with (a, b) ∈ R.
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from A to B. Can we define [A→B] precisely? Yes, of course:

[A→B] = { f ∈ P(A × B) | (∀a ∈ A)(∃!b ∈ B) (a, b) ∈ f }.

We can introduce some useful notation for functions. Typically (but not always) we will use lower case
letters like f , g, h, and so on, to denote functions. By convention, we write f : A −→ B as a shorthand
notation for f ∈ [A→B]. We then read f : A −→ B as “ f is a function from A to B,” or “ f is a function
whose domain is A, and whose codomain (also called range) is B.” Also, if f : A −→ B and a ∈ A, the
unique b ∈ B such that a f b is denoted f (a). This is of course the standard notation for function application,
well-known in algebra and calculus, where we write expressions such as sin(π), factorial(7), 2 + 2 (which
in the above prefix notation would be rendered +(2, 2)), and so on.

Exercise 20 Let A and B be finite sets. If A has n elements and B has m elements, how many relations are there from
A to B? And how many functions are there from A to B? Give a detailed proof of your answers.

5.2 Formula, Assignment, and Lambda Notations
This is all very well, but how can we specify in a precise way a given relation or function we want to use?
If set theory is such a good modeling language, it should provide a way to unambiguously specify whatever
concrete relation or function we want to define. The fact that we know that the set of all relations from A to
B is the powerset P(A × B), and that the set of all functions from A to B is the set [A→B] is well and good;
but that does not tell us anything about how to specify any concrete relation R ∈ P(A × B), or any concrete
function f ∈ [A→B].

Essentially, there are two ways to go: the hard way, and the easy way. The hard way only applies under
some finiteness assumptions. If A and B are finite sets, then we know that A× B is also a finite set; and then
any R ∈ P(A× B), that is, any subset R ⊂ A× B is also finite. So we can just list the elements making up the
relation R, say, R = {(a1, b1), . . . , (an, bn)}. This is exactly the way a finite relation is stored in a relational
data base, namely, as the set of tuples in the relation.3 For example, a university database may store the
relationship between students and the courses each student takes in a given semester in exactly this way: as
a finite set of pairs. In reality, we need not require A and B to be finite sets in order for this explicit listing
of R to be possible: it is enough to require that R itself is a finite set. Of course, for finite functions f we
can do just the same: we can specify f as the set of its pairs f = {(a1, b1), . . . , (an, bn)}. However, since a
function f : A −→ B must be defined for all a ∈ A, it follows trivially that f is finite iff A is finite.

So long for the hard way. How about the easy way? The easy way is to represent relations and functions
symbolically, or, as philosophers like to say, intensionally. That is, by a piece of language, which is always
finite, even though what it describes (its “extension”) may be infinite. Of course, for this way of specifying
relations and functions to work, our language must be completely precise, but we are in very good shape in
this regard. Isn’t set theory a precise formal language for all of mathematics? So we can just agree that a
precise linguistic description of a relation R is just a formula φ in set theory with exactly two free variables,
x and y. Then, given domain and codomain sets A and B, this formula φ unambiguously defines a relation
R ⊆ A × B, namely, the relation

R = {(x, y) ∈ A × B | φ}.

For example, the greater than relation, >, on the von Neumann natural numbers can be specified by the set
theory formula y ∈ x, since we have,

>= {(x, y) ∈ N × N | y ∈ x}.

Similarly, the square root relation on real numbers is specified by the formula4 y2 = x, defining for us the set
of pairs SQRT = {(x, y) ∈ R2 | y2 = x}, which geometrically is a parabola. Note that what we are exploiting
here is the axiom scheme (Sep) of separation, which endows set theory with enormous expressive power to

3The fact that the tuples or “records,” may have more than two elements in them does not really matter for our modeling purposes,
since we can view, say, a triple (a, b, c) as a pair (a, (b, c)), and, similarly, and n-tuple (a1, . . . , an) as a pair (a1, (a2, . . . , an)).

4Admittedly, the expression y2 for squaring a real number does not belong to our basic set theory language; however, as explained
in what follows, such a language can be extended so that it does belong to an extended set theory language. Such language extensions
are the natural result of modeling all of mathematics within set theory, and are also very useful for set theory itself.
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use its own “metalanguage” in order to specify sets. Let us call this syntactic way of defining relations the
formula notation.

How can we likewise define functions symbolically? Since functions are a special kind of relation, we
can also use the above formula notation to specify functions; but this is not always a good idea. Why not?
Because just from looking at a formula φ(x, y) we may not have an obvious way to know that for each x there
will always be a unique y such that φ(x, y) holds, and we need this to be the case if φ(x, y) is going to define
a function. A better way is to use a set-theoretic term or expression to define a function. For example, we
can use the set-theoretic expression x∪{x} to define the successor function s : N −→ N on the von Neumann
natural numbers. We can do this using two different notations, called, respectively, the assignment notation
and the lambda notation. In the assignment notation we write, for example, s : N −→ N : x 7→ x ∪ {x} to
unambiguously define the successor function. More generally, if t(x) is a set-theoretic term or expression
having a single variable x (or having no variable at all), then we can write f : A −→ B : x 7→ t(x) to define
the function f . In which sense is f defined? That is, how is f specified as a set? Of course it is specified as
the set

f = {(x, y) ∈ A × B | y = t(x)}.

Ok, but how do we know that such a set is a function? Well, we do not quite know. There is a possibility
that the whole thing is nonsense and we have not defined a function. Certainly the above set is a relation
from A to B. Furthermore, we cannot have (a, b), (a, b′) ∈ f with b , b′, since t(x) is a term, and this forces
b = t(a) = b′. The rub comes from the fact that we could have a ∈ A but t(a) < B. In such a case f will
not be defined for all a ∈ A, which it must be in order for f to be a function. In summary, the assignment
notation, if used senselessly, may not define a function, but only what is called a partial function. In order
for this notation to really define a function from A to B, we must furthermore check that for each a ∈ A the
element t(a) belongs to the set B. An alternative, quite compact variant of the assignment notation is the
notation A ∋ x 7→ t(x) ∈ B.

What about the lambda notation? This notation is also based on the idea of symbolically specifying
a function by means of a term t(x). It is just a syntactic variant of the assignment notation. Instead of
writing x 7→ t(x) we write λx. t(x). To make explicit the domain A and codomain B of the function so
defined we should write λx ∈ A. t(x) ∈ B. Again, this could fail to define a function if for some a ∈ A we
have t(a) < B, so we have to check that for each a ∈ A we indeed have t(a) ∈ B. For example, assuming
that we have already defined the addition function + on the natural numbers, we could define the function
double : N −→ N by the defining equality double = λx ∈ N. x + x ∈ N. A good point about the lambda
notation λx. t(x) is that the λ symbol makes explicit that it is used as a “binder” or “quantifier” that binds
its argument variable x. This means that the particular choice of x as a variable is immaterial. We could
instead write λy. t(y) and this would define the same function. Of course, this also happens for the assigment
notation: we can write A ∋ y 7→ t(y) ∈ B instead of A ∋ x 7→ t(x) ∈ B, since both notations will define the
same function.

Both the assignment and the lambda notations have easy generalizations to notations for defining func-
tions of several arguments, that is, functions of the form f : A1 × . . .× An −→ B. Instead of choosing a term
t(x) with (at most) a single variable, we now choose a term t(x1, . . . , xn) with (at most) n variables and write
f : A1 × . . . × An −→ B : (x1, . . . , xn) 7→ t(x1, . . . , xn), or A1 × . . . × An ∋ (x1, . . . , xn) 7→ t(x1, . . . , xn) ∈ B
in assignment notation; or λ(x1, . . . , xn) ∈ A1 × . . . × An. t(x1, . . . , xn) ∈ B in lambda notation. For example,
we can define the average function on a pair of real numbers by the assignment notation: av : R2 −→

R : (x, y) 7→ (x + y)/2. Of course, the function f defined by the assignment notation A1 × . . . × An ∋

(x1, . . . , xn) 7→ t(x1, . . . , xn) ∈ B, or the lambda notation λ(x1, . . . , xn) ∈ A1 × . . . × An. t(x1, . . . , xn) ∈ B, is:

f = {((x1, . . . , xn), y) ∈ (A1 × . . . × An) × B | y = t(x1, . . . , xn)}.

Perhaps a nagging doubt that should be assuaged is what terms, say, t(x) or t(x1, . . . , xn), are we allowed
to use in our set theory language. After all, in the original formal language of set theory presented in §2
the only terms allowed were variables! This certainly will not carry us very far in defining functions. The
answer to this question is that we are free to use any terms or expressions available to us in any definitional
extension of the set theory language. The idea of a definitional extension of a first-order language is very
simple: we can always add new, auxiliary notation, provided this new notation is precisely defined in terms
of the previous notation. We have been using this idea already quite a lot when introducing new auxiliary
symbols like ∅, ⊆,

⋃
,
⋂

, ⊞, ⊗, ⊕, ×, or P, in our set theory language. For example, we defined the
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containment relation ⊆ in terms of the basic notation of set theory —which only uses the ∈ binary relation
symbol and the built-in equality symbol— by means of the defining equivalence x ⊆ y ⇔ (∀z)(z ∈ x ⇒
z ∈ y). Similarly, the term x ∪ {x} that we used in defining the successor function on von Neumann natural
numbers became perfectly defined after singleton sets were formally defined by means of the (Pair) axiom
and the union operation was formally defined by means of the (Union) axiom.

More precisely, given any formula φ in our language whose free variables are exactly x1, . . . , xn, we
can introduce a new predicate symbol, say P, of n arguments as an abbreviation for it, provided we add
the axiom P(x1, . . . , xn) ⇔ φ, which uniquely defines the meaning of P in terms of φ. For example,
the predicate ⊆ is defined in this way by the equivalence x ⊆ y ⇔ (∀z ∈ x) z ∈ y. Similarly, if we
have a formula φ in our language whose free variables are exactly x1, . . . , xn, y, and we can prove that the
formula (∀x1, . . . , xn)(∃!y)φ is a theorem of set theory, then we can introduce in our language a new function
symbol f of n arguments, and we can define the meaning of f by adding the axiom f (x1, . . . , xn) = y⇔ φ.
For example, we have done exactly this to define {x1, x2},

⋃
x, and P(x), using the uniquely existentially

quantified variable y in, respectively, the (Pair), (Union), and (Pow) axioms. Of course, this language
extension process can be iterated: we can first define some new function and predicate symbols this way, and
can later introduce other new symbols by defining them in terms of the formulas in the previous language
extension. For example, the sucessor function can be defined in terms of binary union ∪ and the pairing
operation { , } by means of the term x ∪ {x}, which abbreviates the term x ∪ {x, x}. Finally, by repeatedly
replacing each predicate or function symbol by its corresponding definition, we can always “define away”
everything into their simplest possible formulation in the basic language of set theory presented in § 2.

Exercise 21 Define away the formula y = s(x), where s is the successor function, into its equivalent formula in the
basic language of set theory, which uses only variables and the ∈ and = predicates.

5.3 Images
Given a relation R ⊆ A × B, we can consider the image under R of any subset A′ ∈ P(A), that is, those
elements of B related by R to some element in A′. The obvious definition is then,

R[A′] = {b ∈ B | (∃a ∈ A′) (a, b) ∈ R}.

For example, for SQRT the square root relation on the set R of real numbers we have SQRT[{4}] = {2,−2},
SQRT[{−1}] = ∅, and SQRT[R] = R.

Of course, given B′ ⊆ B, its inverse image under R,

R−1[B′] = {a ∈ A | (∃b ∈ B′) (a, b) ∈ R},

is exactly the image of B′ under the inverse relation R−1. For example, since the inverse relation SQRT−1

is the square function R ∋ x 7→ x2 ∈ R, we have SQRT−1[{−1}] = {1}, and SQRT−1[R] = R≥0, where R≥0
denotes the set of positive (or zero) real numbers.

Given a relation R ⊆ A × B, we call the set R[A] ⊆ B the image of R. For example, the image of the
square root relation SQRT is SQRT[R] = R; and the image of the square function is square[R] = R≥0.

Note that for any relation R ⊆ A × B, the assignment P(A) ∋ A′ 7→ R[A′] ∈ P(B) defines a function
R[ ] : P(A) −→ P(B). In particular, for the inverse relation R−1 we have a function R−1[ ] : P(B) −→ P(A).

Note, finally, that when f ⊆ A × B is not just a relation but in fact a function f : A −→ B, then for each
a ∈ A we have two different notations, giving us two different results. On the one hand f (a) gives us the
unique b ∈ B such that a f b, while on the other hand f [{a}] gives us the singleton set whose only element
is f (a), that is, f [{a}] = { f (a)}.

Exercise 22 Prove the following:

1. For any sets A, B, and C, if f ∈ [A→B] and B ⊆ C, then f ∈ [A→C], that is, [A→B] ⊆ [A→C], so that we can
always enlarge the codomain of a function to a bigger one.

2. Given f ∈ [A→B], prove that for any set C such that f [A] ⊆ C ⊆ B we have f ∈ [A→C]; that is, we can restrict
the codomain of a function f to a smaller one C, provided f [A] ⊆ C.

32



3. If f ∈ [A→B] and A ⊂ A′ then f < [A′→B], that is, we cannot strictly enlarge the domain of a function f and still
have f be a function. Give a precise set-theoretic definition of partial function, so that, under this definition, if
f ∈ [A→B] and A ⊆ A′ then f is a partial function from A′ to B. Summarizing (1)–(3), the domain of a function
f ∈ [A→B] is fixed, but its codomain can always be enlarged; and can also be restricted, provided the restricted
codomain contains f [A].

4. Call a relation R from A to B total5 iff for each a ∈ A we have R[{a}] , ∅. Show that any function from A to
B is a total relation. Show also that if f ∈ [A→B] and A ⊂ A′, then f , as a relation from A′ to B, is not total
(so that calling f a partial function from A′ to B makes sense). Come up with the most natural and economic
possible way of extending any relation R from a set A to itself, that is, R ∈ P(A2), to a total relation R•, so that:
(i) R ⊆ R•, and (ii) if R is already total, then R = R•.

5. For any sets A, B, C, and D, if R ∈ P(A × B), A ⊆ C, and B ⊆ D, then R ∈ P(C × D), that is, we can always
enlarge both the domain and the codomain of a relation. However, show that if R ∈ P(A × B) is total from A to
B and A ⊂ C, and B ⊆ D, then, R, as a relation from C to D, is never total.

Exercise 23 Given a function f ∈ [A→B] and given a subset A′ ⊆ A we can define the restriction f↾A′ of f to A′ as the
set

f↾A′= {(a, b) ∈ f | a ∈ A′}.

Prove that the assignment f 7→ f↾A′ then defines a function ↾A′ : [A→B] −→ [A′→B]. Show, using the inclusion N ⊂ Z
of the natural numbers into the set Z of integers, as well as Exercise 22-(1)-(2), that the addition and multiplication
functions on natural numbers are restrictions of the addition and multiplication functions on integers in exactly this
sense.

Similarly, given a relation R ∈ P(A × B) and given a subset A′ ⊆ A we can define the restriction R↾A′ of R to A′ as
the set

R↾A′= {(a, b) ∈ R | a ∈ A′}.

Prove that the assignment R 7→ R↾A′ then defines a function ↾A′ : P(A × B) −→ P(A′ × B).

5.4 Composing Relations and Functions
Given relations F : A =⇒ B and G : B =⇒ C, their composition is the relation F; G : A =⇒ C defined as
the set

F; G = {(x, z) ∈ A ×C | (∃y ∈ B)((x, y) ∈ F ∧ (y, z) ∈ G)}.

Similarly, given functions f : A −→ B and g : B −→ C, their composition is the relation f ; g : A −→ C,
which is trivial to check it is a function. The notation F; G (resp., f ; g) follows the diagrammatic order, so
that F (resp., f ) is the first relation (resp., function) from A to B, and G (resp., g) the second relation (resp.,
function) from B to C. Sometimes the composed relation F; G (resp., composed function f ; g) is denoted in
application order as G ◦ F (resp., g ◦ f ). This is due to the convention of applying functions to an argument
on the left of the argument, so to apply f ; g to a ∈ A we have to apply f first to get f (a), and then g to
get g( f (a)). The notation (g ◦ f )(a) = g( f (a)) then follows the application order for functions on the left,
whereas the notation f ; g is easier to indicate that f is the first function applied, and g the second. We will
allow both notations, but will favor the diagrammatic one.

Given any set A, the identity function on A is the function idA = {(a, a) | a ∈ A}, or, in assignment
notation, idA : A −→ A : a 7→ a. The following lemma is trivial to prove and is left as an exercise.

Lemma 2 (Associativity and Identities for Relation and Function Composition)

1. Given relations F : A =⇒ B, G : B =⇒ C, and H : C =⇒ D, their composition is associative, that is,
we have the equality of relations (F; G); H = F; (G; H).

5Please note that this use of the word “total” means “totally defined” and is opposed to “partial,” in the sense of “partially defined,”
that is, a relation R : A =⇒ B is total iff it is defined for every a ∈ A, and should be called partial otherwise. All functions are total
relations in this sense; and we call a relation f : A =⇒ B a partial function iff there is a subset A′ ⊆ A such that f : A′ −→ B is a
(total) function. Note that this notion of total relation is completely different from another notion in which R : A =⇒ A is called “total”
iff (∀x, y ∈ A) xRy ∨ yRx. This second sense of “total” is used in the notion of a totally ordered set with an order relation ≤ in Section
6.4. To make things even more confusing, an ordered set that is not total in this second sense is called a partially ordered set or poset;
but here “partial” just means not (necessarily) total in this second and completely different sense. In what follows, the context should
always make clear which of these two different senses of “total” or “partial” is meant.
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2. Given functions f : A −→ B, g : B −→ C, and h : C −→ D, their composition is likewise associative,
that is, we have the equality of functions ( f ; g); h = f ; (g; h).

3. Given a relation F : A =⇒ B, we have the equalities idA; F = F, and F; idB = F.

4. Given a function f : A −→ B, we have the equalities idA; f = f , and f ; idB = f .

Closely related to the identity function idA on a set A we more generally have inclusion functions. Given
a subset inclusion A′ ⊆ A, the inclusion function from A′ to A is the function jA

A′ = {(a
′, a′) | a′ ∈ A′}, or,

in assignment notation, jA
A′ : A′ −→ A : a′ 7→ a′. That is, the function jA

A′ is just the identity function idA′

on A′, except that we have extended its codomain from A′ to A (see Exercise 22-(1)). To emphasize that an
inclusion function identically includes the subset A′ into A, we will use the notation jA

A′ : A′ ↪→ A. Note that
inclusion functions are also closely connected with the notion of restriction f↾A′ of a function f : A −→ B
or, more generally, restriction F↾A′ of a relation F : A =⇒ B to a subset A′ ⊆ A of its domain defined in
Exercise 23. Indeed, it is trivial to check that we have the equalities: f↾A′= jA

A′ ; f , and F↾A′= jA
A′ ; F.

We call a function f : A −→ B injective iff (∀a, a′ ∈ A)( f (a) = f (a′) ⇒ a = a′). Obviously, any
inclusion function is injective. For another example of an injective function, consider multiplication by 2
(or by any nonzero number) on the natural numbers: 2 · : N −→ N : n 7→ 2 · n. Similarly, addition by 2 (or
by any natural number) 2+ : N −→ N : n 7→ 2+ n is an injective function. We use the notation f : A↣ B
as a shorthand for “ f is an injective function from A to B.” Note that, since an inclusion jA

A′ : A′ ↪→ A
is always injective, it can also be written jA

A′ : A′ ↣ A, but the notation jA
A′ : A′ ↪→ A is clearly more

informative, since it indicates that jA
A′ is not only injective, but also an inclusion.

We call a function f : A −→ B surjective iff B is the image of f , that is, iff f [A] = B. For example,
the absolute value function | | : Z −→ N, with |n| = n if n ∈ N, and |-n| = n for negative numbers, is
clearly surjective. Similarly, the projection to the horizontal plane π : R3 −→ R2 : (x, y, z) 7→ (x, y) is also
surjective. We use the notation f : A →−→ B as a shorthand for “ f is a surjective function from A to B.”
Note that, taking into account Exercise 22, it is immediate to check that any function f : A −→ B can be
expressed in a unique way as a composition of its “surjective part” (the restriction of its codomain to f [A]),
followed by the inclusion of f [A] into B. That is, for any B such that f [A] ⊆ B we always have f = f ; jB

f [A],
according to the composition

A
f
→−→ f [A]

jB
f [A]
↪→ B.

Since any inclusion function is injective, the above composition f = f ; jB
f [A] shows that any function can

always be expressed as the composition of a surjective function followed by an injective function.
We call a function f : A −→ B bijective iff it is both injective and surjective. Obviously, the identity

function idA is bijective. Similarly, the function mapping each point of the three dimensional space to its
“mirror image” on the other side of the x − z plane, mirror : R3 −→ R3 : (x, y, z) 7→ (x,−y, z) is also clearly
bijective. We use the notation f : A �

−→B as a shorthand for “ f is a bijective function from A to B.” We
also use the notation A � B as a shorthand for “there exists a bijective function from A to B.” For example,
P({0, 1, 2}) � 8.

Since any function f : A −→ B is a special case of a relation, its inverse relation f −1 : B =⇒ A is always
defined. However, in general f −1 is a relation, but not necessarily a function. We have already encountered
instances of this phenomenon. For example, given the square function square : R −→ R : x 7→ x2, its
inverse relation square−1 : R =⇒ R is precisely the square root relation SQRT , which is not a function. It
is then interesting to ask: given a function f : A −→ B, when is its inverse relation f −1 a function? More
generally, how is the inverse relation f −1 related to the injective, surjective, or bijective nature of a function?

Exercise 24 Given a function f : A −→ B, prove the following:

1. We always have inclusions f −1; f ⊆ idB, and idA ⊆ f ; f −1.

2. A relation R : A =⇒ B is a function iff R−1; R ⊆ idB, and idA ⊆ R; R−1.

3. f is surjective iff f −1; f = idB.

4. f is injective iff f ; f −1 = idA.

5. f is bijective iff the relation f −1 is a function f −1 : B −→ A.

6. f is bijective iff there exists a function g : B −→ A such that f ; g = idA and g; f = idB. Furthermore, g satisfies
these conditions iff f −1 is a function and g = f −1.
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The last two characterizations in Exercise 24 clearly tell us that if we have two sets A and B such that
there is a bijective function f : A �

−→ B between them, then in all relevant aspects these sets are “essentially
the same,” because we can put each element a of A in a “one-to-one” correspondence with a unique element
of b, namely, f (a), and conversely, each element b of B is put in a one-to-one correspondence with a unique
element of A, namely, f −1(b). This means that f and f −1 act as faithful encoding functions, so that data
from A can be faithfully encoded by data from B, and data from B can be faithfully decoded as data from
A. It also means that the sets A and B have “the same size.”

We can illustrate the way in which a bijection between two sets makes them “essentially the same”
by explaining how the powerset construction P(A) and the function set construction [A→2] are intimately
related in a bijective way. Given any set A, the sets P(A) and [A→2] are essentially the same in this precise,
bijective sense. P(A) and [A→2] give us two alternative ways of dealing with a subset B ⊆ A. Viewed as an
element B ∈ P(A), B is just a subset. But we can alternatively view B as a boolean-valued predicate, which
is true for the elements of B, and false for the elements of A − B. That is, we can alternatively represent B
as the function

χB : A −→ 2 : a 7→ if a ∈ B then 1 else 0 fi

where χB is called the characteristic function of the subset B. The sets P(A) and [A→2] are essentially the
same, because the function χ : P(A) −→ [A→2] : B 7→ χB is bijective, since its inverse is the function
( )−1[{1}] : [A→2] −→ P(A) : f 7→ f −1[{1}].

We call a function f : A −→ B a left inverse iff there is a function g : B −→ A such that f ; g = idA.
Similarly, we call g : B −→ A a right inverse iff there is a function f : A −→ B such that f ; g = idA. For
example, composing

N
jZN
↪→ Z

| |
→−→ N

the inclusion of the natural numbers in the integers with the absolute value function, we obtain jZN; | | = idN,
and therefore jZN is a left inverse and | | is a right inverse.

Exercise 25 Prove the following:

1. If f : A −→ B is a left inverse, then f is injective.

2. If f : A −→ B is injective and A , ∅, then f is a left inverse.

3. If f : A −→ B is a right inverse, then f is surjective.

4. f : A −→ B is both a left and a right inverse iff f is bijective.

Is every surjective function a right inverse? As we shall see, that depends on the set theory axioms that
we assume. We shall revisit this question in §??.

Exercise 26 (Epis and Monos). Call a function f : A −→ B epi iff for any set C and any two functions g, h : B −→ C, if
f ; g = f ; h then g = h. Dually,6 call a function f : A −→ B mono iff for any set C and any two functions g, h : C −→ A,
if g; f = h; f then g = h. Prove the following:

1. f : A −→ B is epi iff f is surjective.

2. f : A −→ B is mono iff f is injective.

3. If f : A −→ B and g : B −→ C are epi, then f ; g is epi.

4. If f : A −→ B and g : B −→ C are mono, then f ; g is mono.

5. Given f : A −→ B and g : B −→ C with f ; g epi, then g is epi.

6. Given f : A −→ B and g : B −→ C with f ; g mono, then f is mono.

In the von Neumann representation of the natural numbers as sets, the number 1 is represented as the
singleton set 1 = {∅}. Given any set A, we can then consider the function sets [1→A] and [A→1]. As the
exercise below shows, the set [A→1] is always a singleton set. How about the set [1→A]? Exercise 32 shows
that we always have a bijection A � [1→A].

Exercise 27 Prove the following for any set A:

6 By “dually” I mean that, by “reversing the direction of all the arrows,” e.g., from A −→ B to A ←− B, in the definition of “epi”
we then obtain the definition of “mono” as its “dual concept.”
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1. The function set [A→1] is always a singleton set. Describe explicitly the unique function, let us denote it !A, in
the singleton set [A→1].

2. Prove that for all sets A, except one of them, the function !A is surjective. For which A does !A fail to be surjective?
In this failure case, is !A injective? Can you give a necessary and sufficient condition on A so that !A is bijective
iff your condition holds?

Note that, since for any set A we have the set equality ∅ × A = ∅, then we also have the set equalities
P(∅ × A) = P(∅) = {∅} = 1. Furthermore, the unique relation ∅ : ∅ =⇒ A is obviously a function. As
a consequence, we have the additional set equalities P(∅ × A) = [∅→A] = {∅} = 1. That is, for any set
A there is always a unique function from the empty set to it, namely, the function ∅ : ∅ −→ A, which is
precisely the inclusion function jA

∅ : ∅ ↪→ A, and therefore always injective. What about the function set
[A→∅]? We of course have [A→∅] ⊆ P(A × ∅) = P(∅) = {∅} = 1. But if A , ∅ the unique relation
∅ : A =⇒ ∅ is not a function. Therefore, if A , ∅ we have [A→∅] = ∅, that is, there are obviously
no functions from a nonempty set to the empty set. What about the case A = ∅? Then we have the set
equalities: [∅→∅] = P(∅ × ∅) = P(∅) = {∅} = 1. Furthermore, the unique function ∅ : ∅ −→ ∅ is
precisely the identity function id∅.

Given any two sets A and B, we can associate to their cartesian product two functions, p1 : A × B −→
A : (a, b) 7→ a and p2 : A × B −→ B : (a, b) 7→ b, which are called the projection functions from the
cartesian product A × B into their first and second components, A and B.

Exercise 28 The above definitions of the functions p1 and p2 are quite high-level, since they hide the representation of
(a, b) as the set {{a}, {a, b}}. Prove that, using the concrete representation of pairs, the functions p1 and p2 are exactly the
functions: p1 = λx ∈ A×B.

⋃⋂
x ∈ A, and p2 = λx ∈ A×B. if (

⋃
x−
⋂

x) = ∅ then
⋃⋂

x else
⋃

(
⋃

x−
⋂

x) fi ∈ B.
(Hint: use Exercise 4).

Exercise 29 Given any three sets A, B, and C, and given any two functions f : C −→ A and g : C −→ B, we can define
the function ( f , g) : C −→ A × B : c 7→ ( f (c), g(c)). Prove that:

1. ( f , g); p1 = f ,

2. ( f , g); p2 = g,

3. (1) and (2) uniquely determine ( f , g), that is, any function h : C −→ A × B such that h; p1 = f and h; p2 = g
must necessarily satisfy h = ( f , g).

We can compactly express properties (1)–(3) in Exercise 29 in a precise graphical notation by means of
the following commutative diagram:

C
f

||

g

""
( f ,g)
��

A A × Bp1
oo

p2
// B

where:

• Different paths of arrows having the same beginning and ending nodes are pictorially asserted to have
identical function compositions. In the above diagram the left triangle asserts equation (1), and the
right triangle asserts equation (2). This is called “diagram commutativity.”

• A dotted arrow pictorially denotes a unique existential quantification. In the above diagram the fact
that the arrow for ( f , g) is dotted, exactly means that ( f , g) is the unique function that makes the two
triangles commute, that is, such that (1) and (2) hold; which is statement (3).

Given any two sets A and B, we can associate to their disjoint union A ⊕ B two injective functions,
i1 : A −→ A⊕ B : a 7→ (a, 0) and i2 : B −→ A⊕ B : b 7→ (b, 1), which are called the injection functions into
the disjoint union A ⊕ B from their first and second components, A and B.

Exercise 30 Given any three sets A, B, and C, and given any two functions f : A −→ C and g : B −→ C, we can define
the function [ f , g] : A ⊕ B −→ C : x 7→ if x ∈ A × {0} then f (p1(x)) else g(p1(x)) fi, where p1 : A × {0} −→ A, and
p1 : B × {1} −→ B are the projection functions.

Prove that:
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1. i1; [ f , g] = f ,

2. i2; [ f , g] = g,

3. (1) and (2) uniquely determine [ f , g], that is, any function h : A ⊕ B −→ C such that i1; h = f and i2; h = g must
necessarily satisfy h = [ f , g].

Properties (1)–(3) can be succinctly expressed by the commutative diagram:

C

A

f
<<

i1
// A ⊕ B

[ f ,g]

OO

B

g
bb

i2
oo

Note the striking similarity between Exercises 29 and 30, since, except for “reversing the direction of
all the arrows,” the product A × B and the disjoint union A ⊕ B have the exact same properties with respect
to functions from a set C to their components A and B (resp., to a set C from their components A and B).
As already mentioned for epis and monos in Footnote 6 to Execise 26, this striking coincidence, obtained
by “reversing the direction of the arrows” is called duality. Therefore, the cartesian product A × B and
the disjoint union A ⊕ B are dual constructions. For this reason, the disjoint union is sometimes called the
coproduct of A and B.

In fact, this kind of duality is at work not just between epis and monos and between products and
disjoint unions. In a similar way, the empty set ∅ and the set 1 are dual of each other, since for any set A,
the function sets [∅→A] and [A→1] are both singleton sets. That is, for any set A there is a unique function
∅ : ∅ −→ A from ∅ to A, and, dually, there is also a unique function !A : A −→ 1 from A to 1. That is,
“reversing the direction of the arrows” ∅ and 1 behave just the same. For this reason, ∅ is sometimes called
the initial set, and its dual, 1, the final set.

5.5 Relating Function Sets
We can view relation and function composition as functions. For example, composing relations from A to
B with relations from B to C, is the function

; : P(A × B) × P(B ×C) −→ P(A ×C) : (F,G) 7→ F; G

Similarly, composing functions from A to B with functions from B to C, is the function

; : [A→B] × [B→C] −→ [A→C] : ( f , g) 7→ f ; g

Also, given sets A, B and B′, and a function g : B −→ B′, we can define the function

[A→g] : [A→B] −→ [A→B′] : h 7→ h; g

Likewise, given sets A, A′ and B, and a function f : A′ −→ A, we can define the function

[ f→B] : [A→B] −→ [A′→B] : h 7→ f ; h

More generally, given sets A, A′, B and B′, and functions f : A′ −→ A and g : B −→ B′, we can define
the function

[ f→g] : [A→B] −→ [A′→B′] : h 7→ f ; h; g

so that we then get [A→g] = [idA→g], and [ f→B] = [ f→idB] as special cases.

Exercise 31 ([ → ] is a Functorial Construction). The above definition of [ f→g] strongly suggests that [ → ] acts
on both sets and functions and is a functorial construction. However, in the case of the [ → ] construction, its action
on functions comes with a twist, since [ f→g] reverses the direction of the function in its first argument: we give it
f : A′ −→ A, but we get back [ f→B] : [A→B] −→ [A′→B]. This twist is called being “contravariant” on the first
argument (and “covariant” in the second argument). Prove that [ → ] satisfies the other two functoriality requirements:

37



it preserves both function composition and identity functions. Because of the contravariance on the first argument, what
now has to be proved is that given functions

A
f
←− A′

f ′
←− A′′ B

g
−→ B′

g′
−→ B′′

we have [ f→g]; [ f ′→g′] = [( f ′; f )→(g; g′)]. The requirement for identity preservation is as expected: given any two
sets A and B one has to prove the equality [idA→idB] = id[A→B].

For any function set [B→C], function evaluation is itself a function

( )[B→C] : [B→C] × B −→ C : ( f , b) 7→ f (b).

Also, for any cartesian product A × B, we have a function

columnA×B : A −→ [B→(A × B)] : a 7→ λy ∈ B. (a, y) ∈ A × B.

Note that the name columnA×B is well-chosen, since if we visualize the cartesian product A × B as a two-
dimensional table, where each a ∈ A gives rise to the “column” {(a, y) ∈ A × B | y ∈ B}, and each b ∈ B
gives rise to the “row” {(x, b) ∈ A × B | x ∈ A}, then columnA×B(a) maps each y ∈ B to its corresponding
position (a, y) in the column {(a, y) ∈ A × B | y ∈ B}.

Exercise 32 Prove the following for any set A:

1. The first projection map pA : A × 1 −→ A : (a,∅) 7→ a is bijective.

2. The evaluation function ( )[1→A] : [1→A] × 1 −→ A is bijective.

3. Combine (1) and (2) to prove that the function [1→A] −→ A : f 7→ f (∅) is bijective. That is, for all practical
purposes we can think of an element a ∈ A as a function â ∈ [1→A], namely the unique function â such that
â(∅) = a, and, conversely, any function f ∈ [1→A] is precisely of the form f = â for a unique a ∈ A.

Exercise 33 Prove that for any set A there is a bijection A2 � [2→A]. That is, except for a slight change of represen-
tation, the cartesian product A × A and the function set [2→A] are “essentially the same set.”

Generalize this for any n ≥ 1, adopting the notational convention that for n = 1, A coincides with the “1-fold
cartesian product” of A. That is, show that for any n ≥ 1 there is a bijection An � [n→A], between the n-fold cartesian
product of A (as defined in §4 for n ≥ 2, and here also for n = 1), and the function set [n→A]. Note that for n = 1 this
yields the bijection between A and [1→A] already discussed in Exercise 32-(3).

Regarding the above exercise, note that if A is a finite set with m elements, then, recalling Exercise 16,
the n-fold product of A has m· n. . . ·m elements, and the function set [n→A] has (how many? See Exercise
20). Therefore, the above bijection An � [n→A] tells us two things. First, that the same way that the cartesian
product construction generalizes number multiplication, the function set construction generalizes number
exponentiation. Second, that the bijection An � [n→A] generalizes the arithmetic identity m · n. . . ·m = mn.

Exercise 34 (Currying and un-Currying of Functions). Prove that for any three sets A, B and C, the function

curry : [A × B→C] −→ [A→[B→C]] : f 7→ columnA×B; [B→ f ]

is bijective, since it has as its inverse the function

uncurry : [A→[B→C]] −→ [A × B→C] : h 7→ (h × idB); ( )[B→C]

where h × idB : A × B −→ [B→C] × B is the unique function associated to h and idB in Exercise ??.

Currying (after Haskell Curry) allows us to transform a function f : A× B −→ C of two arguments into
a higher-order-valued function curry( f ) : A −→ [B→C] of its first argument. Given an element a ∈ A, then
curry( f )(a) = λx ∈ B. f (a, x) ∈ C. Therefore, for any (x, y) ∈ A × B we have the equality, curry( f )(x)(y) =
f (x, y). Un-currying is the inverse transformation, that brings down a higher-order-valued function of this
type into a function of two arguments. Therefore, for any h ∈ [A→[B→C]] and any (x, y) ∈ A×B we have the
equality, uncurry(h)(x, y) = h(x)(y). In functional programming, currying can be used in combination with
the technique called “partial evaluation” to speed up function evaluation. The idea is that if f : A× B −→ C
is a function of two arguments, but we know that its first argument in a certain situation will always be
a fixed value a, we may be able to use symbolic evaluation to derive a specialized algorithm for the one-
argument function curry( f )(a) that is more efficient than the general algorithm available for f .

Let me finish this Chapter with an exercise exploring in depth the relationships between the set of
relations P(A × B) and the set of functions [A→P(B)].
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Exercise 35 (Relations as Functions). Given a relation F : A =⇒ B, we can associate to it the function F̃ : A −→
P(B) : a 7→ F[{a}]. Of course, F and F̃ contain the same information, since any function f : A −→ P(B) is always
of the form f = F̃ for a unique relation F, namely, for F = {(a, b) ∈ A × B | b ∈ f (a)}. Prove that the mapping
(̃ ) : P(A × B) −→ [A→P(B)] : F 7→ F̃ is in fact a bijection.

Note that if we have relations F : A =⇒ B and G : B =⇒ C, we can compose them to obtain F; G : A =⇒ C,
but F̃ and G̃ cannot be composed anymore in the standard way, since their domains and codomains do not match.
However, we can give a different definition of composition so that they do compose, in a way that mimics perfectly
the composition of their corresponding relations F and G. Specifically, we can define the following new composition
operation:

F̃ ⋆ G̃ = F̃; (G[ ])

where composition in the right side of the equality is the usual function composition, since now the codomain of
F̃ : A −→ P(B) and the domain of G[ ] : P(B) −→ P(C) do match.

Note, finally, that for idA the identity function the corresponding function ĩdA : A −→ P(A) is just the function
{ }A : A −→ P(A) : a 7→ {a}, mapping each a ∈ A to the corresponding singleton set {a}.

Prove the following:

1. This composition mimics perfectly relation composition, that is, we have the equality F̃; G = F̃ ⋆ G̃.

2. It is associative, that is, given F : A =⇒ B, G : B =⇒ C, and H : C =⇒ D, we have: F̃⋆ (G̃⋆ H̃) = (F̃⋆G̃)⋆ H̃.

3. The maps ĩdA = { }A act as identities, that is, given F̃ : A =⇒ P(B) we have the equalities { }A⋆F̃ = F̃ = F̃⋆{ }B.
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Chapter 6

Binary Relations on a Set

The case of binary relations whose domain and codomain coincide, that is, relations of the form R ∈ P(A×A)
is so important as to deserve a treatment of its own. Of course, any relation can be viewed as a binary relation
on a single set, since for any sets A and B, if R ∈ P(A × B), then R ∈ P((A ∪ B) × (A ∪ B)) (see Exercise
22-(5)). That is, the domain and codomain of a relation R is not uniquely determined by the set R. To avoid
this kind of ambiguity, a binary relation on a set A should be specified as a pair (A,R), with A the given set,
and R ∈ P(A × A).

6.1 Directed and Undirected Graphs
The first obvious thing to observe is that a directed graph G with set of nodes N and a binary relation (N,G)
are the same thing! We just use a different terminology and notation to skin the same cat. For example, we
now call a pair (a, b) ∈ G a directed edge in the graph G, and then use the graphical notation:

a −→ b c⟲

for, respectively, a pair (a, b) with a , b, and a pair (c, c). To make the set N of nodes unambiguous, we
specify the graph as the pair (N,G). One important notion in a directed graph is that of a path, which is
defined as a finite sequence of edges a0 → a1 → a2 . . . an−1 → an with n ≥ 1. A directed graph (N,G). is
strongly connected iff for each a, b ∈ N, if a , b then there is a path from a to b. (N,G) is acyclic iff no
node a ∈ N has a path from a to a. A directed graph (N,G) is connected iff the directed graph (N,G ∪G−1)
is strongly connected. The identity between graphs and binary relations on a set is very useful, since any
notion or construction on relations can be interpreted geometrically as a notion or construction on directed
graphs. For example:

Exercise 36 Prove the following:

1. G ∈ P(N ×N) is a total relation iffG is a directed graph where each node has at least one edge coming out of it.

2. f ∈ [N→N] iff f is a directed graph where each node has exactly one edge coming out of it.

3. f ∈ [N→N] is surjective iff f is a directed graph where each node has exactly one edge coming out of it and at
least one edge coming into it.

4. f ∈ [N→N] is injective iff f is a directed graph where each node has exactly one edge coming out of it and at
most one edge coming into it.

5. f ∈ [N→N] is bijective iff f is a directed graph where each node has exactly one edge coming out of it and
exactly one edge coming into it.

6. A directed graph G ∈ P(N × N) is strongly connected iff for each a, b ∈ N with a , b there exists an n ≥ 1 such
that (a, b) ∈ Gn, where we define1 G1 = G, and Gn+1 = G; Gn.

1Note that this definition is based on simple recursion. Note also the potential ambiguity with the totally different use of the
notation Gn for the n-th cartesian product of G with itself. Here, of course, what the notation Gn denotes is the n-th composition
G; n. . .; G of G with itself.
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7. A directed graph G ∈ P(N × N) is connected iff for each a, b ∈ N with a , b there exists an n ≥ 1 such that
(a, b) ∈ (G ∪G−1)n.

8. A directed graph G ∈ P(N × N) is acyclic iff for each n ≥ 1, Gn ∩ idN = ∅.

Exercise 37 For each n ∈ N − {0}, the (standard) cycle function is defined for n = 1 as cy1 = id1, and for all other n
by cyn = {(0, 1), (1, 2), . . . , (n − 2, n − 1)}. Likewise, if A is a finite, nonempty set with n elements, we call f : A −→ A a
cycle iff there is a bijection g : A −→ n such that f = g; cyn; g−1. Notice that in the light of Exercise 36–(5), when f is
viewed as a graph, calling f a cycle is an exact and perfect description of f .

Prove the following:

1. (Cycle Decomposition of any Permutation). Given any finite, nonempty set A and a bijection f : A −→ A, there
is a subset {A1, . . . , Ak} ⊆ (P(A)− {∅}) such that: (i) A =

⋃
{A1, . . . , Ak}; (ii) for each i, j such that 1 ≤ i < j ≤ k,

Ai ∩ A j = ∅; and (iii) there are cycles fi : Ai −→ Ai, 1 ≤ i ≤ k, such that f = f1 ∪ . . . ∪ fk. (Hint: For an easy
proof, use Exercise 36–(5));

2. Show that there is an n ∈ N − {0} such that f n = idA. Give an arithmetic characterization of the smallest such n
in terms of the numbers of elements in the sets A1, . . . , Ak. Note that this shows that, if A is finite, the inverse f −1

of any bijection f : A −→ A is a power of f .

What is an undirected graph U on a set N of nodes? Of course it is just a subset U of the form U ⊆ N ⊗ N, that
is, an element U ∈ P(N ⊗ N). In other words, an undirected graph with nodes N is exactly a set of unordered pairs
of elements of N. Again, to make the set N of nodes unambiguous, we should specify an undirected graph as a pair
(N,U), with U ∈ P(N ⊗ N).

This is part of a broader picture. The same way that a relation R from A to B is an element R ∈ P(A × B), we can
consider instead elements U ∈ P(A ⊗ B). Let us call such a U a linking between A and B, since it links elements of A
and elements of B. An undirected graph on nodes N is then a linking from N to N. Each particular link in a linking
U ∈ P(A ⊗ B) is exactly an unordered pair {a, b}, with a ∈ A and b ∈ B, which we represent graphically as:

a — b c⃝

when, respectively, a , b, and when the pair is of the form {c, c} = {c} for some c ∈ A ∩ B.
We can then introduce some useful notation for linkings. We write U : A⇐⇒ B as an abbreviation for U ∈ P(A⊗B).

Note that the bidirectionality of the double arrow is very fitting here, since A⊗B = B⊗A (see Exercise 14), and therefore
P(A ⊗ B) = P(B ⊗ A). That is, U is a linking from A to B iff it is a linking from B to A. Given linkings U : A ⇐⇒ B
and V : B⇐⇒ C, we can then define their composition U; V : A⇐⇒ C as the linking

U; V = {{a, c} ∈ A ⊗C | (∃b ∈ B) {a, b} ∈ U ∧ {b, c} ∈ V}.

Note that, in particular, for any set A we have the linking îdA = {{a} ∈ A ⊗ A | a ∈ A}, which we call the identity linking
on A. We say that an undirected graph (N,U) is connected iff for each a, b ∈ N with a , b there exists an n ≥ 1 such
that (a, b) ∈ Un, where we define U1 = U, and Un+1 = U; Un.

Note that every relation, by forgetting about directionality, determines a corresponding linking. This is because for
any two sets A and B we have a surjective function

und : A × B →−→ A ⊗ B : (x, y) 7→ {x, y}

which has the equivalent, intensional definition λx.
⋃

x, since und(a, b) = und({{a}, {a, b}}) =
⋃
{{a}, {a, b}} = {a, b}.

Note that und induces a surjective function

und[ ] : P(A × B) →−→P(A ⊗ B) : R 7→ und[R].

In particular, for G ∈ P(N × N) a directed graph on nodes N, und[G] is the undirected graph obtained by forgetting the
directionality of the edges a −→ b (resp., c⟲) in G and turning them into bidirectional links a — b (resp., c⃝).

We call a binary relation R ∈ P(A × A) on a set A symmetric iff R = R ∪ R−1. Given any relation R ∈ P(A × A),
the smallest symmetric relation containing R is precisely R∪R−1, which is called the symmetric closure of R. Note that
und[R] = und[R ∪ R−1]. That is, a relation and its symmetric closure determine the same linking.

Exercise 38 Give a necessary and sufficient condition φ on A and B, so that the surjective function und : A×B →−→ A⊗B
is bijective iff φ holds. Note that if φ holds, then the surjective function und[ ] : P(A×B) →−→P(A⊗B) is also bijective,
which means that we can then uniquely recover the relation R from its corresponding linking und(R). Give examples of
sets A and B such that und is not bijective, so that in general we cannot uniquely recover R from und(R).

Exercise 39 Prove the following:
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1. Given a linking U : A⇐⇒ B, we have the equalities îdA; U = U and U; îdB = U.

2. Given linkings U : A ⇐⇒ B and V : B ⇐⇒ C, their composition is commutative, that is, we have the equality
of linkings U; V = V; U.

3. Give an example of sets A, B,C,D, and linkings U : A ⇐⇒ B, V : B ⇐⇒ C, and W : C ⇐⇒ D, showing that
linking composition in general is not associative, so that we have (U; V); W , U; (V; W).

4. Given relations F : A =⇒ B and G : B =⇒ C, show that und[F; G] ⊆ und[F]; und[G]. Exhibit concrete
relations F and G such that und[F; G] ⊂ und[F]; und[G]. Prove that if F,G ∈ P(A × A) are symmetric relations
then und[F; G] = und[F]; und[G].

5. For any set A we always have und[idA] = îdA.

6. A directed graph G ∈ P(N × N) is connected iff its corresponding undirected graph und[G] is connected.

6.2 Transition Systems and Automata
What is a transition system on a set A of states? Of course, it is exactly a binary relation on the set A. So, this is a third,
equivalent skinning of the same cat. In other words, we have the equality:

Binary Relation = Directed Graph = Transition System

where, depending on what kinds of applications we are most interested in, we adopt a somewhat different notation and
terminology. But although the words are different, the underlying concepts are the same. Now instead of calling the
elements of A nodes, we call them states. And instead of using letters like F, G, etc. to denote the binary relation,
we define a transition system as a pair A = (A,→A), where A is its set of states and→A ∈ P(A × A) is its transition
relation. And instead of calling a pair (a, a′) ∈ →A and edge, we call it a transition, and write it a→A a′, or just a→ a′

when the givenA is understood. So, we have changed the terminological window dressing, but essentially we have not
changed anything: we are still talking about the same thing.

In the transition system viewpoint, many of the issues we care about are reachability issues: given an initial state
a, can we reach a state a′ by a sequence of system transitions? We also care about deadlocks: are there states in
which we get stuck and cannot go on to a next state? Futhermore, we care about termination: does every sequence
of transitions always eventually come to a stop? These are all obvious relational notions disguised under a systems-
oriented terminology.

Definition 2 A binary relation R ∈ P(A × A) is called reflexive iff idA ⊆ R. And it is called irreflexive iff idA ∩ R = ∅.
A binary relation R ∈ P(A × A) is called transitive iff

(∀a, a′, a′′ ∈ A) (((a, a′) ∈ R ∧ (a′, a′′) ∈ R)⇒ (a, a′′) ∈ R)

The following lemma is left as an easy exercise.

Lemma 3 Given any binary relation R ∈ P(A × A), the smallest reflexive relation containing it is the relation R= =
R ∪ idA, which we call its reflexive closure.

Given any binary relation R ∈ P(A × A), the smallest transitive relation containing it is the relation

R+ =
⋃
{Rn ∈ P(A × A) | n ∈ (N − {0})}

which we call its transitive closure (for the definition of Rn see Exercise 36-(6)).
Given any binary relation R ∈ P(A × A), the smallest reflexive and transitive relation containing it is the relation

R∗ = R+ ∪ idA, which we call its reflexive and transitive closure.

Given a transition system A = (A,→A), what does it mean to say that a state a′ is reachable from a state a? It
means exactly that a→∗

A
a′. And what is a deadlock state? It is a state a ∈ A such that there is no a′ ∈ A with a→A a′.

And what does it mean to say thatA = (A,→A) is deadlock-free (has no deadlock states)? It means exactly that→A is
a total relation.

The best way to make precise the notion of termination of A = (A,→A) is to explain what it means for A =
(A,→A), not to terminate. This obviously means that there is a function a : N −→ A such that for each n ∈ N we have
a(n) →A a(n + 1). We call a function a satisfying this property an infinite computation of A = (A,→A), and display
such infinite computations graphically as follows:

a(0)→A a(1)→A a(2)→A a(3) . . . a(n)→A a(n + 1) . . .
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We then say thatA = (A,→A) is terminating iff it has no infinite computations.
Of course, since Binary Relation = Directed Graph = Transition System, we likewise call a binary relation (A,R)

(resp., a directed graph (A,G)) terminating (or well-founded, see §??), iff there is no infinite computation in (A,R)
(resp., in (A,G)). With the obvious slight change of notation, this exactly means that there is no function a : N −→ A
such that for each n ∈ N we have (a(n), a(n + 1)) ∈ R (resp., a(n)→ a(n + 1), or a(n)⟲ if a(n) = a(n + 1), is a directed
edge in (A,G)).

Automata are just a variant of transition systems in which transitions have labels, which we think of as inputs or
events or actions of the system.

Definition 3 A labeled transition system or automaton is a triple A = (A, L,→A), where A is its set of states, L is its
set of labels or inputs, and→A∈ P(A × L × A) is its transition relation.

The triples (a, l, a′) ∈ →A are called the labeled transitions, and are denoted a
l
→A a′.

Note, again, that due to the identity Directed Graph = Transition System, the above definition is (up to a trivial
change of terminology, changing “state” by “node,” and “labeled transition” by “labeled edge”) exactly the definition
of a labeled graph. Relation? graph? transition system? They are all the same!

Finally, note that the usual description of a (nondeterministic) automaton as a tripleA = (A, L, δA), where A is the
set of states, L is the set of inputs, and δA : L × A =⇒ A is the transition relation, is equivalent to the above definition
A = (A, L,→A), just by swapping the order of the first two components in the corresponding triple. That is, for the
same A and L we can obtain two equivalent representations of the same automatonA (one with→A, and another with
δA) by means of the defining equivalence:

((l, a), a′) ∈ δA ⇔ a
l
→A a′

Of course, a deterministic automaton is the special case when δA : L × A =⇒ A is not just a relation, but a function
δA : L × A −→ A, called the automaton’s transition function.

6.3 Relation Homomorphisms and Simulations
Given graphs (N,G) and (N′,G′), we call a function f : N −→ N′ a graph homomorphism from (N,G) to (N′,G′) iff
(∀x, y ∈ N) (x, y) ∈ G ⇒ ( f (x), f (y)) ∈ G′. We use the notation f : (N,G) −→ (N′,G′) as a shorthand for: “ f is
a graph homomorphism from (N,G) to (N′,G′).” Note that: (i) idN is always a graph homomorphism from (N,G) to
itself; and (ii) if we have f : (N,G) −→ (N′,G′) and g : (N′,G′) −→ (N′′,G′′), then we have f ; g : (N,G) −→ (N′′,G′′).
The notion of graph homomorphism is of course heavily used in combinatorics and graph algorithms (or special cases
of it, such as that of a graph isomorphism, on which more below), and is very intuitive: we map nodes of G to nodes of
G′, and require that each edge in G should be mapped to a corresponding edge in G′.

But we mustn’t forget our identity: Binary Relation = Directed Graph = Transition System. So, why calling
f : (N,G) −→ (N′,G′) a graph homomorphism? This terminology is just in the eyes of the beholder. We may as well
call it a relation homomorphism (since it respects the corresponding relations G and G′), or, alternatively, a simulation
map between transition sytems, since (changing notation a little), if we have transition systems A = (A,→A) and
B = (B,→B), then a graph homomorphism f : (A,→A) −→ (B,→B) exactly tells us that any transition a →A a′ in
systemA can always be simulated via f by a transition f (a)→B f (a′) in system B. Therefore, we again have the same
notion under different names, that is, the identity:

Relation Homomorphism = Graph Homomorphism = Simulation Map.

Of course, the general idea of a “homomorphism” of any kind is that of a function that “preserves the relevant
structure.” For relation homomorphisms the relevant structure is that of a graph that, alternatively, can be regarded as
a transition system, or just as a binary relation on a set, and the preservation of structure for f : (N,G) −→ (N′,G′)
is precisely the condition (∀x, y ∈ N) (x, y) ∈ G ⇒ ( f (x), f (y)) ∈ G′. In a completely analogous way, we have
seen that certain data types, such as products, disjoint unions, and models of the natural numbers, have a relevant
“structure,” namely, what in computer science are called their “interfaces,” that is, the projection functions p1, p2 for
products, the injection functions i1, i2 for disjoint unions, and the zero, 0, and successor function, s, for models of the
natural numbers. Implicitly, in Exercises ?? and ?? we were using the adequate notion of homomorphism preserving
the relevant structure for abstract products, disjoint unions, and models of the natural numbers in the special case of
isomorphisms, that is, of bijective homomorphism (for the relevant structure) whose inverse is also a homomorphism
(again, for the relevant structure).

For relation homomorphism the definition of isomorphism is obvious. A relation homomorphism f : (N,G) −→
(N′,G′) is called a relation isomorphism iff f is bijective and f −1 is also a relation homomorphism f −1 : (N′,G′) −→
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(N,G). When we take the graph-theoretic point of view this is exactly the well-known notion of graph isomor-
phism, that is, two graphs that are esentially the same graph except for a renaming of their nodes. The graphs
({a, b, c}, {(a, b), (b, c), (c, a)}), and ({e, f , g}, {(e, f ), ( f , g), (g, e)}) are isomorphic graphs; and the function a 7→ e, b 7→
f , c 7→ g, and also the function a 7→ f , b 7→ g, c 7→ e, are both examples of graph isomorphisms between them.
Therefore, abstractly they are the same graph.

Of course, we call a relation homomorphism f : (N,G) −→ (N′,G′) injective, resp., surjective, resp., bijective
iff the function f is injective, resp., surjective, resp., bijective. Note that, although every relation isomorphism is
necessarily bijective, some bijective relation homomorphisms are not relation isomorphisms (can you give a simple
example?).

A special case of injective relation homomorphism is that of a subrelation, that is, we call (N,G) a subrelation
of (N′,G′) if N ⊆ N′ and the inclusion map jN′

N is a relation homomorphisms jN′
N : (N,G) ↪→ (N′,G′). Note that

(N,G) is a subrelation of (N′,G′) iff N ⊆ N′ and G ⊆ G′; for this reason we sometimes use the suggestive notation
(N,G) ⊆ (N′,G′) to indicate that (N,G) is a subrelation of (N′,G′). Note that, from a graph-theoretic point of view, a
subrelation is exactly a subgraph. Of course, viewed as a transition system, a subrelation jN′

N : (N,G) ↪→ (N′,G′) is
exactly a transition subsytem.

We call a relation homomorphism f : (N,G) −→ (N′,G′) full iff (∀x, y ∈ N) (x, y) ∈ G ⇔ ( f (x), f (y)) ∈ G′.
Likewise, we call a subrelation jN′

N : (N,G) ↪→ (N′,G′) a full subrelation iff jN′
N is a full relation homomorphism. Note

that jN′
N : (N,G) ↪→ (N′,G′) is a full subrelation iff G = G′ ∩ N2. Therefore, to indicate that (N,G) ⊆ (N′,G′) is a

full subrelation, we write G = G′ ∩ N2 = G′|N , write (N,G′|N) ⊆ (N′,G′), and call G′|N the restriction2 of G′ to N.
Graph-theoretically, a full subrelation (N,G′|N) ⊆ (N′,G′) is exactly a full subgraph, that is, we restrict the nodes to N,
but keep all the edges from G′ that begin and end in nodes from N.

The above notion of relation homomorphism can be generalized in three ways. The first generalization is to ex-
tend this notion to a notion of homomorphism of labeled graphs, or, equivalently, labeld simulation map of labeled
transition systems or automata. Given that a labeled graph is exactly the same thing as labeled transition system, to
avoid unnecessary repetitions I only define the notion using the transition system terminology. Given labeled transition
systems A = (A, L,→A) and B = (B, L,→B) having the same set L of labels, a labeled simulation map from A to B,

denoted f : A −→ B, is a function f : A −→ B such that whenever we have a labeled transition a
l
→A a′ in A, then

f (a)
l
→B f (a′) is a labeled transition in B. That is, B can copycat anythingA can do with the same labels.

A second generalization considers relation homomorphisms H : (N,G) =⇒ (N′,G′), where now H is not a function
but a relation. Again, the three viewpoints of relation, graph, and transition system are equivalent. I give the definition
using the transition system terminology, where it is most often used and is called a simulation relation. In more neutral
terms it could be called a non-deterministic relation homomorphism. Given transition systems A = (A,→A) and
B = (B,→B), a simulation relation from A to B, denoted H : A =⇒ B, is a relation H : A =⇒ B such that whenever
we have aHb and a transition a→A a′ inA, then there is a b′ ∈ B such that b→B b′ is a transition in B and a′Hb′. We
call H : A =⇒ B a bisimulation iff H−1 : B =⇒ A is also a simulation relation. That is, B can copycat A, and A can
copycat B, so thatA and B are behavioraly equivalent.

A third generalization combines the previous two into the notion of a labeled simulation relation. Given labeled
transition systems A = (A, L,→A) and B = (B, L,→B) having the same set L of labels, a labeled simulation relation

fromA to B, denoted H : A =⇒ B, is a relation H : A =⇒ B such that whenever we have a labeled transition a
l
→A a′

in A and aHb, then there is a b′ ∈ B and a labeled transition b
l
→A b′ in B such that a′Hb′. We call H : A =⇒ B a

labeled bisimulation iff H−1 : B =⇒ A is also a labeled simulation relation. That is, B can copycat A with the same
labels, and A can copycat B also with the same labels, so thatA and B are behavioraly equivalent in an even stronger
sense.

Exercise 40 Prove that f : (N,G) −→ (N′,G′) is a relation isomorphism iff f is a bijective and full relation homomor-
phism.

Exercise 41 (Pulling back binary relations). Let (B,G) be a binary relation and let f : A −→ B be a function. Prove
that: (i) f : (A, f −1(G)) −→ (B,G) is a relation homomorphism, where, by definition, a f −1(G) a′ ⇔ f (a) G f (a′); and
(ii) f : (A,R) −→ (B,G) is a relation homomorphism iff R ⊆ f −1(G).

Exercise 42 Prove the following:

1. If A = (A,→A) is a transition system, then idA is a simulation map idA : A −→ A. And if f : A −→ B and
g : B −→ C are simulation maps, then f ; g : A −→ C is also a simulation map.

2Note that this notion of restriction is similar to, but in general different from, the notion of restriction of a function or a relation
to a subdomain defined in Exercise 23. The difference is that for R : A ⇒ B, and A′ ⊆ A, R↾A′= R ∩ (A′ × B). Even when A = B,
in general this yields a different notion of restriction than R|A′ = R ∩ A′2. For this reason, the two different notions: R↾A′ , and, when
A = B, R|A′ , are each given a different notation.
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2. Prove the exact same properties as in (1) changing:

• “transition system” to “labeled transition system,” and “simulation map” to “labeled simulation map”
everywhere

• “simulation map” to “simulation relation” everywhere

• “transition system” to “labeled transition system,” and “simulation map” to “labeled simulation relation”
everywhere.

3. IfA = (A,→A) and B = (B,→B) are transition systems andH ⊆ P(A × B) is a set of binary relations such that
each H ∈ H is a simulation relation (resp. a bisimulation relation) H : A =⇒ B, then

⋃
H is also a simulation

relation (resp. a bisimulation relation)
⋃
H : A =⇒ B. Prove the same changing “transition system” to

“labeled transition system,” and “simulation relation” to “labeled simulation relation” everywhere.

4. For any transition systems A = (A,→A) and B = (B,→B) there is a “biggest possible” simulation (resp.
bisimulation) between them, that is, a simulation relation max : A =⇒ B (resp. a bisimulation relation max.bis :
A =⇒ B) such that for any other simulation (resp. bisimulation) relation H : A =⇒ B we always have
H ⊆ max (resp. H ⊆ max.bis). Prove the same changing “transition system” to “labeled transition system,”
“simulation relation” to “labeled simulation relation,” and “bisimulation relation” to “labeled bisimulation
relation” everywhere.

6.4 Orders
A (strict) order on a set A is a relation < ∈ P(A × A) that is both transitive and irreflexive. We read a < a′ as “a is less
than a′,” or “a is smaller than a′.” The inverse relation <−1 is denoted >, and we read a > a′ as “a is greater than a′.”
An ordered set is a set with an order on it, that is, a pair (A, <), with < a (strict) order.

Note the pleasing fact that if < is transitive and irreflexive, then > is also transitive and irreflexive. Therefore if we
adopt > as our “less than” relation, we get another order on A, namely (A, >), which is called the opposite, or inverse,
or dual order relation. For example, we can order the natural numbers in either the usual ascending order, or in their
opposite, descending order.

Examples of ordered sets are everywhere. The < relation on the natural numbers N, the integers Z, the rationals
Q, and the reals R, make all these sets ordered sets. Likewise, the strict containment relation ⊂ makes any powerset
P(A) into an ordered set (P(A),⊂). A different order on N − {0, 1} is given by divisibility, where we write n|m, read “n
(strictly) divides m,” to abbreviate the formula (∃k ∈ N − {0, 1}) k · n = m. Then (N − {0, 1}, | ) is an order.

Exploiting again the equality Directed Graph = Relation, what is an ordered set when viewed as a graph? It is
exactly a directed transitive and acyclic graph. So talk about an ordered set and talk about a directed transitive and
acyclic graph is just talk about the same thing.

Of course, the transitive closure G+ of any directed acyclic graph G is a directed transitive and acyclic graph. This
is exploited pictorially in the so-called Hasse diagram of an ordered set, so that the ordered set is pictured as a directed
acyclic graph (with the bigger nodes depicted above the smaller nodes without explicitly drawing the arrowheads), and
without explicitly drawing the remaining edges in the transitive closure, although they are understood to also be there.
For example, the Hasse diagram of the ordered set (P(3),⊂) is the following directed acyclic graph:

{0, 1, 2}

{0, 1} {0, 2} {1, 2}

{0} {1} {2}

∅

Given an ordered set (A, <), the reflexive closure <= of its (strict) order relation is always denoted ≤. We then read
a ≤ a′ as “a is less than or equal to a′,” or “a is smaller than or equal to a′.” Of course, the inverse relation ≤−1 is always
denoted ≥, and we read a ≥ a′ as “a is greater than or equal to a′.” Note that, since < is irreflexive, the mappings: (i)
< 7→ ≤, with ≤ = (< ∪ idA), and (ii) ≤ 7→ <, with < = (≤ − idA), are inverse to each other, so that we can get the strict
order < from its nonstrict version ≤, and vice versa. So we can equivalently talk of an ordered set as either the pair
(A, <), or the pair (A,≤), specifying either the strict order <, or its reflexive closure ≤.
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Sometimes an ordered set (A, <) is called a partially ordered set, or a poset for short. This is to emphasize that
elements in an ordered set may be incomparable. For example, in the ordered set (P(3),⊂), the singleton sets {0} and
{1} are incomparable, since {0} 1 {1} and {1} 1 {0}. Instead, any two different numbers in (N, <), or (Z, <), or (Q, <),
or (R, <) can always be compared. An ordered set where elements can always be compared is called a totally ordered
set (also called a lineally ordered set, or a chain). The precise definition of a poset (A, <) being totally ordered is that it
satisfies the formula

(∀x, y ∈ A) (x < y ∨ x = y ∨ x > y).

(or, equivalently, it satisfies the formula (∀x, y ∈ A) (x ≤ y ∨ x ≥ y).) For example, (N, <), (Z, <), (Q, <), and (R, <)
are all total orders. So are (P(∅),⊂) and (P(1),⊂), the only two powersets where set containment is a total order. The
alternate description of a total order as a “linear” order, or a “chain,” comes from its pictorial representation as a graph,
since in such a representation all the elements are arranged on a single vertical line.

One consequence of the partial nature of non-linear orders is that, in general, a partially ordered set may have zero,
one, or more than one element such that there is no other element bigger than such an element. For example, in the
poset (P(3)− {3},⊂), the elements {0, 1}, {0, 2}, and {1, 2}, are exactly those elements such that there is no other element
bigger than any of them, since 3 = {0, 1, 2} has been removed. Such elements, if they exist, are called the maximal
elements of the poset. More precisely, an element a ∈ A is called a maximal element in a poset (A, <) iff it satisfies the
formula (∀x ∈ A)¬(x > a); equivalently, a is maximal iff < [{a}] = ∅.

One very stupid and unfair, yet very common, fallacy in human affairs comes from the deeply confused idea that if
there is an order ranking human beings under some criteria (already a questionable matter), that order must surely be
linear. Unfortunately, the thought that an order could be partial does not even enter into many confused minds. This
leads to unrestricted talk about the best person in some respect or another. But such talk is often both false and unfair.

First of all there is the problem of determining how “good” in relation to some criteria people are, which often may
involve a lot of subjective perceptions. For the sake of argument, let us grant that a fair, objective evaluation may be
possible in some cases. Even under such ideal circumstances, and assuming we can honestly conclude that an individual
is unsurpassed in the qualities being measured, which exactly means that he/she is a maximal element under the agreed
criteria of comparison (for example, a better parent, a better researcher, a better employee, a better student), it is in
general fallacious to conclude that there is a unique unsurpassed individual, that is, that there is such a thing as “the
best” parent, researcher, employee, student, or whatever. A little applied set theory can go a long way in seeing through
the falsity of such deeply unfair, yet very common, social practices.

Of course, the maximal elements of the poset (A, >) are called the minimal elements of the poset (A, <). That is, an
element a ∈ A is called a minimal element in a poset (A, <) iff it satisfies the formula (∀x ∈ A)¬(x < a); equivalently, a
is minimal iff >[{a}] = ∅. For example, the minimal elements of the poset (P(3) − {∅},⊂) are exactly {0}, {1}, and {2}.
And of course the minimal elements of (P(3) − {3},⊃) are exactly {0, 1}, {0, 2}, and {1, 2}.

Given posets (A,≤A) and (B,≤B), we call a function f : A −→ B monotonic (or monotone) from (A,≤A) to (B,≤B)
iff (∀a, a′ ∈ A) a ≤A a′ ⇒ f (a) ≤B f (a′). We use the notation f : (A,≤A) −→ (B,≤B) as a shorthand for: “ f is
a monotonic function from (A,≤A) to (B,≤B).” Have we seen this fellow before? Of course! This is just our good
old friend Mr. Relation Homomorphism, a.k.a. Mr. Graph Homomorphism, a.k.a. Mr. Simulation Map, disguised
under yet another alias! That is, a monotonic function f : (A,≤A) −→ (B,≤B) is exactly a relation homomorphism
f : (A,≤A) −→ (B,≤B).

We call a monotonic function f : (A,≤A) −→ (B,≤B) strictly monotonic iff in addition it satisfies that (∀a, a′ ∈
A) a <A a′ ⇒ f (a) <B f (a′). That is, a strictly monotonic function f : (A,≤A) −→ (B,≤B) is exactly a relation
homomorphism f : (A, <A) −→ (B, <B). Of course, as is more generally the case for relation homomorphisms, we
also have that: (i) idA is always a monotonic (and also strictly monotonic) function from (A,≤A) to itself; and (ii) if
f : (A,≤A) −→ (B,≤B) and g : (B,≤B) −→ (C,≤C) are monotonic (resp., strictly monotonic), then so is f ; g.

For example, the function λx ∈ N. x2 ∈ N is a strictly monotonic function from (N,≤) to itself. And the function
λ(x, y) ∈ N2. max(x, y) ∈ N, where max(x, y) denotes the maximum of numbers x and y in the order (N,≤), is a
monotonic but not strictly monotonic function from (N × N,≤N×N) to (N,≤) (see Exercise 45 for the definition of
(N × N,≤N×N)).

By definition, a poset isomorphism f : (A,≤A) −→ (B,≤B) is exactly a relation isomorphism. We call (X,≤′) a
subposet of (A,≤) iff (X,≤′) ⊆ (A,≤) is a subrelation. Similarly a subposet of the form (X,≤|X) ⊆ (A,≤) is called a full
subposet of (A,≤). The same definitions apply replacing ≤ by < everywhere; for example, a subposet (X, <′) ⊆ (A, <)
is exactly a subrelation.

Exercise 43 Call a relation R ⊆ A × A asymmetric iff R ∩ R−1 = ∅. Call a relation R ⊆ A × A antisymmetric iff
R ∩ R−1 ⊆ idA. Prove that the following are equivalent for R ⊆ A × A a relation:

• R is irreflexive and transitive

• R is asymmetric and transitive.

Prove also that the following are equivalent for R ⊆ A × A an irreflexive relation:
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• R is transitive

• R is asymmetric and transitive

• R ∪ idA is reflexive, antisymmetric and transitive.

Likewise, prove that the following are equivalent for R ⊆ A × A a reflexive relation:

• R is antisymmetic and transitive

• R − idA is asymmetric and transitive

• R − idA is irreflexive and transitive.

Therefore, it is equivalent to define an ordered set either: (i) as a pair (A, <), with the (strict) order < irreflexive and
transitive; or (ii) as a pair (A, <), with < asymmetic and transitive; or (iii) as a pair (A,≤) with the (nonstrict) order
≤ reflexive, transitive and antisymmetric, since, given <, we can define ≤ = (< ∪ idA), and given ≤, we can define
< = (≤ −idA).

Exercise 44 Prove the following:

1. f : (A,≤A) −→ (B,≤B) is a poset isomorphism iff f : (A, <A) −→ (B, <B) is a strict poset isomorphism.

2. If (A, <A) and (B, <B) are chains, then a strictly monotonic function f : (A, <A) −→ (B, <B) is a poset isomor-
phism iff f is surjective.

Exercise 45 Given posets (A,≤A) and (B,≤B), define on the cartesian product A × B the relation ≤A×B, called the
product order, by the equivalence

(a, b) ≤A×B (a′, b′) ⇔ (a ≤A a′ ∧ b ≤B b′)

Prove that ≤A×B is reflexive, transitive, and antisymmetric, and therefore (by Exercise 43) (A × B,≤A×B) is a poset.
Show that (A×B,≤A×B) is “almost never” a total order, by giving a (in fact quite restrictive) necessary and sufficient

condition involving the cardinalities of A and B, and the orders (A,≤A) and (B,≤B), so that (A×B,≤A×B) is a total order
iff your condition holds.

State and prove the analogue of Exercise 29 for posets, replacing everywhere the word “set” by “poset,” and the
word “function” by “monotonic function,”

Can you dualize all this? Give a definition of disjoint union of posets (A,≤A)⊕ (B,≤B), and show that it is the right
definition by proving that it satisfies the properties in the analogue of Exercise 30 for posets, replacing everywhere the
word set by “poset,” and the word “function” by “monotonic function.”

Exercise 46 Given posets (A, <A) and (B, <B), define on the cartesian product A × B the relation <Lex(A,B), called the
lexicographic order, by the equivalence

(a, b) <Lex(A,B) (a′, b′) ⇔ (a <A a′ ∨ (a = a′ ∧ b <B b′))

Prove that <Lex(A,B) is an order relation, and therefore (A × B, <Lex(A,B)) is a poset.
Prove that if (A, <A) and (B, <B) are total orders, then (A × B, <Lex(A,B)) is also a total order.

Exercise 47 Consider the following statement:

If the set of maximal elements of a poset (A, <) is nonempty, then for each x ∈ A we can choose a maximal
element mx of (A, <) such that mx ≥ x.

Is this statement true or false? The way to answer any such question is to either give a proof of the statement or to give
a counterexample, that is, an example where the statement fails.

Exercise 48 (Embeddings, and Representing a Poset in its Powerset). A monotonic function f : (A,≤A) −→ (B,≤B) is
called a monotonic embedding iff it is a full relation homomorphism. Prove the following:

1. A monotonic embedding is a strictly monotonic function and is injective.

2. For any poset (A,≤), the function ≥ [{ }] = λa ∈ A. ≥ [{a}] ∈ P(A) defines a monotonic embedding from (A,≤)
to (P(A),⊆). In particular, the function ≥ [{ }] defines a poset isomorphism (A,≤) � (≥ [{ }][A],⊆). This is a way
of “faithfully representing” any poset (A,≤) inside its powerset poset (P(A),⊆).

3. Given a poset (A,≤), the function >[{ }] = λa ∈ A. >[{a}] ∈ P(A) is a strictly monotonic function from (A,≤)
to (P(A),⊆). Show that in general this function is not injective (therefore, is not a monotonic embedding either).
Show that, however, if (A,≤) is a chain, then the function >[{ }] is a monotonic embedding and defines a poset
isomorphism (A,≤) � (>[{ }][A],⊆), providing yet another way of “faithfully representing” a chain (A,≤) inside
its powerset poset (P(A),⊆).
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6.5 Sups and Infs, Complete Posets, Lattices, and Fixpoints
Given a poset (A,≤) and a subset X ⊆ A, we define the set ubs(X) of upper bounds of X in (A,≤) as the set ubs(X) =
{x ∈ A | (∀y ∈ X) x ≥ y}. Dually, we define the set lbs(X) of lower bounds of X in (A,≤) as the set of upper bounds of
X in (A,≥). That is, lbs(X) = {x ∈ A | (∀y ∈ X) x ≤ y}. For example, in the poset (P(3),⊆) for X = {{0}, {2}} we have
ubs(X) = {{0, 2}, {0, 1, 2}}, and lbs(X) = {∅}.

Given a poset (A,≤) and a subset X ⊆ A, we say that X has a least upper bound (or lub, or sup) in (A,≤) iff
ubs(X) , ∅ and there exists an element of ubs(X), denoted

∨
X ∈ ubs(X), such that (∀y ∈ ubs(X))

∨
X ≤ y. Of course,∨

X, if it exists, is unique, since it is the smallest upper bound of X. Dually, we say that X has a greatest lower bound
(or glb, or inf ) in (A,≤) iff X has a least upper bound in (A,≥). That is, iff there exists an element of lbs(X), denoted∧

X ∈ lbs(X), such that (∀y ∈ lbs(X))
∧

X ≥ y. Again,
∧

X, if it exists, is unique, since it is the biggest lower bound
of X. For example, in the poset (P(3),⊆) for X = {{0}, {2}} we have

∨
X = {0, 2}, and

∧
X = ∅.

Many posets (A,≤) have sups and/or infs for some choices of subsets X ⊆ A, leading to useful notions such as that
of a poset with top and/or bottom element, a lattice, a chain-complete poset, or a complete lattice. We can gather several
of these notions3 together in the following definition:

Definition 4 Given a poset (A,≤), we say that (A,≤):

1. has a top element iff
∨

A exists. We then use ⊤A, or just ⊤, to denote
∨

A.

2. has a bottom element iff
∧

A exists. We then use ⊥A, or just ⊥, to denote
∧

A.

3. is a lattice iff it has a top and a bottom element, ⊤A and ⊥A, and for any two elements a, b ∈ A, both
∨
{a, b} and∧

{a, b} exist. We then use the notation a ∨ b =
∨
{a, b}, and a ∧ b =

∧
{a, b}.

4. is chain-complete iff for every subposet (C,≤ |C) ⊆ (A,≤) such that (C,≤ |C) is a chain, the sup
∨

C exists in
(A,≤). The sup

∨
C is usually called the limit of the chain C.

5. is a complete lattice iff for any subset X ⊆ A both
∨

X and
∧

X exists. This in particular implies that both
⊤A =

∨
A, and ⊥A =

∧
A exist.

Note that if (A,≤) is a lattice (resp., complete lattice), then (A,≥) is also a lattice (resp., complete lattice) with all
the operations dualized, that is, ⊤ becomes ⊥ and ⊥ becomes ⊤,

∨
becomes

∧
and
∧

becomes
∨

, and ∨ becomes ∧
and ∧ becomes ∨.

Note also that in any complete lattice (A,≤), if X ⊆ A, it follows trivially from the definitions of ubs(X) and lbs(X),
and of

∨
X and

∧
X that we have the identities:∨

X =
∧

ubs(X)∧
X =

∨
lbs(X)

It also follows trivially (one could fittingly say “vacuously”) from the definitions of ubs and lbs that we have ubs(∅) =
lbs(∅) = A. Therefore, we have the, at first somewhat confusing, identities:

∨
∅ =

∧
A = ⊥, and

∧
∅ =

∨
A = ⊤.

However, they should not be too confusing, since we have already encountered them in the case of the complete lattice
(indeed, complete boolean algebra) (P(X),⊆), where

∨
=
⋃

and
∧
=
⋂

. Indeed, we saw in §4.3 that in (P(X),⊆)
we have

⋂
∅ = X, where X is the top element of (P(X),⊆), and of course we have

⋃
∅ = ∅, where ∅ is the bottom

element of (P(X),⊆).
Let us consider some examples for the above concepts. For any set X, the poset (P(X),⊆) is a complete lattice and

therefore satisfies all the properties (1)–(5). Given any U ⊆ P(X) we of course have
∨
U =

⋃
U, and

∧
U =

⋂
U.

The lattice operations are just the special case of finite unions and finite intersections, i.e., A ∨ B = A ∪ B, and
A ∧ B = A ∩ B. In particular, the powerset P(1) = P({∅}) = {∅, {∅}} = 2 is a complete lattice and therefore a lattice
with the inclusion ordering. We call 2 the lattice (in fact more than that, the boolean algebra) of truth values, with
0 = ∅ interpreted as false, and 1 = {∅} interpreted as true. Note that the lattice operations ∨ and ∧ are exactly logical
disjunction and logical conjunction of truth values in (P(1),⊆) = (2,⊆). Therefore, there is no confusion possible
between the use of ∨ and ∧ for logical operations and for lattice operations, since the second use generalizes the first.

For any set X, the poset (Pfin(X) ∪ {X},⊆) of finite subsets of X plus X itself is a lattice, with A ∨ B = A ∪ B, and
A ∧ B = A ∩ B, but if X is infinite, then (Pfin(X) ∪ {X},⊆) is not a complete lattice.

The interval [0, 1] in the real line, [0, 1] = {x ∈ R | 0 ≤ x ≤ 1}, is a complete lattice with the usual ordering ≤ on
real numbers. Given a subset X ⊆ [0, 1] we use the notation

∨
X = max(X), and

∧
X = min(X). max(X) is the smallest

real number r such that r ≥ y for each y ∈ X, and min(X) is the biggest real number r such that r ≤ y for each y ∈ X.

3There are many others. The classic textbook in this area is the excellent [4]; there are also many more recent basic and advanced
textbooks. For a detailed study of the different families of subsets of a poset for which one can require to have sups (or dually infs),
and the corresponding category-theoretic properties of the complete posets thus obtained see [22].
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The lattice operations ∨ and ∧ are also called max and min, with max(x, y) the biggest of x and y, and min(x, y) the
smallest of the two. This lattice is the foundation of fuzzy logic [34], which is used in the fuzzy control systems of many
electronic devices. The basic idea is that [0, 1] can be viewed as a set of “fuzzy truth values,” generalizing the standard
truth values in 2 = {0, 1}. Now logical disjunction is max and logical conjunction is min.

The poset (R,≤) with max and min of two real numbers defined again as maximum and minimum is almost a lattice,
since the only things it lacks to be a lattice are a top and a bottom element. If we add them, using the standard notation
⊤ = +∞, and ⊥ = -∞, then (R ∪ {+∞, -∞},≤) becomes a complete lattice, with max(X) either the smallest real number
bigger than all the elements in X, if X is bounded above, or +∞ otherwise, and with min(X) either the biggest real
number smaller than all the elements in X, if X is bounded below, or -∞ otherwise.

The poset (N,≤) has a bottom element (namely 0), but has no top element. It is also almost a lattice, with ∨ = max
and ∨ = min; it just lacks a top element. Also, for any nonempty subset X ⊂ N,

∧
X = min(X) is always defined as the

smallest natural number in X, but
∨

X = max(X) is only defined as the biggest number in X if X is finite and nonempty,
and as 0 if X = ∅, but is not defined if X is infinite. However, if we add to N a top element, denoted as usual ⊤ = ∞,
then (N ∪ {∞},≤) becomes a complete lattice, where for any infinite subset X ⊂ N we have max(X) = ∞.

A very useful example of a chain-complete poset is provided by partial functions. If you did Exercise 22, you
already know what a partial function is. If you missed the fun of Exercise 22, here is the definition. A partial function
from A to B, denoted f : A ⇀ B, is a relation f ⊆ A × B such that for each a ∈ A, f [{a}] is always either a singleton set
or the empty set. The set [A⇀B] of all partial functions from A to B is then:

[A⇀B] = { f ∈ P(A × B) | (∀a ∈ A)(∀b, b′ ∈ B)(((a, b), (a, b′) ∈ f )⇒ b = b′)}.

We then have the obvious inclusions [A→B] ⊆ [A⇀B] ⊆ P(A × B). Ordered by subset inclusion, the poset ([A⇀B],⊆)
is then a subposet of the complete lattice (P(A × B),⊆). ([A⇀B],⊆) has a bottom element, namely ∅. But as soon
as A , ∅ and B has more than one element, ([A⇀B],⊆) cannot be a lattice, and cannot have a top element. Indeed,
the set [A→B] is exactly the set of maximal elements of ([A⇀B],⊆); and under those assumptions on A and B, we can
always choose a ∈ A, and b, b′ ∈ B with b , b′, so that we have partial functions f = {(a, b)}, and g = {(a, b′)}, but
f ∪ g = {(a, b), (a, b′)} is not a partial function. Indeed, then ubs{ f , g} = ∅, where ubs{ f , g} denotes the set of upper
bounds of { f , g} in the poset ([A⇀B],⊆). The important fact, however, is that ([A⇀B],⊆) is chain-complete. Indeed, let
C ⊆ [A⇀B] be a chain. Then its limit is the set

⋃
C, which is a partial function, since if we have (a, b), (a, b′) ∈

⋃
C,

then we must have f , g ∈ C with (a, b) ∈ f and (a, b′) ∈ g. But since C is a chain, we have either f ⊆ g or g ⊆ f .
Assuming, without loss of generality, that f ⊆ g, then we also have (a, b) ∈ g, and therefore, b = b′, so

⋃
C is indeed a

partial function.
Given a function f : A −→ A, an element a ∈ A is called a fixpoint of f iff f (a) = a. The following theorem, due to

Tarski and Knaster, is choke-full with computer science applications:

Theorem 3 (Tarski-Knaster). If (A,≤) is a complete lattice, then any monotonic function f : (A,≤) −→ (A,≤) has a
fixpoint. Furthermore, any such f has a smallest possible fixpoint.

Proof. Consider the set U = {x ∈ A | f (x) ≤ x}, and let u =
∧

U. Therefore, for any x ∈ U, since f is monotonic and
by the definition of U, we have f (u) ≤ f (x) ≤ x, which forces f (u) ≤ u. Therefore, u ∈ U. But since f is monotonic,
f [U] ⊆ U, and we have f (u) ∈ U. Hence, f (u) ≥ u. Therefore, f (u) = u, so u is our desired fixpoint. Furthermore, u
is the smallest possible fixpoint. Indeed, suppose that v is another fixpoint, so that f (v) = v. Then f (v) ≤ v. Therefore,
v ∈ U, and thus, u ≤ v. □

A very useful, well-known variant of the Tarski-Knaster theorem, also choke-full with even more computer science
applications, can be obtained by simultaneously relaxing the requirement of (A,≤) being a complete lattice to just being
chain-complete with a bottom; and strengthening instead the condition on f from being just a monotone function to
being chain-continuous. A monotone f : (A,≤) −→ (A,≤) is called chain-continuous iff for each chain C in (A,≤)
having a limit

∨
C, we have f (

∨
C) =

∨
f (C), that is, f preserves limits of chains.

Theorem 4 If (A,≤) is a chain-complete poset with a bottom element ⊥, then any chain-continuous function f : (A,≤
) −→ (A,≤) has a fixpoint. Furthermore, any such f has a smallest possible fixpoint.

Proof. Obviously, ⊥ ≤ f (⊥). Since f is monotonic, we then have a chain { f n(⊥) | n ∈ N} of the form

⊥ ≤ f (⊥) ≤ . . . ≤ f n(⊥) ≤ f n+1(⊥) ≤ . . .

Then our desired fixpoint is
∨
{ f n(⊥) | n ∈ N}, because, since f is chain-continuous, we have f (

∨
{ f n(⊥) | n ∈

N}) =
∨

f ({ f n(⊥) | n ∈ N}) =
∨
{ f n+1(⊥) | n ∈ N} =

∨
{ f n(⊥) | n ∈ N}. Also,

∨
{ f n(⊥) | n ∈ N} is the smallest

possible fixpoint of f , since if a is any other such fixpoint, then ⊥ ≤ a forces f n(⊥) ≤ f n(a) = a. Therefore,
a ∈ ubs({ f n(⊥) | n ∈ N}), and therefore

∨
{ f n(⊥) | n ∈ N} ≤ a, as desired. □
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One of the great beauties of mathematics is that seemingly abstract and extremely general theorems like the one
above give rise to extremely concrete and useful applications; in this case, computer science applications, among
others. Theorem 4 is at the heart of the semantics of recursive function definitions in a programming language. If we
define a function by simple recursion or by primitive recursion, we are always sure that the function so defined is a
total function, and therefore terminates. But a recursive function definition may never terminate for some inputs, and
therefore its extensional meaning or semantics in general is not a total function, but a partial one.

The importance of Theorem 4 for the semantics of programming languages is that it can be used to precisely define
the partial function associated to a recursive function definition as a fixpoint, thus the name fixpoint semantics for this
method, proposed by the so-called denotational semantics approach pioneered by Dana Scott and Christopher Strachey
(see, e.g., [29, 30, 28]). Let me illustrate the basic idea with a simple example. Consider the following recursive
function definition to compute the factorial function on natural numbers:

factorial(n) = if n = 0 then 1 else n · factorial(p(n)) fi

where p denotes the predecessor partial function on the natural numbers, so that p(s(n)) = n, and p(0) is undefined.
The basic idea is to see such a recursive definition as a functional, which is just a fancy word for a function whose
arguments are other functions. Specifically, we see the recursive definition of factorial as the (total) function:

δfactorial : [N⇀N] −→ [N⇀N] : f 7→ λn ∈ N. if n = 0 then 1 else n · f (p(n)) fi.

It is not hard to check that δfactorial is monotonic and chain-continuous in the chain-complete poset of partial functions
([N⇀N],⊆). Then, the fixpoint semantics of the factorial function definition is precisely the least fixpoint of δfactorial,
that is, the function

∨
{δn

factorial(∅) | n ∈ N}, which in this example happens to be total, since the factorial function
definition terminates. Let us look in some detail at the increasing chain of partial functions

∅ ⊆ δfactorial(∅) ⊆ . . . ⊆ δn
factorial(∅) ⊆ δn+1

factorial(∅) ⊆ . . .

Just by applying the definition of δfactorial we can immediately see that this is the sequence of partial functions:

∅ ⊆ {(0, 1)} ⊆ . . . ⊆ {(0, 1), (1, 2), . . . , (n, n!)} ⊆ {(0, 1), (1, 2), . . . , (n, n!), ((n + 1), (n + 1)!)} ⊆ . . .

Therefore, if we denote by ! the factorial function, we have,
∨
{δn

factorial(∅) | n ∈ N} =! , which is the expected fixpoint
semantics of the factorial function definition. The above sequence of partial functions has a strong computational mean-
ing, since it represents the successive approximations of the factorial function obtained by a machine implementation
computing deeper and deeper nested function calls for factorial.

Exercise 49 Call (A,≤) a complete sup semilattice (resp., a complete inf semilattice) iff for any subset X ⊆ A,
∨

X
always exists (resp.,

∧
X always exists). Prove that any complete sup semilattice (resp., any complete inf semilattice)

is always a complete lattice.

Exercise 50 Given a set A, consider the following subsets of P(A×A): (i) TransRel(A), the set of all transitive relations
on A; and (ii) EquivRel(A), the set of all equivalence relations on A (see §6.6 below). Prove that (TransRel(A),⊆)
and (EquivRel(A),⊆) are both complete lattices. Similarly, given a poset (A, <), consider the set Sub(A, <) of all its
subposets, that is the set Sub(A, <) = {(A′, <′) ∈ P(A) × P(A × A) | (A′, <′) ⊆ (A, <) ∧ poset(A′, <′)}, where, by
definition, the predicate poset(A′, <′) holds iff (A′, <′) is a poset. Prove that (Sub(A, <),⊆) is a complete lattice. (Hint:
in each of the three proofs you can cut your work in half using Exercise 49.)

Exercise 51 Let (A,≤A) and (B,≤B) be posets, and assume that both have a top element (resp., have a bottom element,
resp., are lattices, resp., are chain-complete, resp., are complete lattices). Prove that then (A × B,≤A×B) has also a top
element (resp., has a bottom element, resp., is a lattice, resp., is chain-complete, resp., is a complete lattice).

6.6 Equivalence Relations and Quotients
Given a set A, the identity relation idA is what we might call the absolute equality relation on A. Yet, life is full of
situations where we are not interested in absolute equality but in some kind of relative equality. Consider, for example,
money. Any two one-dollar bills, which are different in the physical, absolute sense, are nevertheless equal from the
relative standpoint of paying with them. Similarly, any two quarter coins are equal for paying purposes. In general, any
two bills or coins of the same denomination are equal for paying purposes, or, if you wish, equivalent (equi-valent: of
the same value). Money works as an exchange of wealth precisely because we do not care about the individual identities
of bills or coins, except up to equivalence.
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More precisely, let Money be the finite set of dollar bills and coins of different denominations currently in circula-
tion. We can define a binary relation ≡ ⊂ Money2, where x ≡ y iff x and y are money items of the same denomination.
For example, x can be a dollar bill and y can be a dollar coin. Note that this defines a partition of the set Money into
“buckets,” with one bucket for money items of value 1 cent (only cent coins go here), 5 cents (only nickels here), an-
other for those of value of 10 cents (only dimes), another for those of value 25 cents (only quarters), another for value
1 dollar (both dollar bills and dollar coins), another for those of value 5 dollars, and so on.

We can generalize this a little by considering the set P(Money) of subsets of Money. Then we say the two subsets
U,V ⊆ Money are equivalent, denoted U ≡ V iff their value adds up to the same amount. For example, U can be a set
of two dollar bills, a quarter, a dime, and three nickels; and V can be a set with a dollar coin and six quarters. They
are equivalent, that is, they have the same value, namely, 2 dollars and 50 cents. Again, this partitions P(Money) into
“buckets,” with one bucket for each concrete amount of money. We now have buckets for 1, 5, 10, and 25 cents, but
also buckets for other values from 2 up to 99 cents and beyond. In general we have buckets for any amount of money
of the form n.xy with n a natural number, and xy two decimal points, and with n.xy smaller than or equal to the total
value of the finite set Money of money in circulation. Note that there are two buckets containing each a single subset,
namely, the bucket containing the empty set (whose value is 0), and the bucket containing the set Money, which is the
bucket of biggest value.

Definition 5 Given a set A, an equivalence relation on A is a binary relation ≡ ⊆ A2 such that it is reflexive, symmetric,
and transitive.

Obviously, both ≡ on Money, and ≡ on P(Money), are equivalence relations in this precise sense. Similarly, given
n ∈ N − {0}, the relation x ≡n y defined by the logical equivalence x ≡n y ⇔ |x − y| ∈

•
n is an equivalence relation on

N (namely the relation of having the same remainder when divided by n), which partitions the set N into n “buckets,”
namely,

N/n = {
•
n,
•
n +1, . . . ,

•
n +(n − 1)}

(see also Exercise 6).
Given an equivalence relation ≡ on a set A, and given an element a ∈ A, we call the equivalence class of a, denoted

[a]≡, or just [a] if ≡ is understood, the set
[a]≡ = {x ∈ A | x ≡ a}.

The equivalence classes are precisely the “buckets” we have been talking about in the above examples. For example,
in Money we have one equivalence class for each denomination; and in N we have one equivalence class for each
remainder after division by n. Note that it is easy to show (exercise) that a ≡ a′ iff [a]≡ = [a′]≡. Therefore, equivalence
classes are of course pairwise disjoint:

Lemma 4 Given an equivalence relation ≡ on a set A, the set A/≡ = {[a]≡ ∈ P(A) | a ∈ A} is a partition of A.
Conversely, any partition of A, U ⊆ P(A) defines an equivalence relation ≡U such that A/≡U = U. Furthermore, for
any equivalence relation ≡ on A we have the equality ≡ = ≡A/≡.

Proof. If A = ∅, then the only equivalence relation is ∅ = ∅ × ∅, and ∅/∅ = ∅, which is a partition of
⋃
∅ = ∅. If

A , ∅, obviously A/≡ , ∅, and ∅ < A/≡, and we just have to see that any two different equivalence classes [a]≡ and
[a′]≡ are disjoint. We reason by contradiction. Suppose [a]≡ , [a′]≡ and let a′′ ∈ [a]≡∩ [a′]≡. Then a ≡ a′′ and a′′ ≡ a′.
Therefore, since ≡ is transitive, a ≡ a′. Hence, [a]≡ = [a′]≡, a contradiction.

Conversely, given a partition of A, U ⊆ P(A), we define the equivalence relation ≡U by means of the logical
equivalence

a ≡U a′ ⇔ (∃U ∈ U) a, a′ ∈ U.

This is trivially an equivalence relation such that A/≡U = U. It is also trivial to check that ≡ = ≡A/≡. □
The above lemma tells us that equivalence relations on a set A and partitions of such a set are essentially the same

thing, and are in bijective correspondence. That is, the assignments ≡ 7→ A/≡ and U 7→≡U are inverse to each other.
Therefore, partitions and equivalence relations give us two equivalent (no pun intended) viewpoints for looking at the
same phenomenon of “relative equality.” The equivalence relation viewpoint emphasizes the intuition of two things
being equal in such a relational sense. The partition viewpoint emphasizes the fact that this classifies the elements of A
into disjoint classes.

Indeed, the mapping a 7→ [a]≡ is precisely the process of classification, and is in fact a surjective function

q≡ : A →−→ A/≡: a 7→ [a]≡

called the quotient map associated to the equivalence relation ≡. We can generalize this a little, and regard any function
f : A −→ B as a process of classifying the elements of A, or, what amounts to the same, as a way of defining a notion
of relative equality between the elements of A, namely, a and a′ are equal according to f iff f (a) = f (a′). That is,
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any f : A −→ B classifies the elements of A according to the partition { f −1(b) ∈ P(A) | b ∈ f [A]}, whose associated
equivalence relation ≡ f can be characterized by means of the logical equivalence

(∀a, a′ ∈ A)(a ≡ f a′ ⇔ f (a) = f (a′)).

Note that the equivalence relation ≡ f is exactly our old friend f ; f −1, which we encountered in Exercise 24. That is, for
any function f we have the identity ≡ f = f ; f −1. Of course, when f is the function q≡ : A →−→ A/≡, we get ≡q≡ = ≡.

In all the examples we have discussed there is always a function f implicitly used for classification purposes. For
the money examples the functions are den : Money −→ Q, mapping each coin or bill to its denomination as a rational
number, and val : P(Money) −→ Q, mapping each set U of coins and bills to its total value. Likewise, for the residue
classes modulo n, the relevant function is remn : N −→ N, mapping each number x to its remainder after division by n.

The following lemma has an easy proof, which is left as an exercise.

Lemma 5 For any binary relation R ⊆ A× A, the smallest equivalence relation R on A such that R ⊆ R is precisely the
relation R = (R ∪ R−1)∗.

Lemma 6 For any binary relation R ⊆ A × A and any function f : A −→ B such that (∀(a, a′) ∈ R) f (a) = f (a′), there
is a unique function f̂ : A/R −→ B such that f = qR; f̂ .

Proof. Since qR is surjective, it is epi (see Exercise 26), and therefore f̂ , if it exists, is unique. Let us prove that
it does exist. We define f̂ : A/R −→ B : [a]R 7→ f (a). This will be a well-defined function if we prove that
aRa′ ⇒ f (a) = f (a′), so that the definition of f̂ does not depend on our choice of a representative a ∈ [a]R. Note that,
by our assumption on f , we have R ⊆ ≡ f . and since R is the smallest equivalence relation containing R we also have
R ⊆ ≡ f . Therefore, aRa′ ⇒ a ≡ f a′. But a ≡ f a′ ⇔ f (a) = f (a′). Therefore, aRa′ ⇒ f (a) = f (a′), as desired. □

Corollary 1 (Factorization Theorem). Any function f : A −→ B factors as the composition f = q≡ f ; f̂ ; jB
f [A], with

q≡ f surjective, f̂ bijective, and jB
f [A] an inclusion, where f̂ is the unique function associated by Lemma 6 to f and the

relation ≡ f . This factorization is graphically expressed by the commutative diagram:

A
f //

q≡ f
����

B

A/≡ f
f̂ // f [A]

?�

jBf [A]

OO

Proof. Obviously, by Lemma 6 we have a factorization f = q≡ f ; f̂ . Furthermore, f̂ is injective, since

f̂ ([a]≡ f ) = f̂ ([a′]≡ f )⇔ f (a) = f (a′)⇔ a ≡ f a′ ⇔ [a]≡ f = [a′]≡ f .

Furthermore, f̂ factors as

A/≡ f
f̂
→−→ f [A]

jBf [A]
↪→ B

But since f̂ : A/≡ f −→ B is injective, by Exercise 26 (2) and (6), then f̂ : A/≡ f →−→ f [A] is also injective, and
therefore bijective, as desired. □

Exercise 52 (Exercise 24 revisited). Prove that for any function f : A −→ B we have the identity of binary relations
f ; f −1 = ≡ f , and the identity of functions jB

f [A] = f −1; f . Therefore, the above factorization diagram can be equivalently
rewritten as follows:

A
f //

q f ; f−1
����

B

A/ f ; f −1 f̂ // f [A]
?�

f−1; f

OO

Exercise 53 Give a precise and succinct description of all the equivalence relations on the set 3 = {0, 1, 2}, describing
each one of them explicitly. (Hint: describing each such equivalence relation as a set of pairs is certainly precise, but
not succinct).
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Exercise 54 Let A and B be any two sets, and let f , g ∈ [A→B]. Prove that the relation f ≈ g that holds when the
functions f and g agree everywhere except possibly at a finite number of arguments, that is, the relation defined by the
equivalence

f ≈ g ⇔ (∃X ∈ Pfin(A)) f |A−X = g|A−X

is an equivalence relation on [A→B].

Exercise 55 Given a finite set A with n elements, give a numeric expression depending on n that counts the total number
of equivalence relations on A, and prove its correctness.

Exercise 56 (Extends Exercise 20).

1. Given sets A and B, use the (Sep) axiom to give explicit definitions by means of set theory formulas of the subsets
[A→B]inj, [A→B]surj, [A→B]bij ⊆ [A→B] of, respectively, injective, surjective, and bijective functions from A to
B.

2. If A and B are finite, with respective number of elements n and m, prove that: (i) [A→B]inj , ∅ iff n ≤ m, (ii)
[A→B]surj , ∅ iff n ≥ m, and (iii) [A→B]bij , ∅ iff n = m.

3. Under the respective assumptions n ≤ m, n ≥ m, and n = m, give explicit numeric expressions, using n and m,
that calculate the exact number of functions in, respectively, [A→B]inj, [A→B]surj, and [A→B]bij, and prove their
correctness. (Hint: use the Factorization Theorem, Exercise 5, and some elementary combinatorics).

Given the essential identity Relation = Directed Graph = Transition System, a natural question to ask is: how does
an equivalence relation look like as a graph?

Exercise 57 Given a set N of nodes, the complete graph on N is the relation N2. Prove that, given a graph (N,G), G is
an equivalence relation iff there exists a partitionU of N such that:

1. For each U ∈ U, G|U is the complete graph on U.

2. G =
⋃
{G|U ∈ P(N × N) | U ∈ U}.

Likewise, it is natural to ask: how does an equivalence relation look like as a transition system?

Exercise 58 Call a transition system A = (A,→A) reversible iff (∀(a, a′) ∈ →A) (a′, a) ∈ →∗
A

. Intuitively, in a
reversible system we can always “undo” the effect of a transition a→A a′ by taking further transitions.

Prove thatA = (A,→A) is reversible iff→∗
A

is an equivalence relation on A.

Finally, we can give a graph-theoretic interpretation to the smallest equivalence relation G generated by a relation
G.

Exercise 59 Given a graph (N,G), and given a node n ∈ N, the set of nodes n′ ∈ N connected to n (including n itself)
can be defined as, [n]G = {n′ ∈ N | (n, n′) ∈ (G ∪ G−1)∗}. We call [n]G the connected component of node n. Prove the
following (in whichever order you think best, but without using Lemma 5 until you give a proof of it; some choices of
order can make proofs of other items in (1)–(3) trivial):

1. The set {[n]G ∈ P(N) | n ∈ N} of connected components of (N,G) is a partition of N.

2. Give a detailed proof of Lemma 5.

3. We have a set identity {[n]G ∈ P(N) | n ∈ N} = N/G.

The following two exercises relate the notion of equivalence relation with two other notions, namely, that of pre-
order, and that of bisimulation.

Exercise 60 (Preorders). A preorder (also called a quasi-order) is a pair (A,⪯) with A a set, and ⪯∈ P(A × A) a
reflexive and transitive relation on A. Given preorders (A,⪯A), (B,⪯B), a monotonic function f : (A,⪯A) −→ (B,⪯B)
is, by definition, a relation homomorphism. Prove that:

1. (A,⪯) is a preorder iff (⪯)∗ = ⪯. Furthermore, if f : (A,R) −→ (B,G) is a relation homomorphism, then
f : (A,R∗) −→ (B,G∗) is a monotonic function between preorders.

2. For any preorder (A,⪯): (i) the relation ≡⪯ defined by the equivalence a ≡⪯ a′ ⇔ (a ⪯ a′ ∧ a′ ⪯ a) is an
equivalence relation; (ii) in the quotient set A/≡⪯ the relation ≤⪯ defined by the equivalence [a]≡⪯ ≤⪯ [a′]≡⪯ ⇔
a ⪯ a′ is a partial order (in the “less than or equal” sense); and (iii) q≡⪯ : (A,⪯) −→ (A/≡⪯,≤⪯) is monotonic
and satisfies the following property: for any poset (B,≤B) and any monotonic f : (A,⪯) −→ (B,≤B) there is a
unique monotonic f̂ : (A/≡⪯,≤⪯) −→ (B,≤B) such that f = q≡⪯ ; f̂ .
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Exercise 61 (Minimization of Transition Systems and Automata). Let A = (A,→A) be a transition system (resp. let
A = (A, L,→A) be a labeled transition system). Prove that the biggest possible bisimulation relation max.bis : A =⇒
A (resp. the biggest possible labeled bisimulation relation max.bis : A =⇒ A) defined in Exercise 42–(4) is an
equivalence relation. Let us denote it ≡A. Prove also that:

1. The set A/≡A has a natural structure as a transition system A/≡A = (A/≡A,→A/≡A ), with [a] →A/≡A [a′] iff
a →A a′ (show that this definition of the transition relation does not depend on the choices of representatives a
and a′ in [a] and [a′]). A/≡A is called the minimal transition system behaviorally equivalent to A. Similarly,
for A = (A, L,→A) a labeled transition system, the set A/≡A has a natural structure as a labeled transition

system A/≡A = (A/≡A, L,→A/≡A ), with [a]
l

→A/≡A [a′] iff a
l
→A a′ (show that this definition of the transition

relation does not depend on the choices of representatives a and a′ in [a] and [a′]). A/≡A is called the minimal
automaton behaviorally equivalent toA.

2. For any transition system A = (A,→A) (resp. for any labeled transition system A = (A, L,→A)) the quotient
map q≡A : A →−→ A/≡A is a bisimulation q≡A : A →−→A/≡A (resp. a labeled bisimulation q≡A : A →−→A/≡A).

3. For any total bisimulation relation (resp. total labeled bisimulation relation) H : A =⇒ B such that H−1

is also total, there is an isomorphism of transition systems (resp. isomorphism of labeled transition systems)
f : A/≡A

�
−→B/≡B; that is, bisimilar systems have the same minimization up to isomorphism.

4. For A = (A,→A) a transition system (resp. A = (A, L,→A) a labeled transition system), A/≡A is really
minimal, in the sense that it cannot be compressed anymore. That is, the equivalence relation ≡(A/≡A) is exactly
the identity relation on the set A/≡A. In particular, ifA has a finite set of states A, the number of states in A/≡A
is the smallest possible for a system bisimilar withA.

6.7 Constructing Z and Q
To give some flavor for both how set theory is used to define —that is, to build mathematical models of— all mathe-
matical objects of interest, and how useful the notion of a quotient set under an equivalence relation is, I show how the
integers Z and the rationals Q can be easily defined as quotient sets.

Let us begin with the set Z of integers. Any integer can be obtained as the difference between two natural numbers.
For example, 7 is 7 − 0, or, equivalently, 15 − 8. Likewise, −7 is 0 − 7, or, equivalently, 8 − 15. This suggests defining
the integers as the quotient set Z = N2/≡, where ≡ is the equivalence relation

(x, y) ≡ (x′, y′) ⇔ x + y′ = x′ + y

in particular, the number 7 is represented as the equivalence class [(7, 0)] = [(15, 8)], and the number −7 as the equiv-
alence class [(0, 7)] = [(8, 15)]. Note that, given any such equivalence class, we can always choose either a represen-
tative (n, 0), which we denote by n, or a representative (0, n), which we denote by −n (of course, we denote (0, 0) by
0 = −0). We can define addition, subtraction, and multiplication of integers in the obvious way: [(x, y)] + [(x′, y′)] =
[(x + x′, y + y′)], [(x, y)] − [(x′, y′)] = [(x + y′, y + x′)], and [(x, y)] · [(x′, y′)] = [((x · x′) + (y · y′), (x · y′) + (y · x′))]. One
of course has to show that the above definitions of addition, subtraction, and multiplication do not depend on the choice
of representatives (x, y) ∈ [(x, y)], but this is an easy exercise.

Once we have the integers, it is equally easy to define the rationals. Each rational number can be represented as a
fraction n/m, with n ∈ Z and m ∈ Z−{0}, where 0 = [(0, 0)]. Of course the fractions 1/2, 2/4, and 3/6 are all equivalent.
This suggests defining the rational numbers as the quotient set Q = (Z× (Z−{0}))/≡, where ≡ is the equivalence relation

(x, y) ≡ (x′, y′) ⇔ x · y′ = x′ · y

and where we typically use the notation [(x, y)] = x/y, and usually pick a representative (x, y) ∈ [(x, y)] such that
x/y is an irreducible fraction with y a natural number. In this way, x/y uniquely represents the equivalence class
[(x, y)]. Addition, subtraction, multiplication, and division of rational numbers is now defined in the obvious way:
[(x, y)]+[(x′, y′)] = [((x ·y′)+(y · x′), y ·y′)], [(x, y)]−[(x′, y′)] = [((x ·y′)−(y · x′), y ·y′)], [(x, y)] ·[(x′, y′)] = [(x · x′, y ·y′)],
and [(x, y)]/[(x′, y′)] = [(x · y′, y · x′)], where in the last definition we must require that x′ , 0. As before, one has to
show that the definition of each operation does not depend on the choice of representatives (x, y) ∈ [(x, y)], again an
easy exercise.
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Chapter 7

Indexed Sets

I-indexed sets, are, intuitively, families of sets {Ai}i∈I indexed or parameterized by the elements of another set I. For
example, if I = 5, we could consider the I-indexed set {Ai}i∈4, where A0 = 13, A1 = 7, A2 = N, A3 = 7, and A4 = ∅. So,
we can think of {Ai}i∈I as the listing or sequence of sets

13, 7, N, 7, ∅

which is of course different from the set {∅, 7, 13,N}, both because the elements in the set {∅, 7, 13,N} are unordered,
and because our list can have repetitions, like the one for 7.

Under closer inspection, an I-indexed set turns out to be nothing new: just a completely different, but very useful,
new perspective, deserving a notation of its own, on a surjective function.

7.1 Indexed Sets are Surjective Functions
What is a sequence? Consider, for example, the sequence of rational numbers {1/s(n)}n∈N, which we would display as

1, 1/2, 1/3, 1/4, . . . 1/n, . . .

and which has 0 as its limit. Or maybe the sequence of even numbers {2 · n}n∈N, which we can display as

0, 2, 4, 6, . . . 2 · n, . . .

In a similar manner, we could consider finite sequences like {1/s(n)}n∈k, or {2 · n}n∈k, with k a natural number, which
would just truncate the above infinite sequences to the first k elements in the sequence.

I ask the question “what is a sequence?” on purpose, as an Occam’s razor type of question: do we essentially need a
new concept to get a precise mathematical definition of a sequence, or is it just a convenient notation denoting a concept
we already know? The answer is that, clearly, we do not need any more concepts, since a sequence is just a (sometimes)
handy notation to describe a function. For example, the sequence {1/s(n)}n∈N is just a convenient, alternative notation
for the function 1/s( ) : N −→ Q : n 7→ 1/s(n). Likewise, {2 · n}n∈N is just a convenient notation for the function
2 · : N −→ N : n 7→ 2 · n. In a similar way, the corresponding finite sequences would be convenient notation for the
functions 1/s( ) : k −→ Q : n 7→ 1/s(n), and 2 · : k −→ N : n 7→ 2 · n.

There is, however, a slight indeterminacy between the sequence notation and the corresponding function it denotes,
because the sequence notation does not mention the codomain of such a function. So, we could instead have considered
(in the infinite sequence case, for example) the corresponding surjective functions 1/s( ) : N →−→{1/s(n) ∈ Q | n ∈ N} :

n 7→ 1/s(n), and 2 · : N →−→
•

2 : n 7→ 2 · n. Note, by the way, that the subsets {1/s(n) ∈ Q | n ∈ N} ⊂ Q, and
•

2⊂ N
are totally different from the sequences that generate them, since in such sets we have lost completely all information
about the way in which the elements of the set are enumerated by the corresponding sequence.

So, a more careful answer to the above question “what is a sequence?” would be that it is a convenient notation
for a surjective function from either the set N of natural numbers (infinite sequence), or from a natural number k (finite
sequence), to some other set. This way, the indeterminacy about the codomain of the function is totally eliminated.

But why do we need to restrict ourselves to countable or finite sequences? Why couldn’t we consider the uncount-
able “sequence” {x2}x∈R as a convenient notation for the function square : R →−→R≥0 : x 7→ x2? And why do we have
to restrict ourselves to numbers? Given any set I, why couldn’t we consider, for example, the “sequence” {(i, i)}i∈I as a
convenient notation for the surjective (and injective) function δI : I →−→ idI : i 7→ (i, i), mapping each i ∈ I to the pair
(i, i) in the identity function idI?
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Now we have to remember something very important, namely, that in pure set theory any set element is itself a
set. Therefore, the elements in all these, increasingly more general kinds of “sequences” like {1/s(n)}n∈N, {x2}x∈R, and
{(i, i)}i∈I , are always “sequences” of sets! In the first sequence the elements are rational numbers, that can be represented
as equivalence classes of integers; in the second sequence they are real numbers, again representable as sets (e.g., as
“Dedekind cuts”), and in the third sequence they are ordered pairs, which we have seen are a special kind of sets. But
this is always the case: in pure set theory the elements of any set are always other sets. Furthermore, any function
f : A −→ B is always a function of the form f : A −→ P(C) for some C. Indeed, let C =

⋃
B. Then, by the (Union)

axiom we have (∀b ∈ B) b ⊆
⋃

B, and therefore, (∀b ∈ B) b ∈ P(
⋃

B), which implies B ⊆ P(
⋃

B). Therefore, we have
the following factorization of f :

A
f
−→ B

JP(
⋃

B)
B
↪→ P(

⋃
B)

so that f maps each a ∈ A to a subset f (a) ⊆
⋃

B.
We have now arrived at a very useful general notion of “family of sets,” extending that of a sequence indexed by

numbers, and co-extensive with that of a surjective function f : I →−→T . Instead of using the, too overloaded, word
“sequence,” given a set I of indices, we will speak of an I-indexed set, or an I-indexed family of sets. We write the
I-indexed set co-extensive with f as { f (i)}i∈I . The elements i ∈ I are called indices, since they are used to index the
different sets in the given family of sets.

Definition 6 (I-indexed set). A surjective function f : I →−→T can be equivalently described, in a sequence-like
notation, as the I-indexed family of sets { f (i)}i∈I . In this notation, we call such a surjective f an I-indexed set.

I-indexed sets are a generalization of ordinary sets, since we can view an ordinary set X as the 1-indexed set
associated to the surjective function X̃ : 1 →−→{X} : 0 7→ X. The only difference is that in the 1-indexed set case, there
is only one set in the family, whereas in general we have a family of sets (and not just a single set) indexed by I. To
emphasize that an I-indexed set is a family of sets indexed by I, we will use the suggestive notation A = {Ai}i∈I , where
A is the name of the entire I-indexed set (that is, the name of a surjective function A : I →−→ A[I]), and Ai is the set
assigned to the index i ∈ I (making the slight change of notation of writing Ai instead of A(i)). The use of A for the
name of the entire I-indexed set helps our intuition that it is “just like an ordinary set,” except that it is more general.

In which sense more general? How should we visualize an I-indexed set? We can think of it, in F. William
Lawvere’s words [20], as a continuously varying set, thus adding dynamics to set theory. In which sense “varying”?
Well, we can think of I as a parameter along which the set is varying. For example, if I = N, then we can think of N as
discrete time, so that in the N-indexed set A = {An}n∈N, An is the “snapshot” of A at time n.

For example, a digital version of the movie Casablanca, which we abbreviate to C, can be mathematically modeled
as a family of sets (the movie’s frames) indexed by natural numbers corresponding to the different “instants” of the
projection (each instant happening each 1/30th of a second). Indeed, Casablanca has naturally this intuitive meaning
of a time-varying set. Suppose we have a two-dimensional 3000 × 5000 pixel screen, with 3000 × 5000 the cartesian
product of the sets 3000 and 5000 (therefore, since 3000 ·5000 = 15000000, this is a 15 Megapixel screen), where each
pixel in the screen is shaded by a shade of grey represented by a 16-bit vector. Such vectors are just the elements of
the 16-fold cartesian product 216. Therefore, each frame in our digital version of Casablanca, for example, the frame
number 360, denoted C360, is just a function

C360 : 3000 × 5000 −→ 216

which in computer science would be called a “two-dimensional array of 16-bit numbers.”
Our version of Casablanca lasts 102 minutes, and the movie projects 30 frames per second. Then we have a total

of 102 · 60 · 30 = 183600 frames. Therefore, Casablanca is a 183600-indexed set C = {Ct}t∈183600, where each Ct is
precisely the specific function from the cartesian product 3000 × 5000 to the cartesian product 216 corresponding to
the t-th frame in the movie. Of course, C is just another notation for a surjective function C : 183600 →−→C[183600],
where C[183600] = {Ct | t ∈ 183600} is the set of all frames in the movie.

There is, again, a crucial distinction between the 183600-indexed set C = {Ct}t∈183600, and the set C[183600] = {Ct |

t ∈ 183600}, where all information about the order in which the frames are arranged is totally lost. Intuitively, and
reverting from digital to celluloid to drive the point home, we can think of the set C[183600] = {Ct | t ∈ 183600} as a
bag in which, after cutting with scissors each of the 183600 frames, we have thrown them all together in a jumbled and
chaotic way, with no order whatsoever between them. Of course, Casablanca is just an an example. What this example
illustrates is a general method to model mathematically any digital movie as an indexed set. This can of course be quite
useful, since any software for digital videos will implicitly or explicitly manipulate such a mathematical model.

The word “continuously” must be taken with a few grains of salt, since for I = N, or I = 183600, we might rather
talk of a “discretely varying set,” (although our eyes are fooled into seeing Casablanca as a continuously varying set of
images). But if we take as parameter set I = R≥0, then the expression “continuously varying set” fully agrees with our
intuition, since in the varying set A = {At}t∈R≥0 , At is the “snapshot” of A at continuous time t. For example, we can
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Figure 7.1: Ct for some t ∈ 183600 in the Casablanca movie (from The Economist, June 14th-20th, pg.89, 2008.).

completely describe the time evolution of a billiard ball on a billiards table from the time when it is hit by a player, say
at time 0, as a continuously varying set in exactly this sense, namely, as a R≥0-indexed set of the form B = {Bt}t∈R≥0 ,
where for each t ∈ R≥0, Bt is a pair Bt = (S t, (ut, dt, it)), where S t ⊂ P(R3) is a solid sphere, representing the points
in space occupied by the ball at time t, and (ut, dt, it) ∈ (R3)3 are the coordinates at time t of three chosen points on
the surface of the ball, namely, the “up,” “down,” and “impact” points. At time 0 we choose the three points (u0, d0, i0)
to be: (i) the point at the top of the ball as it rests on the table, (ii) the opposite point on the surface of the ball under
the table, and (iii) the point of impact chosen by the player to hit the ball (which we idealize as a “point,” and we can
reasonably assume is different from both u0 and d0). Then, the points (ut, dt, it) will be those points on the surface of
the solid sphere S t where the original points (u0, d0, i0) have been carried by the motion of the ball at time t. Note that
S t tells us where the ball is at time t as a solid sphere, but does not tell us anything about the ball’s spin. All spin
information is captured by the simpler continuously varying set {(ut, dt, it)}t∈R≥0 .

Exercise 62 Prove that the continuously varying set {(ut, dt, it)}t∈R≥0 completely determines all aspects of the dynamic
evolution of the billiard ball over time. That is, at any time t we can always “reconstruct” the solid sphere S t from the
three points (ut, dt, it).

Use the bijection (R3)3 � R9, guaranteed by Exercises 33 and 34, to show that we can, equivalently, com-
pletely characterize the dynamic evolution of a billiard ball by the indexed set associated to a surjective function
B̂ : R≥0 →−→CB, where CB ⊆ R

9 is a curve in the 9-dimensional euclidean space R9. This curve is parameterized of
course by the time t ∈ R≥0, which is the whole idea of a R≥0-indexed set. The representation of the ball’s dynamics
by our original R≥0-indexed set B is very intuitive, but our equivalent representation as the R≥0-indexed set B̂ is much
simpler. It illustrates a very general idea used to represent the dynamics of a physical systems in a “phase space.”
That is, we represent the state of a possibly complex system as a point in an n-dimensional euclidean space, so that its
dynamic evolution traces a curve parameterized by the time t ∈ R≥0 in such a space, that is, a R≥0-indexed set .

A somewhat different, but also quite intuitive, way of thinking about an I-indexed set is as what is called a dependent
type in some functional programming languages. For example, the data type of rational-valued arrays of length n for
any n is not a single data type, but rather a family of data types that depend on the value of the length parameter n ∈ N.
It is the N-indexed set Array(Q) = {[n→Q]}n∈N. Here it is not helpful to think of the parameter set N as a set of “times.”
Instead, we think of it as a set of “sizes.”

Yet another family of examples comes from algebraic data type specifications, where the index set I is a set of
names for the types of a data type. For example, I can be the set of names I = {Bool,Nat, Int,Rat}. Then, an I-indexed
set is an actual family of data types, that is, an interpretation for the type names, assigning a concrete set of data
elements to each type name. For example, a typical I-indexed set A = {Ai}i∈I for I = {Bool,Nat, Int,Rat} may have
ABool = 2, ANat = N, AInt = Z, and ARat = Q. But this is not the only possibility: we may wish to interpret the sort
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Nat as naturals modulo 2, and the sort Int as 64-bit integers, and then we could have an I-indexed set B = {Bi}i∈I with
BBool = 2, BNat = N/2, BInt = 264, and BRat = Q.

The key idea common to all these intuitions about, and uses for, an I-indexed set —continuously varying set,
dependent type, algebraic data type, and so on— is that I is a parameter set, so that A = {Ai}i∈I is a family of sets
which vary along the parameter set I. We can graphically represent such a parametric dependence of A = {Ai}i∈I on I
by displaying each set Ai as a vertical “fiber” right above its index element i ∈ I, where the “gaps” in the way the sets

∅ ∅

• • • • •

{Ai}i∈I

I

Ai Ai′′ Aiiv

i i
′

i
′′

i
′′′

iiv

Figure 7.2: Histogram-like display of an I-indexed set {Ai}i∈I

Ai are spread out above their indices i indicate those cases where Ai = ∅; and where the different sizes of the sets Ai are
suggested by their histogram-like display.

It is always instructive to look at corner cases of a definition. Note that in our definition of I-indexed set, the index
set I can be any set. In particular, we can have the somewhat strange case where I = ∅. So the question then becomes:
how many ∅-indexed sets are there? The obvious answer is: as many as surjective functions from ∅ to some other
set. But the only such surjective function from ∅ is the identity function id∅ : ∅ −→ ∅. Therefore, id∅ is the only
∅-indexed set.

Note that the possibility that the sets Ai in an I-indexed set A = {Ai} can vary does not imply that they have to
vary. We may happen to have Ai = Ai′ for all i, i′ ∈ I, so that Ai is constant and does not change at all as we vary the
parameter i ∈ I. For example, we may have an avant-garde short movie, called AVG, that lasts 2 minutes and projects
during the whole time the single frame Mao : 3000×5000 −→ 216 shown in Figure 7.1. That is, since 2 ·60 ·30 = 3600,
we have AVG = {Mao}t∈3600.

In general, given any ordinary set X, we can define the constant I-indexed set XI = {X}i∈I , that is, the constant
family where the set assigned to each i ∈ I is always the same set X, which is precisely the I-indexed set associated to
the constant surjective function XI : I →−→{X} : i 7→ X. More precisely:

Definition 7 (Constant I-indexed sets). If I , ∅, then, for any set X, the constant I-indexed set denoted XI is, by
definition, the surjective function XI : I →−→{X} : i 7→ X. If I = ∅, then for any set X, the constant ∅-indexed set
denoted X∅ is, by definition, id∅.

A perceptive reader might have wondered how, in our example of arrays of rational numbers, is the surjective
function Array(Q) : N →−→Array(Q)[N], defining the N-indexed set Array(Q) = {[n→Q]}n∈N, precisely defined. This
is a nontrivial question, since for such a function to be defined there must exist a set T such that for each n ∈ N,
[n→Q] ∈ T . But how do we know that such a set exists?

Exercise 63 Find a set T such that for each n ∈ N, [n→Q] ∈ T. Then define the N-indexed set Array(Q) = {[n→Q]}n∈N
explicitly as a surjective function. (Hint: use partial functions).

For the dependent type of arrays we can indeed find a set T , so that such a dependent type is a surjective function
Array(Q) : N →−→T . In general, however, we may be able to describe a “family of sets,” in a weaker sense of the term,
as a sequence {Ai}i∈I without having much of a clue about how to find a set T such that for each i ∈ I we have Ai ∈ T .
How do we know that in general such a set T always exists? Note that in Definition 6 an I-indexed set was defined to
be a surjective function A : I →−→ A[I]. Therefore, with that definition the above problem does not explicitly arise, since
the family notation {Ai}i∈I is just a notational convention for such a function. The unsolved issue, however, is whether
given a family {Ai}i∈I , now taken as the primary concept, so that we are not explicitly given a set T such that for each
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Figure 7.3: Based on a painting by Andy Warhol in http://www.warholprints.com/portfolio/Mao.html.

i ∈ I we have Ai ∈ T , we can always find a surjective function A : I →−→ A[I] such that for each i ∈ I, A(i) = Ai.
Situations where such a set T is not at all obvious are not hard to come by. Consider, for example, the sequence of sets

∅, P(∅), P(P(∅)), . . . ,Pn(∅), . . .

which we could describe as the family of sets (in this alternative sense, where the surjection is not given) {Pn(∅)}n∈N. It
is indeed not at all obvious how to find a set T such that for each n ∈ N we have Pn(∅) ∈ T . An even simpler example
is the sequence 0, {0} {{0{} . . . {0}n, . . . of Zermelo natural numbers. We know by the axiom of infinity that the set N
of von Neuman natural numbers exists, but is there a T which is the image of the Zermelo sequence? The answer to the
question of whether such a set T always exists for an indexed set in this weaker sense is in the affirmative. However,
to make this answer precise two additional ideas, which I can only sketch at this point, are needed: (i) a notion of
intensional function can allow us to precisely characterize a family {Ai}i∈I in this weaker sense as a primary notion;
and (ii) a new axiom of set theory, the replacement axiom, does indeed ensure that a correspoding surjective function
A : I →−→ A[I] always exists for families in this weaker sense.

Exercise 64 (I-Indexed Sets as Untyped Functions). The need for requiring I-indexed sets to be surjective functions
was due to the indeterminacy of a function’s codomain. But this is a side effect of having typed the function. Without
typing such a problem dissappears. That is, we can define an untyped function as a binary relation f (therefore con-
tained in some cartesian product, which we need not specify) such that (∀x, y, z) (x, y), (x, z) ∈ f ⇒ y = z. Then we can
define an I-indexed set as exactly an untyped function f such that dom( f ) = I, where if, say, f ⊆ A × B, then dom( f ) =
{a ∈ A | (a, b) ∈ f }. Of course, the only possible typing of f as a surjective function is f : dom( f ) →−→ f [dom( f )].
Check that all we have said so far can be equivalently formulated by taking I-indexed sets to be untyped functions.

7.2 Constructing Indexed Sets from other Indexed Sets
I-indexed sets behave like ordinary sets in many respects. We can perform set-theoretic constructions on them, like
union, intersection, disjoint union, cartesian product, and so on, to obtain other I-indexed sets.

The idea is that we can carry out such set-theoretic constructions in a “componentwise” manner: for each index
i ∈ I. For example, we can define the union of two I-indexed sets A = {Ai}i∈I and B = {Bi}i∈I as the I-indexed set
A ∪ B = {Ai ∪ Bi}i∈I . Note that if X and Y are ordinary sets, and X̃ and Ỹ are their corresponding 1-indexed sets, we
have the identity: X̃ ∪ Ỹ = X̃ ∪ Y . That is, union of I-indexed sets is an exact generalization of union of ordinary sets
(which are viewed here as 1-indexed sets). But union is just an example: many other set-theoretic constructions can be
generalized to the I-indexed setting in a completely similar manner. Here are some:

Definition 8 Given I-indexed sets A = {Ai}i∈I and B = {Bi}i∈I , we can define their union, intersection, difference,
symmetric difference, cartesian product, disjoint union, function set, and powerset as the following I-indexed sets:
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• A ∪ B = {Ai ∪ Bi}i∈I

• A ∩ B = {Ai ∩ Bi}i∈I

• A − B = {Ai − Bi}i∈I

• A ⊞ B = {Ai ⊞ Bi}i∈I

• A × B = {Ai × Bi}i∈I

• A ⊕ B = {Ai ⊕ Bi}i∈I

• [A→B] = {[Ai→Bi]}i∈I

• P(A) = {P(Ai)}i∈I

Similarly, given I-indexed sets A = {Ai}i∈I and B = {Bi}i∈I , we can define their containment relation A ⊆ B by means
of the equivalence

A ⊆ B ⇔ (∀i ∈ I) Ai ⊆ Bi

and if this containment relation holds, we call A an I-indexed subset of B. How is the empty set generalized to the I-
indexed case? It is of course the I-indexed set ∅I = {∅}i∈I , that is, the constant I-indexed set associated to ∅. Obviously,
the containment relation ∅I ⊆ A holds true for any I-indexed set A = {Ai}i∈I .

7.3 Indexed Relations and Functions
How are relations and functions generalized to the I-indexed setting? Given I-indexed sets A = {Ai}i∈I and B = {Bi}i∈I ,
an I-indexed relation R from A to B, denoted R : A =⇒ B, is an I-indexed subset R ⊆ A×B. That is, an I-indexed family
of relations R = {Ri}i∈I such that for each i ∈ I we have Ri ⊆ Ai × Bi. Similarly, an I-indexed function from A to B,
denoted f : A −→ B, is an I-indexed relation f = { fi}i∈I such that for each i ∈ I, fi ∈ [Ai→Bi]. Of course, an I-indexed
function f : A −→ B is called injective, surjective, or bijective iff for each i ∈ I the function fi is injective, surjective,
or bijective. For each I-indexed set A = {Ai}i∈I , the I-indexed identity function idA is, by definition, idA = {idAi }i∈I .

Also, relation and function composition is defined in the obvious, componentwise way: given I-indexed relations
R : A =⇒ B and G : B =⇒ C, the I-indexed relation R; G : A =⇒ C is defined componentwise by the equality R; G =
{Ri; Gi}i∈I . Likewise, given I-indexed functions f : A −→ B and g : B −→ C, the I-indexed function f ; g : A −→ C is
defined componentwise by the equality f ; g = { fi; gi}i∈I .

The following lemma is a trivial generalization to the I-indexed case of Lemma 2 and is left as an exercise.

Lemma 7 The following facts hold true for I-indexed relations and functions:

• Given I-indexed relations F : A =⇒ B, G : B =⇒ C, and H : C =⇒ D, their composition is associative, that is,
we have the equality of I-indexed relations (F; G); H = F; (G; H).

• Given I-indexed functions f : A −→ B, g : B −→ C, and h : C −→ D, their composition is likewise associative,
that is, we have the equality of I-indexed functions ( f ; g); h = f ; (g; h).

• Given an I-indexed relation F : A =⇒ B, we have the equalities idA; F = F, and F; idB = F.

• Given an I-indexed function f : A −→ B, we have the equalities idA; f = f , and f ; idB = f .

Let us consider some interesting examples of I-indexed functions. Given A = {Ai}i∈I and B = {Bi}i∈I , consider their
I-indexed cartesian product A×B and disjoint union A⊕B. Then, we have I-indexed projection functions p1 : A×B −→ A
and p2 : A × B −→ B, defined in the obvious, componentwise way, namely, p1 = {p1 : Ai × Bi −→ Ai}i∈I and
p2 = {p2 : Ai × Bi −→ Bi}i∈I . Similarly, we have the I-indexed injection functions into the I-indexed disjoint union,
i1 : A −→ A ⊕ B and i2 : B −→ A ⊕ B, defined by: i1 = {i1 : Ai −→ Ai ⊕ Bi}i∈I and i2 = {i2 : Bi −→ Ai ⊕ Bi}i∈I .

Similarly as for the case of ordinary functions, we can specify I-indexed functions using lambda expressions. Given
I-indexed sets A = {Ai}i∈I and B = {Bi}s∈S , a lambda expression λi ∈ I.λxi ∈ Ai. t(xi, i) ∈ Bi defines in this way an I-
indexed function from A = {Ai}i∈I to B = {Bi}s∈S , provided that we can prove the formula (∀i ∈ I)(∀xi ∈ Ai) t(xi, i) ∈ Bi.
Indeed, in such a case, for each i ∈ I, the function fi thus specified is the set of pairs fi = {(ai, t(ai, i)) ∈ Ai×Bi | ai ∈ Ai}.
For example, the I-indexed projection functions p1 = {p1 : Ai × Bi −→ Ai}i∈I and p2 = {p2 : Ai × Bi −→ Bi}i∈I , have
the obvious lambda expression specifications p1 = λi ∈ I.λ(xi, yi) ∈ Ai × Bi. xi ∈ Ai and p2 = λi ∈ I. λ(xi, yi) ∈
Ai × Bi. yi ∈ Bi. Similarly, the I-indexed injection functions into the I-indexed disjoint union, i1 : A −→ A ⊕ B
and i2 : B −→ A ⊕ B have the lambda expression specifications i1 = λi ∈ I. λxi ∈ Ai. (xi, 0) ∈ Ai ⊕ Bi, and
i2 = λi ∈ I. λyi ∈ Bi. (yi, 1) ∈ Ai ⊕ Bi. Likewise, the I-indexed identity function idA : A −→ A can be specified by the
lambda expression λi ∈ I. λxi ∈ Ai. xi ∈ Ai.

To give a couple of additional examples, illustrating the use of I-indexed functions as parameterized functions for
dependent types, consider the following two N-indexed functions from Array(Q) = {[n→Q]}n∈N, the dependent type
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of rational-valued arrays of length n for any n, to, respectively, Pfin(Q), the data type of finite sets of rationals, and
N, where the first function maps an array a = {(0, x0), . . . , (n-1, xn-1)} to the finite set {x1, . . . , xn}, and the second
function maps an array a = {(0, x0), . . . , (n-1, xn-1)} to its length n. Since an ordinary data type can always be viewed
as a constant dependent type, we can describe these two (parametric in n ∈ N) functions as N-indexed functions
set : Array(Q) −→ Pfin(Q)N and length : Array(Q) −→ NN, defined by the respective lambda expressions: set = λn ∈
N.λa ∈ [n→Q]. a[n] ∈ Pfin(Q), and length = λn ∈ N. λa ∈ [n→Q]. n ∈ N.

Exercise 65 (Generalizes Exercise 30). Given any three I-indexed sets A, B, and C, and given any two I-indexed
functions f : A −→ C and g : B −→ C, we can define the function [ f , g] : A ⊕ B −→ C by the defining equation
[ f , g] = {[ fi, gi]}i∈I . Prove that:

1. i1; [ f , g] = f

2. i2; [ f , g] = g

3. (1) and (2) uniquely determine [ f , g], that is, any I-indexed function h : A ⊕ B −→ C such that i1; h = f and
i2; h = g must necessarily satisfy h = [ f , g].

Properties (1)–(3) are compactly expressed by the following commutative diagram of I-indexed functions:

C

A

f
<<

i1
// A ⊕ B

[ f ,g]

OO

B

g
bb

i2
oo

Exercise 66 (Generalizes Exercise 29). Given any three I-indexed sets A, B, and C, and given any two I-indexed
functions f : C −→ A and g : C −→ B, we can define the I-indexed function ( f , g) : C −→ A × B by means of the
defining equation ( f , g) = {( fi, gi)}i∈I . Prove that:

1. ( f , g); p1 = f

2. ( f , g); p2 = g

3. (1) and (2) uniquely determine ( f , g), that is, any I-indexed function h : C −→ A × B such that h; p1 = f and
h; p2 = g must necessarily satisfy h = ( f , g).

Properties (1)–(3) are compactly expressed by the following commutative diagram of I-indexed functions:

C
f

||

g

""
( f ,g)

��
A A × Bp1
oo

p2
// B
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Part II

Universal Algebra, Equational Logic
and Term Rewriting
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Chapter 8

Algebras

The traditional realm of algebra was the solution of polynomial equations on numerical domains such as the integers
Z (the so-called Diophantine equations), the rationals Q, the reals R, and the complex numbers C. In the 20th-century,
thanks to the set-theoretic notion of mathematical structure pioneered by researchers such as Richard Dedekind, the
notion of Abstract Algebra, as the study of equationally-defined set-theoretic structures with given operations, was
vigorously pursued under the leadership of researchers such as Emmy Noether (a classic textbook, gathering the ideas
around Emmy Noether and still in use today, is that of van der Waerden [31]).

Abstract Algebra greatly broadened the very notion of algebra in two ways. First, the traditional numerical domains
such as Z, Q R, and C, were now seen as instances of more general concepts of equationally-defined algebraic struc-
ture, which did not depend on any particular representation for their elements, but only on abstract sets of elements,
operations on such elements, and equational properties satisfied by such operations. In this way, the integers Z were
seen as an instance of the ring algebraic structure, that is, a set R with constants 0 and 1, and with addition + and
mutiplication ∗ operations satisfying the equational axioms of the theory of rings, along with other rings such as
the ring Zk of the residue classes of integers modulo k, the ring Z[x1, . . . , xn] of polynomials on n variables, and so on.
Likewise, Q, R, and C were viewed as instances of the field structure, that is, a ring F together with a division operator
/ , so that each nonzero element x has an inverse 1/x with x ∗ (1/x) = 1, along with other fields such as the fields
Zp, with p prime, the fields of rational functions Q(x1, . . . , xn), R(x1, . . . , xn), and C(x1, . . . , xn) (whose elements are
quotients p/q with p, q polynomials and q , 0), and so on. A second way in which Abstract Algebra broadened the
notion of algebra was by considering other equationally-defined structures besides rings and fields, such as monoids,
groups, modules, vector spaces, and so on. This intimately connected algebra with other areas of mathematics such
as geometry, analysis and topology in new ways, besides the already well-known connections with geometic figures
defined as solutions of polynomal equations (the so-called algebraic varieties, such as algebraic curves or surfaces).

Universal Algebra (the seminal paper is the one by Garett Birkhoff [3]), takes one more step in this line of general-
ization: why considering only the usual suspects: monoids, groups, rings, fields, modules, and vector spaces? Why not
considering any algebraic structure defined by an arbitrary collection Σ of function symbols (called a signature), and
obeying an arbitrary set E of equational axioms? And why not developing algebra in this much more general setting?
That is, Universal Algebra is just Abstract Algebra brought to its full generality.

Of course, generalization never stops, so that Universal Algebra itself has been further generalized in various
directions. One of them, which we will fully pursue in this Part II and which, as we shall see, has many applications to
Computer Science, is from considering a single set of data elements (unsorted algebras) to considering a family of such
sets (many-sorted algebras), or a family of such sets but allowing subtype inclusions (order-sorted algebras). Three
other, are: (i) replacing the underlying sets by richer structures such as posets, topological spaces, sheaves, or algebraic
varieties, leading to notions such as those of an ordered algebra, a topological algebra, or an algebraic structure on a
sheaf or on an algebraic variety; for example, an elliptic curve is a cubic curve having a commutative group structure;
(ii) allowing not only finitary operations but also infinitary ones (we have already seen examples of such algebras with
infinitary operations —namely, complete lattices and complete semi-lattices— in §6.5); and (iii) allowing operations
to be partial functions, leading to the notion of a partial algebra. Order-sorted algebras already provide quite useful
support for certain forms of partiality; and their generalization to algebras in membership equational logic provides full
support for partiality (see [24, 27]).

67



8.1 Unsorted Σ-Algebras
Unsorted algebras are algebras with a single set of data elements. Since, as we shall see, algebras are the models of
theories in equational logic, and equational logic is a sublogic of first-order logic, we should first of all make explicit
the syntax of equational theories, so that an algebra will then be a set-theoretic interpretation of such a syntax. As
explained in §2, the syntax of any theory in first-order logic consists of: (i) set of symbols for constants; (ii) a set of
function symbols; and (ii) a set of predicate symbols. In equational theories, however, the only predicate symbol is the
built-in symbol ‘=’ for equality. Therefore, we only need to specify the syntax of constants and function symbols. This
is done by providing a so-called signature Σ specifying such symbols.

Definition 9 An unsorted signature Σ is an N-indexed family Σ = {Fn}n∈N, where elements f ∈ Fn are called the n-ary
function symbols of Σ. The 0-ary symbols c ∈ F0 are called the constant symbols.

The n-ary function symbols will be interpreted in algebras as operations of n arguments. Recalling the bijection
A � [1→A] : a 7→ â, explored in detail in Exercise 32, between elements of a set a ∈ A and functions â : 1 −→ A : 0 7→
a, plus the fact that A0 = 1, constants are viewed as functions of zero arguments.

For example, the following signatures define the syntax of well-known algebraic structures:

• ΣDL, the signature of Dedekind-Lawvere natural numbers, has F0 = {0}, F1 = {s}, and Fn = ∅ for n > 1.

• ΣMON , the signature of Monoids, has F0 = {1}, F1 = ∅, F2 = { ∗ }, and Fn = ∅ for n > 2.

• ΣGP, the signature of Groups, has F0 = {1}, F1 = {( )-1}, F2 = { ∗ }, and Fn = ∅ for n > 2.

• ΣRNG, the signature of Rings, has F0 = {0, 1}, F1 = {- }, F2 = { + ∗ }, and Fn = ∅ for n > 2.

• ΣFLD, the signature of Fields, has F0 = {0, 1}, F1 = {- , ( )-1}, F2 = { + ∗ }, and Fn = ∅ for n > 2.

where we either list a symbol as a character or list of characters, as in s, to indicate that s will be displayed with a prefix
syntax, so that s applied to x will be denoted s(x), or if we wish to use a convenient “mix-fix” syntax display we follow
the useful convention of indicating the argument positions in the syntax of each function symbol by using underbars ‘ ’
as for example in ( )-1 to indicate that applied to an argument x will yield (x)-1, and + , to indicate that applied to
arguments x and y will yield x + y.

An algebra A of an (unsorted) signature Σ is set A together with an interpretation in A for the constants and
function symbols in Σ. That is, a constant c is interpreted as an element cA ∈ A, an n-ary function symbol f , n ≥ 1, is
interpreted as a function fA : An −→ A. The only vagueness left in the above, informal definition is all this talk about
“interpretation.” Can we get rid of such vagueness? That is, can we make the notion of interpretation, and therefore of
Σ- algebra precise in set-theoretic terms? Of course!

Definition 10 Given an unsorted signature Σ = {Fn}n∈N, a Σ-algebra A is an ordered pair A = (A, A), where A is the
set of elements of the algebra, and A is called its structure or interpretation function, and is an N-indexed function
A = { A,n : Fn −→ [An→A]}n∈N.

That is, A interprets each n-ary function symbol f as a function fA : An −→ A. But recall that A0 = 1 and that have a
bijection A � [1→A] : a 7→ â. So, for n = 0, A assignings to a constant symbol c ∈ F0 the function cA ∈ [1→A], which
identifying [1→A] with A is just an elemement cA ∈ A, i.e., up to the bijection A � [1→A], each constant symbol c ∈ F0

is interpreted as a data element cA ∈ A.
Note that the notion of Σ-algebra imposes no particular equational axioms on an algebra. This is not the role of Σ,

which only deals with syntax. Such axioms must be explicitly specified by a set E of equations, so that an equational
theory is then, as we will see in more detail in §9, a pair (Σ, E), with E a set of equations between expressions built
from the syntax of Σ and variables. For example, the theories of groups and rings are, respectively, equational theories
of the form (ΣGP, EGP), and (ΣRNG, ERNG), where EGP is the set of equations axiomatizing the theory of groups, and
ERNG is the set of equations axiomatizign the theory of rings. Of course, many ΣGP-algebras do not satisfy the axioms
EGP and therefore are not groups; and many ΣRNG-algebras do not satisfy the axioms ERNG and therefore are not rings.
The whole point of universal algebra is that, given a signature Σ, there can be many sets E of equations, giving rise to
different theories (Σ, E), (Σ, E′), etc. From this point of view, Σ-algebras are the most general class of algebras possible
for the signature Σ, that is, the class of algebras defined by the empty set of equations, i.e., by the theory (Σ,∅).

In abstract algebra books, except for vector spaces and modules, algebraic structures are typically unsorted. For
example, ΣMON-algebras satisfying the equations EMON = {x ∗ 1 = x, 1 ∗ x = x, (x ∗ y) ∗ z = x ∗ (y ∗ z)}, are called
monoids. For A any set, the set List(A) of lists of elements of A is a monoid, with ∗ interpreted as string concatenation,
i.e., a1 . . . an ∗ b1 . . . bm = a1 . . . an b1 . . . bm, and 1 interpreted as the empty string ∅. Likewise, N has two obvious
commutative monoid structures (i.e., monoids satisfying also x ∗ y = y ∗ x): a multiplicative one, where 1 is interpreted
as 1 ∈ N and ∗ is interpreted as natural number multiplication ∗ : N × N −→ N, and an additive one, where 1 is
interpreted as 0 ∈ N and ∗ is interpreted as natural number addition + : N × N −→ N. Likewise, Z, Q, R, and C
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have each a multiplicative, commutative monoid structure, and an additive, commutative monoid structure. But there
is more. The just-described additive commutative monoid structures for Z, Q, R, and C, can be naturally extended to
commutative group structures, by interpreting the symbol ( )-1 as the minus operation - in, respectively, Z, Q, R, and
C. The additional group theory axiom not already included in the commutative monoid axioms is: x ∗ (x-1) = 1, which
in its additive interpretation takes the form: x + (-x) = 0. Furthermore, Since a commutative ring combines an additive
group structure with a multiplicative monoid structure, plus the distributivity axiom x ∗ (y + z) = (x ∗ y) + (x ∗ z), it
is easy to check that Z, Q, R, and C have all a commutative ring structure. Finally, Q-{0}, R-{0}, and C-{0}, are also
commutative multiplicative groups, with ∗ interpreted as multiplication, and with the inverse operator ( )-1 interpreted
as the multiplicative inverse function 1/ in Q-{0}, R-{0}, and C-{0}. That is, Q, R, and C are not only commutative
rings, but also commutative fields1

Of course, N has also a ΣDL-algebra structure, with 0 interpreted as 0 ∈ N, and s as the successor function s = λn ∈
N. n ∪ {n}. Likewise, the residue classes modulo k, Zk have also a ΣDL-algebra structure, with 0 interpreted as 0 ∈ Zk,
and s interpreted as the function: λn ∈ Zk. if n < (k-1) then n+1 else 0 fi. Note that the ΣDL-algebra N actually satisfies
no equations (except the trivial one x = x), but the ΣDL-algebra Zk satisfies the equation sk(x) = 0.

Note, finally, that there is a substantial abuse of notation in all the above: one often uses the same notation, say, N,
to denote both the set itself and its intended algebraic structure, and talks of the additive monoid N or the ΣDL-algebra
N. Also, one often uses symbols like 0, 1, s, + , ∗ , and - , to also denote the correspondinresponding functions
in the intended algebra. This is just the customary abuse of notation in mathematics. Whenever notation is abused,
by confusing data sets with algebras and function symbols with functions, one should always keep clearly in mind the
essential distinction between sets and algebras; and between the syntactic level of function symbols in a signature Σ,
which as such are still uninterpreted, and the semantic level of actual functions, which interpret such function symbols
in a given Σ-algebra. To be fully precise, one should use a different notation for each structure, and qualify the function
symbols by their interpretation. For example, one could write N0,+ = (N, {0N,+N}) for the additive monoid structure,
and N0,s = (N, {0N, sN}) for the ΣDL-algebra structure, on the set N.

Exercise 67 Let ΣDL = {Fn}n∈N be the Dedekind-Lawvere signature, that is, F0 = {0}, F1 = {s}, and Fn = ∅ for n > 1.
And let A = {a, b, c}. How many different ΣDL-algebras A = (A, A) can be defined on the set A? Can you give a general
formula counting, for any finite set B and any unsorted signature Σ = {Fn}n∈N with

⋃
n∈N Fn finite, how many Σ-algebras

B = (B, B) there are on B? For example, can your formula predict exactly how many such algebras will there be on the
above set A if we add to ΣDL binary function symbols + and × , so that now F2 = { + , × }?

8.2 Many-Sorted Σ-Algebras
The passage from unsorted to many-sorted algebras is the analogue in Algebra of the passage in Computer Science
from untyped programming languages to typed programming languages. This is more than an analogy since, as we
shall see later, equational logic can itself be used as a programming language, which can be untyped if we adopt
an unsorted equational logic, or can instead be typed using a many-sorted or order-sorted equational logic. In a many-
sorted signature we allow a set S of type names2 called sorts; and then each function symbol is typed in S , by specifying
the list of its argument sorts, and the sort of its result sort. Here is the precise definition:

Definition 11 A many-sorted signature Σ is an ordered pair Σ = (S , F), where S is called the set of sorts, and F =
{Fw,s}(w,s)∈List(S )×S is the (List(S ) × S )-indexed set of its function symbols.

If w = s1 . . . sn and f ∈ Fw,s, we then display f as f : s1 . . . sn −→ s, to indicate that it has argument sorts w = s1 . . . sn

and result sort s. A constant of sort s is a function symbol c ∈ F∅,s, usually denoted c : nil −→ s, since the empty string
∅ is usually denoted by nil.

Note that an unsorted signature is essentially the same thing as a many-sorted signature with a singleton set of
sorts, say, S = {U}, where we think of U as the “universe” sort. The only notational difference between a 1-sorted
signature Σ = ({U}, F) and an unsorted one Σ = {Fn}n∈N, is that instead of denoting a function symbol f of n arguments
as f ∈ FU n...U,U we leave the universe sort U implicit and write instead f ∈ Fn.

At the level of algebras, unsorted algebras are naturally generalized to many-sorted algebras.

Definition 12 For Σ = (S , F) a many-sorted signature, a many-sorted Σ-algebra is a pair A = (A, A), where A =
{As}s∈S is an S -indexed set, and A, called the structure or interpretation map, is a List(S ) × S -indexed function

A = { A,w,s : Fw,s −→ [Aw
→As]}(w,s)∈List(S )×S : f 7→ fA

1Properly speaking, the theory of fields is not an equational theory, since division by 0 is undefined. We can view a field both as a
partial algebra, and as a model of a non-equational first-order theory.

2Again, such type names, even if they have suggestive-sounding names such as Nat, Bool, or List, are still unintepreted names:
they will be interpreted by corresponding sets in a given algebra.
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where, by defintion, if w = nil, then Anil = A0 = 1, if w = ŝ : 1 −→ S : 0 7→ s, then Aŝ = As, and if w = s1 . . . sn with
n > 1, then As1 ...sn = As1 × . . . × Asn .

That is, in A = (A, A), each constant symbol c : nil −→ s is interpreted as an element cA ∈ As, each f : s −→ s′

as a function fA : As −→ As′ , and each f : s1 . . . sn −→ s as a function fA : As1 × . . . × Asn −→ As′ . Therefore, a
many-sorted algebra A = (A, A) is a sort-preserving interpretations of Σ, where each sort s is interpreted as a set As,
and each function symbol f in F is intepreted as a function fA respecting its arity sorts and its result sort.

A well-known example of a two-sorted Σ-algebra is a vector space. The signature Σ = (S , F) has S = {Scalar,Vector},
and F has the function symbols: F = {0 :−→ Scalar, 1 :−→ Scalar,− : Scalar −→ Scalar, + : Scalar Scalar −→
Scalar, ∗ : Scalar Scalar −→ Scalar, · : Scalar Vector −→ Vector, 0⃗ −→ Vector,− : Vector −→ Vector, + :
Vector Vector −→ Vector}. A vector space is exactly a Σ-algebra for this signature such that: (i) the set of scalars is
a commutative field, (ii) the set of vectors is a commutative group, and (iii) scalar multiplication satisfies the laws:
a · (v + v′) = (a · v) + (a · v′), (a + b) · v = (a · v) + (b · v), 1 · v = v, and (a ∗ b) · v = a · (b · v). For example, by
choosing R as the set of scalars with the usual addition, substraction, and multiplication operation on reals, and R3 as
the set of vectors, with vector addition (a, b, c) + (a′, b′, c′) = (a + a′, b + b′, c + c′), and with scalar multiplication
d · (a, b, c) = (d ∗ a, d ∗ b, d ∗ c), we get the usual 3-dimensional Euclidean vector space. By relaxing the requirement on
scalars to be just a commutative ring instead of a field, and keeping the vectors also as an abelian group with the same
equations for scalar multiplication, we get the more general notion of a module. For example, by choosing Z as the
set of scalars with the usual addition, substraction, and multiplication operation on reals, and Z3 as the set of vectors,
again with the usual vector addition and scalar multiplication, we get the module of 3-dimensional vectors with integer
coordinates.

Other examples of Σ-algebras can be provided by choosing a signature Σ with set of sorts S = {List,Nat}, and with
function symbols nil : nil −→ List, ; : List List −→ List, 0 : nil −→ Nat, s : Nat −→ Nat, and length : List −→ Nat.
Using the sort names as hints, the most “obvious” Σ-algebras are algebras interpreting Nat by N, List by List(A), for A
a set, and 0 by 0 ∈ N, s by λn ∈ N. n ∪ {n}, nil by nil ∈ List(A), ; as list concatenation in List(A), and length as the
function length : List(A) −→ N which can be defined by the recursive equations: length(nil) = 0, length(̂a) = 1 for each
a ∈ A, and length(a1 a2 . . . an) = s(length(a2 . . . an)). However, as already mentioned, it can be misleading to take
the hints given by the sort names too literally, since many other interpretations are possible. For example, an equally
natural family of Σ-algebras is obtained by interpreting Nat by N, List by P f in(A), for A a set, and 0 by 0 ∈ N, s by
λn ∈ N. n∪ {n}, nil by ∅ ∈ P f in(A), ; as set union in P f in(A), and length as the cardinality function | | : P f in(A) −→ N
which assigns to each finite set X ∈ P f in(A) the number |X| of its elements.

8.3 Order-Sorted Σ-Algebras
In Computer Science one uses many different types of data. Therefore, an unsorted (usually called unyped) setting is
a bad idea or, if you wish, an inferior technology: it is an unending source of silly bugs that could have been caught if
typing had been enforced by a type checker. Often, what amounts to a many-sorted type checking discipline (sometimes
under the description of a “simply typed” language) is adopted in many language designs (imperative or declarative,
and in either a first-order or a higher-order setting). However, simply typed languages are not expressive enough to deal
with partiality issues, such as division by 0, or assigning a type to the head of a list l when l is empty.

An order-sorted typing discipline, in which types are arranged in type hierarchies by subtype inclusion, such as,
for example, subtype inclusions Nat < Int < Rat from natural to integers and to rational numbers, and where function
symbols can be subsort overloaded, so that, for example, addition + and multiplication ∗ can be defined for the
types Nat, Int, and Rat is considerably more flexible than the simply typed discipline offered by many-sorted signatures.
Furthermore, an order-sorted typing discipline can quite easily accomodate many often-occurring partial functions, and
can easily deal with the corresponding type exceptions caused by such functions, which become a nightmare in a simply
typed, many-sorted discipline. Common type exceptions of this kind include those caused by expressions such as: p(0),
to compute the predecessor of 0, 7/0, i.e., division by zero, head(nil), i.e., trying to compute the first element of an
empty list, and top(empty), i.e., trying to compute the top of an empty stack. The point is that in an order-sorted typing
discipline all these partial functions, p, / , head, and top become total in approapriate subtypes, namely, the subtypes
NzNat, of non-zero natural numbers, NzRat, of non-zero rationals, NeList, of non-empty lists, and NeStack of nonempty
stacks.

This typing flexibility is further enhanced by the possibility of giving the benefit of the doubt to expressions that,
although in principle meaningful, are detected at parse time to be potentially problematic. For example, it is not clear
at parse time which of the fractions 3/(4 + ((−3) ∗ 3)) and 3/(4 + ((−2) ∗ 2)) will have a nonzero denominator, so
both should be given the benefit of the doubt, waiting until after they are evaluated to detect type errors. Instead,
the expression 3/true is utter nonsense and should be immediately rejected by a parser as meaningless. Technically,
this extra typing flexibility is achieved as follows. Type names, which we always call sorts, are arranged in subsort
hierarchies forming a poset (S , <), which, as a graph, may have different connected components (see Excercise 59). To
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give the benefit of the doubt to meaningful expressions such as 3/(4 + ((−3) ∗ 3)) which cannot be properly typed at
parse time (because the parser cannot infer that (4 + ((−3) ∗ 3) has sort NzInt), what we can do is: (i) add a fresh new
sort, say ⊤[s], strictly bigger than all sorts in each connected component3 [s] of the poset of sorts (S , <); and (ii) add
for each operator f : s1 . . . sn −→ s in Σ a new, overloaded operator f : ⊤[s1] . . .⊤[sn] −→ ⊤[s]. This is what Maude
(see [7]) automatically does, denoting the “kind” ⊤[s] by just [s]. In this way, expressions that would not parse in the
original signature Σ, but that are still meaningful, can be given the benefit of the doubt at parse time as expressions at
the kind level. That is, both 3/(4 + ((−3) ∗ 3)) and 3/(4 + ((−2) ∗ 2)) will be parsed as having kind [Rat]. A typing
error in the evaluation of an expression now means that the evaluated expression has a kind [s], but has no sort s in the
original signature Σ. For example, although the expression 3/(4+ ((−3)∗3)) evaluates to -3/5 of sort NzRat without any
problems, the expression 3/(4+ ((−2) ∗ 2)) will evaluate to 3/0 of kind [Rat]. Therefore, having a kind but not having a
sort means that the corresponding functional expression is partial and is undefined for the given arguments. Note that
returning a typing error in the form of an evaluated expression of kind [s] gives much more information than returning
an “undefined” value such as ⊥.

Here is the precise definition of an order-sorted signature:

Definition 13 An order-sorted signature Σ is an ordered pair Σ = ((S , <), F) where: (i) (S , <) is a poset, called the
poset of sorts, and (ii) (S , F) is a many-sorted signature.

That is, an order-sorted signature is just a many-sorted signature to which we have added a partial order relation of
subsort inclusion between its sorts. Note that we can recover many-sorted signatures as the special case of order-sorted
signatures of the form Σ = ((S ,∅), F), that is, signatures where sorts are never related by subsort inclusion. This means
that order-sorted signatures generalize many-sorted signatures, which, in turn, generalize unsorted signatures. And, as
we shall see shortly, the same happens for algebras: order-sorted algebras generalize many-sorted algebras, which, in
turn generalize unsorted algebras. In the spirit of Universal Algebra, we should develop the relevant concepts and prove
everything at the greatest possible level of generality. Since any result about order-sorted algebras is automatically a
result about many-sorted and unsorted algebras as special cases, from now on all further developments will always be
carried out at the order-sorted level.

But in this case, the drive for greater generality is not some kind of Bourbaki-like obsession: it is eminently practical
from the computer science point of view: why using a loser technology such as unsorted signatures and algebras when
a much more expressive and useful order-sorted language technology is available? Paradoxically, it is precisely the
disregard for practical computer science applications of equational logic and term rewriting to equational specification
and programming that lies behind “vanilla flavored,” unsorted approaches that cater to theoreticians, but are impractical
for real specification and programming.

Note that overloading of function symbols was already available in many-sorted signatures: if Σ = (S , F) is a
many-sorted signature, nothing prevents the same function symbol f from having two different typings as f ∈ Fw,s,
and f ∈ Fw′ ,s′ , perhaps not just with different argument and result sorts, but also with different numbers of arguments.
For example, if we adopted a prefix syntax for a minus symbol - (so that the argument places are not indicated in the
syntax), we can have typings - : Int −→ Int, and - : Int Int −→ Int for unary and binary versions of -. But in a many-
sorted setting such different typings are in principle unrelated in their semantic intepretation. According to Definion 12,
provided we preserve type assignments, if (w, s) , (w′, s′), a many-sorted Σ-algebra A can associate any function with
such typing, fA,w,s ∈ [Aw, As] to an f : w −→ s, and a completely different and unrelated function fA,w′ ,s′ ∈ [Aw′ , As′ ] to
an f : w′ −→ s′.

Admittedly, in some particular algebras the fact that we are using the same function symbol may have a certain
significance. For example, in the standard intepretation of the function symbols - : Int −→ Int, and - : Int Int −→ Int
in Z, these two different typings of - are related by the equation: -(x, y) = x + (-y). But no relation at all need exist in
general. For example, we can have the following two typings of + in a many-sorted signature: + : Int Int −→ Int,
and + : Bool Bool −→ Bool, and an algebra where Int is interpreted as Z, and + : Int Int −→ Int as integer
addition, and where Bool is interpreted as 2 and + : Bool Bool −→ Bool as the exclusive or function ⊞ , which
is unrelated to integer addition, except for the fact that it can indeed be understood as addition in Z2. Since in priciple
there is no connection between the interpretations that can be given to two diffentent typings of a symbol f in a many
sorted signature, such overloading is called ad-hoc overloading.

What about function symbol overloading in an order-sorted signature? We can still have ad-hoc overloading in a
case like + : Int Int −→ Int, and + : Bool Bool −→ Bool, where there is no semantic relation between the two
typings. But we can now also have typings like + : Nat Nat −→ Nat, and + : Rat Rat −→ Rat, which are related
to the typing + : Int Int −→ Int in the subsort ordering Nat < Int < Rat. These second typings are an instance of
what is called subsort overloading of function symbols. As we shall see below, the intended semantic relation between
subsort overloaded function symbols in an order-sorted algebra is that they should agree on common data. For example,

3As explained in Excercice 59, the connected component of a sort s should properly denoted [s]<. It is the equivalence class
associated to s by the smallest equivalence relation < generated by <. In what follows I will abbreviate [s]< to just [s].
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2 + 2 should yield 4 as a result, regardless of whether we typed the + function symbol to have sort Nat, Int, or Rat.
Here is the precise definition.

Definition 14 Given an order-sorted signature Σ = ((S , <), F), two typings of a function symbol f , f : s1 . . . sn −→ s
and f : s′1 . . . s′m −→ s′, are called subsort-overloaded iff: (i) n = m, that is, they have the same number of arguments,
includingthe case n = m = 0 where both are constants; and (ii) corresponding sorts are in the same connect components,
that is, [s1] = [s′1], . . . , [sn] = [s′n], and [s] = [s′]. Otherwise, the typings f : s1 . . . sn −→ s and f : s′1 . . . s′n −→ s′ are
called ad-hoc overloaded.

The natural question to ask at this point is: what are the semantic models for interpreting order-sorted signatures?
Why, of course, order sorted algebras!

Definition 15 For Σ = ((S , <), F) an order-sorted signature, an order-sorted Σ-algebra is a many-sorted (S , F)-algebra
A = (A, A) such that:

1. If s < s′, then As ⊆ As′ .

2. If a : nil −→ s and a : nil −→ s′ are two subsort-overloaded typings of a constant a in F, i.e., [s] = [s′], then
aA,nil,s(∅) = aA,nil,s′ (∅), i.e., a is interpreted as the same constant (subsort-overloaded constants coincide).

3. If f : s1 . . . sn −→ s and f : s′1 . . . s′n −→ s′ are two subsort-overloaded typings of f in F with n ≥ 1, i.e.,
[si] = [s′i ], 1 ≤ i ≤ n, and [s] = [s′], then for each a⃗ ∈ As1 ...sn ∩ As′1 ...s

′
n we have fA,s1 ...sn ,s(a⃗) = fA,s′1 ...s′n ,s′ (a⃗), that

is, subsort-overloaded operations agree on common data.

Of course, conditions (2) and (3) are equivalent to the single condition that for any two subsort-overloaded operators
f : w −→ s and f : w′ −→ s′ in F, whenever a⃗ ∈ Aw ∩ Aw, then fA,w,s(a⃗) = fA,w′ ,s′ (a⃗), which is spelled out into cases (2)
and (3) for the reader’s convenience.

Note that conditions (1)–(3) hold trivially for unsorted and many-sorted algebras, that is, the order-sorted algebra
notion subsumes them as special cases. Therefore, from now on a Σ-algebra will always mean an order-sorted Σ-algebra.
Condition (1) is entirely natural: syntactic subsort inclusions s < s′ are semantically interpreted as subset inclusions
As ⊆ As′ on the corresponding data sets. Conditions (2) and (3) take care of the fact that both constants and function
symbols can be subsort-overloaded, in which case the functions interpreting all these typings must agree on common
data. For example, we may have an order-sorted signature Σ = (({Nat, Int}, <), F), with subsort order Nat < Int, and
with operations: F = {0 :−→ Nat, 0 :−→ Int, + : Nat Nat −→ Nat, ∗ : Nat Nat −→ Nat, + : Int Int −→ Int,− :
Int −→ Int, ∗ : Int Int −→ Int}. Then we can define an obvious order-sorted Σ-algebra A by interpreting the sort Nat
by the set N of natural numbers, the sort Int by the set Z of integers, but representing numbers in Z not as equivalence
classes, but as n ∈ N if n is positive, and as −n if n is a nonzero negative number, which of course gives us the set-
theoretic inclusion N ⊆ Z, as required by (1) for the subsort inclusion Nat < Int. Then we interpret 0, +, ∗ as zero,
number addition, and number multiplication in, respectively, N and Z. Then, we have 0A,nil,Nat(∅) = 0A,nil,Nat(∅) = 0,
so that (2) holds, and for any (n,m) ∈ N2 we have +A,Nat Nat,Nat(n,m) = +A,Int Nat,Int(n,m) = n +N m = n +Z m, and
∗A,Nat Nat,Nat(n,m) = ∗A,Int Nat,Int(n,m) = n ∗N m = n ∗Z m. That is, addition and multiplication of two natural numbers can
be performed in either N or Z with the same result, which is condition (3).

8.4 Terms and Term Algebras
Σ-terms are the algebraic expressions that we can form with the function symbols and constants of a given signature
Σ. In an unsorted setting, any function symbol f of n arguments can be applied to any n terms t1, . . . , tn to obtain a
new term f (t1, . . . , tn). For example, we can apply the + sign to the arithmetic expressions 2 ∗ 3 and 7-9 to get the
arithmetic expression (2 ∗ 3) + (7-9), which in prefix form we would write as +(∗(2, 3), -(7, 9)). However, in a many-
sorted or order-sorted setting, not all terms are meaningful, so that nonsense terms such as 7 + false or nil + (2 ∗ 3)
should be ruled out. The point is that in a many-sorted or order-sorted setting where S is the set of sorts, we should not
define just a set of terms, but rather an S -indexed family of terms, so that a term t can be typed by its corresponding sort
s by a typing relation t : s, and the indexed family of terms TΣ = {TΣ,s}s∈S is such that the elements of TΣ,s are exactly
those terms t such that t : s.

Of course, in an order-sorted setting, a term t can have several typings, since if we have t : s and a subsort
relation s < s′ in the poset of sorts (S , <), then we can also infer that t : s′. For example, when we consider subsorts
Nat < Int < Rat, the term (2 ∗ 3) + (7-9) obviously has sort Int, denoted (2 ∗ 3) + (7-9) : Int, but it has also sort Rat,
denoted (2 ∗ 3) + (7-9) : Rat, so that we can further form the fraction term ((2 ∗ 3) + (7-9))/11 : Rat. This suggest
defining the terms of an order-sorted signature Σ and the typing relation t : s simultaneously by the following inductive
definition (note that, for simplicity, only the prefix form of a term is considered in this definition):
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Definition 16 Given an order-sorted signature Σ = ((S , <), F), a Σ-term t of sort s ∈ S , denoted t : s, is a syntactic
expression that can be obtained by finite application of the following term formation rules:

1. For each f : s1 . . . sn −→ s in F, if t1 : s1, . . . , tn : sn, then f (t1, . . . , tn) : s. In particular, if a : nil −→ s is in F,
then a : s.

2. If t : s and s < s′, then t : s′.

We denote by TΣ the S -indexed family of Σ-terms TΣ = {TΣ,s}s∈S , where, TΣ,s denotes the set of Σ-terms of sort s. Note
also that, by rule (2), if s < s′, then we necessarily have TΣ,s ⊆ TΣ,s′ .

Note that the Σ-terms in TΣ do not contain any variables: they only contain constants and other function symbols.
They are sometimes called ground Σ-terms to make this fact explicit. However, the case of terms with variables, like
( f (x, g(a, y)), where a is a constant and x, y are variables, is just a special case of the above definition. Given an order-
sorted signature Σ = ((S , <), F), let us consider a (finite or infinite) S -indexed set of variables X = {Xs}s∈S , where, we
abbreviate x ∈ Xs by x : s, and, to avoid any syntactic confusions, we assume that: (i) if s , s′, then Xs∩Xs′ = ∅, and (ii)
(
⋃

X)∩ (
⋃

s∈S Fnil,s) = ∅. That is, the names of the variables are all different, and they are all different from those of the
constants in F. Then we can view Σ-terms with variables in X as ground terms on the signature Σ(X) = ((S , <), F(X)),
where, by definition, for any s ∈ S , (i) if w , nil then F(X)w,s = Fw,s, and (ii) F(X)nil,s = Fnil,s ∪ Xs. That is, we just add
to Σ the variables in X as extra constans. Then a Σ-term with variables in X is, by definition, just a (ground) Σ(X)-term.

Given an order-sorted signature Σ, the S -indexed family of terms TΣ = {TΣ,s}s∈S can be endowed with a very natural
Σ-algebra structure as follows.

Definition 17 (Term Algebra). For Σ = ((S , <), F) an order-sorted signature, the term algebra TΣ = (TΣ, TΣ ) is defined
by the interpretation map TΣ which maps each f : s1 . . . sn −→ s in F to the function

fTΣ = λ(t1, . . . , tn) ∈ TΣ,s1 × . . . × TΣ,sn . f (t1, . . . , tn) ∈ TΣ,s

where if n = 0, so that s1 . . . sn = nil, (i.e., when f is a constant), then , by convention, f (∅) = f . That is, the operation
fTΣ (t1, . . . , tn) = f (t1, . . . , tn) acts on a purely syntactic way on the terms t1, . . . , tn to form the new term f (t1, . . . , tn).

Have we seen term algebras before? Yes, of course! They are just the algebras of data constructors, such as
numbers, lists, or trees (including the abstract syntax trees used in parsing) that we use all the time in computer
science. What Definition 17 makes explicit is that data types are algebras, where the algebraic operations consist on
constructing bigger data structures out of smaller ones. That is, the operations fTΣ model exactly the concept of a
(free) data constructor in data types. They are therefore very useful, since many data types can be defined as term
algebras. For example, we can represent the natural numbers as terms in Peano notation with an unsorted signature
ΣNAT with a constant symbol 0 and a unary function symbol s. That is, we get a term model of the natural numbers
N as the term algebra TΣNAT = (TΣNAT , TΣNAT ), where, say, the successor of the term s(s(0)) is precisely the term
sTΣNAT (s(s(0))) = s(s(s(0))). If, instead, we desire a term model of the natural numbers in Zermelo notation, we can use
the unsorted signature ΣNAT−Z with a constant ∅ and a unary operation { }.

Another interesting example is the term algebra of lists with elements in a set A, where ΣLIS T is the order-sorted
signature with sorts Elt, NeList, and List, subsort inclusions Elt < NeList < List, with Fnil,Elt = A, for A our chosen set
of list elements, and with additional operations nil : nil −→ List, and a “cons” operator ; : Elt NeList −→ NeList.
Then, the terms of sort List in TΣLIS T can be placed in bijective correspondence with the set List(A). For example, if
a, b, c ∈ A, then the terms a, and b have sort Elt, the terms a; b, and a; b; c; a have sort NeList, and the term nil has sort
List.

Yet another example is a term model for binary trees with leaf elements in a set A, where ΣTREE is the order-sorted
signature with sorts Leaf , and Tree, subsort inclusion Leaf < Tree, with Fnil,Leaf = A, and with a binary tree constructor
∧ : Tree Tree −→ Tree. Then, the terms of sort Tree in TΣTREE are exactly the binary trees with elements from A in

their leaves. For example, if a, b, c ∈ A, then the terms a, and b have sort Leaf , and (a∧b)∧ c, and (b∧ c)∧ (a∧ (b∧b))
have sort Tree.

8.5 More on Order-Sorted Signatures
Some signatures may be ambiguous, so that the same term denotes two different things. This is of course a source of
confusion which should be avoided. Consider, for example, a many-sorted signature Σwith set of sorts S = {A, B,C,D},
a constant symbol a : nil −→ A, and unary function symbols f : A −→ B, f : A −→ C, g : B −→ D, and g : C −→ D.
This signature is ambiguous, because the term g( f (a)) denotes two different things: (i) the term obtained by first
applying f : A −→ B to a and then applying g : B −→ D; and (ii) the term obtained by first applying f : A −→ C to a
and then g : C −→ D. Of course, in other Σ-algebras we may get completely different results when applying these two
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difference sequences of operations to the (interpretation of) a. Consider, for example, the Σ-algebra V = (V, V), where
VA = {a}, VB = {b}, VC = {c}, and VD = {d, d′}, and with aV = a, fV,A,B = {(a, b)}, fV,A,C = {(a, c)}, gV,B,D = {(b, d)}, and
gV,C,D = {(c, d′)}. The the term g( f (a)) according to interpetation (i) (resp. (ii)) corresponds to the value d (resp. d′) in
V. That is, g( f (a)) denotes two different data elements in V and therefore is intrinsically ambiguous.

Notice that, in the presence of subsort overloading, being unambiguous does not forbid the possibility of a term
having several sorts. For example, 2 + 2 has sorts Nat, Int, and Rat, using the subsort-overloaded typings + :
Nat Nat −→ Nat, + : Int Int −→ Int, and + : Rat Rat −→ Rat. Yet , 2 + 2 is a perfecly unambiguous term. That
is, in a many-sorted signature Σ like the one given above, ambiguity will manifest itself by the presence of different
parses for a term, such as parses (i) and (ii) above. But in an order-sorted signature a term may have different parses
without any ambiguity, provided they are all related in the subsort ordering. How can we capture this idea? I call an
unambiguos order-sorted signature a sensible signature. Here is the definition.

Definition 18 An order-sorted signature Σ = ((S , <), F) is sensible iff: (i) for any constants of the form c : nil −→ s,
and c : nil −→ s′, we must have [s] = [s′]; and (ii) for any function symbols with same number n of arguments, n ≥ 1,
of the form f : s1 . . . sn −→ s, and f : s′1 . . . s′n −→ s′, if [s1] = [s′1], . . . , [sn] = [s′n], then we must have [s] = [s′].

Notice that condition (ii) was the one violated by our ambiguous signature, since for f : A −→ B and f : A −→ C,
we have [A] = [A] = {A}, but [B] = {B} , {C} = [C]. Notice also that subsort overloaded constants such as
0 : nil −→ Nat and 0 : nil −→ Int are allowed, but ad-hoc overloaded constants such as 0 : nil −→ Nat and
0 : nil −→ Bool are forbidden by (i). However, ad-hoc overloaded function symbols like + : Nat Nat −→ Nat, and
+ : Bool Bool −→ Bool are allowed, provided (ii) is satisfied or they have different numbers of arguments. Note,

finally, that subsort-overloaded symbols automatically satisfy conditions (i)–(ii), so no restriction is placed on them.
Since sensibility is such a mild condition and avoids ambiguity, from now on all signatures will be assumed sensible.

As already mentioned, in an unambiguous order-sorted signature, a term t may still have different sorts. But which
sorts? Here is the answer.

Lemma 8 If Σ is sensible, for any Σ-term t, if t : s and t : s′, then [s] = [s′].
Proof. We can prove this result by well-founded induction on the immediate subterm relation f (t1, . . . , tn) ▷ ti (see
§??). The case for constants follows by condition (i). Suppose now that f (t1, . . . , tn) : s, and f (t1, . . . , tn) : s′ with
[s] , [s′]. This means that we must have f : s1 . . . sn −→ s1, and f : s′1 . . . s′n −→ s′1, with s1 ≤ s and s′1 ≤ s′, and with
t1 : s1, . . . tn : sn and t1 : s′1, . . . tn : s′n. But since Σ is sensible and [s] , [s′], we must have an i, 1 ≤ i ≤ n, such that
[si] , [s′i ]. which contradicts the induction hypothesis that ti : si and ti : s′i implies [si] = [s′i ]. □

Admittedly, since whenever we have t : s and s < s′ we also have t : s′, a term may have many sorts, although if
Σ is sensible all such sorts must belong to a single connected component of (S , <) by Lemma 8. But, in a sense, when
we passed from the typing t : s to the typing t : s′ using s < s′, we lost information, since the typing t : s is more
precise. For example, 0 : Nat is more precise than 0 : Rat, i.e., gives us more information about 0. This sugest the
following question: given a term t, what is the most precise information we can have about its typing? Assuming, as it
is always the case in reasonable signatures, that (S , >) is a well-founded set, the most precise type information about t
is the set of minimal elements in the order (S , <) of the set sorts(t) = {s ∈ S | t : s}. Obviously, the most informative
answer possible about the typing of t is when the set sorts(t) has a minimum element, which is the least sort possible for
t; that is, when the set of minimal elements of sorts(t) is a singleton set. We denote the least sort of t, when it exists, by
ls(t). It is easy to give examples of sensible signatures where some terms do no have a least sort. Perhaps the simplest
is Σ with S = {A, B,C}, A < C, B < C and a single constant a with a : nil −→ A and a : nil −→ B. Obviously,
sorts(a) = {A, B,C}, has two minimal elements, namely, A and B, so there is no least sort for a. The property that each
term t has a least sort is so useful, that it deserves a name of its own.

Definition 19 A sensible signature Σ is called preregular iff for each Σ-term t ∈
⋃

TΣ(X), the set sorts(t) = {s ∈ S | t : s}
has a minimum element, denoted ls(t), where X is such that for each s ∈ S , Xs is a sigleton set,

The reason why we define the notion of preregular signature not for ground terms, but for terms over a set X of
variables that has exactly one variable for each sort, is that we want preregularity to be preserved when we extend Σ to
Σ(X); but this might fail to be the case if for some sorts s ∈ S the set TΣ,s is empty. Consider, for example, a signature Σ
with S = {A, B,C}, A < B, A < C and a subsort-overloaded unary function symbol with f : B −→ B and f : C −→ C.
Then we have

⋃
TΣ = ∅, so, every ground Σ-term trivially has a least sort. However, as soon as we add a variable x : A,

the term f (x) has two minimal typings, namely, f (x) : B, and f (x) : C, and therefore has no least sort. The need for
considering terms with variables in Definition 19 can be avoided, so that the definition only mentions ground terms,
provided Σ has nonempty sorts, where, by definition, Σ has nonempty sorts iff for each s ∈ S we have TΣ,s , ∅.

Is there a way to syntactically check that a sensible signature Σ is preregular? Indeed, there is, thanks to the
following characterization of preregular signatures in [14], where the notion of preregular signature was first proposed
and studied.
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Lemma 9 Let Σ = ((S , <), F) be a sensible signature. The the following are equivalent:

1. Σ is preregular.

2. For each w ∈ List(S ), if f ∈
⋃

(w′ ,s),w′≥w, s∈S Fw′ ,s, then the set of sorts {s ∈ S | ∃w′ ∈ List(S ). w′ ≥ w ∧ f ∈ Fw′ ,s}

has a minimum element.

where, the order (S , >) is extended to the set List(S ) in the obvious way: s1 . . . sn ≥ s′1 . . . s′n iff si ≥ s′i , 1 ≤ i ≤ n.
Proof. To see that (1) ⇒)(2), suppose (2) fails. This means that we have w ∈ List(S ) and f ∈ Fw′ ,s′ , f ∈ Fw′′ ,s′′

with w′,w′′ ≥ w, and with s′ and s′′ minimal elements in the set {s ∈ S | ∃w′ ∈ List(S ). w′ ≥ w ∧ f ∈ Fw′ ,s}. Let
w = s1 . . . sn, n ≥ 0, then the typings f (x1 : s1, . . . xn : sn) : s′, and f (x1 : s1, . . . xn : sn) : s′′ are both least possible, so
Σ is not preregular.

The proof that (2) ⇒ (1) is by well-founded indution on the immediate subterm relation. In the base case of
constants, i.e., when w = nil, condition (2) trivially implies that each constant symbol c has a least sort. Consider
now a term f (t1, . . . tn) ∈

⋃
TΣ(X), where, by the induction hypothesis, ls(t1) = s1, . . . ls(tn) = sn. Then, by (2), the set

{s ∈ S | ∃w′ ∈ List(S ). w′ ≥ s1 . . . sn ∧ f ∈ Fw′ ,s} has a minimum element, say, s′. That is, there is an f : w′ → s′ in Σ
with w′ ≥ s1 . . . sn giving the smalles possible typing f (t1, . . . tn) : s′, that is, ls( f (t1, . . . tn)) = s′, as desired. □

Exercise 68 Prove that Σ = ((S , <), F) is preregular iff Σ(X) is preregular for any S -indexed set of variables X satisfy-
ing the usual requirement that: (i) if s , s′, then Xs ∩ Xs′ = ∅, and (ii) (

⋃
X) ∩ (

⋃
s∈S Fnil,s) = ∅.

We call a sensible signature order-sorted signature Σ = ((S , <), F) topped, iff each connected component [s] as a
top element. If a signature is not topped, it is very easy to extend it to one that is so.

Definition 20 Let Σ = ((S , <), F) be a sensible order-sorted signature. Its top completion Σ⊤ = ((S ⊤, <⊤), F⊤) is
obtained from Σ by: (i) extending (S , <) to the poset (S ⊤, <⊤), where each connected component [s] in (S , <) having a
top element is left unchanged, but if [s] lacks a top element, a new one, denoted ⊤[s], is added above all elements of [s].
The operations F are left unchanged, that is, for each (w, s) ∈ List(S ⊤)×S ⊤ we have: F⊤w,s = Fw,s if (w, s) ∈ List(S )×S ,
and F⊤w,s = ∅ otherwise.

Exercise 69 Let Σ = ((S , <), F) be an order-sorted signature with top completion Σ⊤ = ((S ⊤, <⊤), F⊤). Prove that:

1. If Σ is topped, then Σ⊤ = Σ. In particular, (Σ⊤)⊤ = Σ⊤.

2. For each s ∈ S we have TΣ,s = TΣ⊤ ,s.

3. If [s] lacks a top element in (S , <), then, TΣ⊤ ,⊤[s] =
⋃

s′∈[s] TΣ,s′ .

4. If Σ is sensible, so is Σ⊤.

5. If Σ is preregular, so is Σ⊤.

Finally, as pointed out in §8.3, to give terms the benefit of the doubt it is useful to complete an order-sorted signature
Σ by adding a “kind” at the top of ech connected component (even if Σ is topped!), and overloading all function symbols
at the kind level. In this way, any term that could eventually evaluate to a term having a sort in the original signature is
given the benefit of the doubt. Error or undefined terms, such as 7/0, are modeled as terms with a kind which do not
evaluate to a term with a sort. Let us denote by Σ̂ be the signature thus obtained.

Definition 21 Given an order-sorted signature Σ = ((S , <), F), its kind completion Σ̂ = ((Ŝ , <̂), F̂) is obtained from
Σ by: (i) extending (S , <) to the poset (Ŝ , <̂), where for each connected component [s] in (S , <) we add a new sort,
denoted [s], above all sorts in [s], and (ii) for any f : s1 . . . sn −→ s in F, (n ≥ 0), we add an overloaded version of f
at the kind level, f : [s1] . . . [sn] −→ [s] in F̂. We call a signature of the form Σ̂ a kind-complete signature.

Exercise 70 Let Σ = ((S , <), F) be an order-sorted signature with kind completion Σ̂. Prove that:

1. For each s ∈ S we have TΣ,s = TΣ̂,s, that is no new terms are created below the kind level.

2. If Σ is sensible, so is Σ̂.

3. If Σ is preregular, so is Σ̂.
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Chapter 9

Term Rewriting and Equational Logic

9.1 Terms, Equations, and Term Rewriting
Before discussing equations and term rewriting, I introduce some useful concepts and notation for terms, subtems,
contexts, and term replacement. Throughout I assume an order-sorted signature Σ = ((S , <), F), and its extension
Σ(X) = ((S , <), F(X)) by adding an S -sorted set of variables X. In a Σ-term f (t1, . . . , tn), the t1, . . . , tn are called its
immediate subterms, denoted ti ◁ f (t1, . . . , tn), 1 ≤ i ≤ n. Note that the inverse relation ◁-1 = ▷ is well-founded, and
was already described and used in §?? for the special case of arithmetic expressions. A term u is called a subterm of t
iff t ▷∗ u, and a proper subterm of t iff t ▷+ u. Note that, as an immediate consequence of Lemma ?? in §??, the relation
▷+ is also well-founded and a strict order. Given a term t ∈

⋃
TΣ(X), we denote by vars(t) the set of its variables, that

is, vars(t) = {x ∈
⋃

X | t ▷∗ x}. A term t may contain different occurrences of the same subterm u. For example, the
subterm g(a) appears twice in the term f (b, h(g(a)), g(a)).

One way to make clear where a subterm is located is to replace such a subterm by a single hole, that is by a new
constant [] added1 to the signature Σ to indicate where the subterm u was before we removed it. For example, we can
indicate the two places where g(a) occurs in f (b, h(g(a)), g(a)) by f (b, h([]), g(a)) and f (b, h(g(a)), []). A term with a
single occurrence of a hole is called a context. We write C[] to denote such a term. Given a context C[] and a term u,
we can obtain a new term,2 denoted C[u], by replacing the hole [] by the term u. For example, if C[] = f (b, h([]), g(a))
and u = k(b, y), then C[u] = f (b, h(k(b, y)), g(a)). Of course, if C[] is the context obtained from a term t by placing
a hole [] were subterm u occurred, then we have the term identity t = C[u]. That is, we can always decompose a
term into a context and a chosen subterm, where if t = C[u], then the decomposition of t into the context-subterm pair
(C[], u) is succinctly indicated by the more compact notation C[u]. For example, we have, among others, the following
decompositions of our term f (b, h(g(a)), g(a)):

f (b, h(g(a)), g(a)) = f (b, h([g(a)]), g(a)) = f (b, h(g(a)), [g(a)]) = f (b, [h(g(a))], g(a)) = [ f (b, h(g(a)), g(a))]

where in the last decomposition the context part is the “empty context” []. This is very useful, since such decompositions
indicate where in a term we either have replaced one subterm by another, or could perfom such a replacement.

Definition 22 (Equations and Equational Theories). Given a sensible order-sorted signature Σ = ((S , <), F), a Σ-
equation is an atomic formula t = t′, where t, t′ ∈

⋃
TΣ(X), and where we require that t = t′ is well typed, in the

sense that there are sorts s, s′ ∈ S such that t ∈ TΣ(X),s, t′ ∈ TΣ(X),s′ , and [s] = [s′]. This is obviously less demanding
than requiring that t and t′ have a common sort; but it is equivalent to such a requirement if Σ is a topped signature.
An (unconditional) equational theory is then a pair (Σ, E), with Σ a sensible order-sorted signature, and E a set of
Σ-equations.

In an equational theory (Σ, E) all equations t = t′ ∈ E are implicitly assumed to be universally quantified as

(∀x1 : s1, . . . , xn : sn) t = t′

with vars(t = t′) = {x1 : s1, . . . , xn : sn}, where, by definition, vars(t = t′) = vars(t) ∪ vars(t′).

1In a kind-complete order-sorted signature Σ with more than one connected component, we should add a new constant [] of kind
[s] for each kind [s]. To avoid ambiguity, one can qualify the hole constant by its corresponding kind, as [][s].

2Of course, if the hole constant had kind [s], then u should have a sort in [s]. In this way, C[u] will always be a well-formed
Σ-term. For example, (3 + 6) ∗ [false] is a nonsense term obtained this way, because the whole [] that it replaced has kind [Natural],
but was replaced by a Boolean term in a different kind. I will assume throughout that this well-kindedness requirement is followed, so
that C[u] is always a well-formed Σ-term.
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The proof theory of equational logic is already familiar to anybody with a high-school education from its use in
elementary algebraic manipulations. That is, equational deduction is just the systematic replacement of equals by equals
using the given equations E. For example, in algebraic manipulations of polynomials we may use ring theory equations
such as: (1) x+y = y+x, (2) x∗y = y∗x,(3) (x+y)+z = x+(y+z), (4) x+0 = x, (5) x∗1 = x, (6) x∗(y+z) = (x∗y)+(x∗z),
and so on, to prove, for example, the polynomial equality y + (z + (0 + (1 ∗ x)) = (y + z) + x by the following sequence
of replaments of equals by equals:

(‡) y + (z + [0 + (1 ∗ x)]) = y + (z + [(1 ∗ x) + 0]) = y + (z + [1 ∗ x]) = y + (z + [x ∗ 1]) = [y + (z + x)] = (y + z) + x

where I indicate at each point the subterm where an equation is applied by the corresponding term decomposition. The
first step has been taken applying equation (1) (in either direction), the second applying equation (4) from left to right,
the third applying equation (2) in either direction, the fourth applying equation (5) from left to right, and the last step
applying equation (3) from right to left.

We can make the above proof of equality (‡) more informative by giving a name, say ALG, to the above set (1)–(6)
of equations, and indicating a proof step applying an equation from left to right by t →ALG t′, a proof step from right
to left by t ←ALG t′, and a proof step where we do not indicate the direction (that is, it might be either t →ALG t′, or
t ←ALG t′ —in some special cases, like for equations (1) and (2), it may be both— and we do not specify which) by
t ↔ALG t′. With this notation we obtain the more informative proof:

y+(z+[0+(1∗x)])↔ALG y+(z+[(1∗x)+0])→ALG y+(z+[1∗x])↔ALG y+(z+[x∗1])→ALG [y+(z+x)]←ALG (y+z)+x.

9.1.1 Term Rewriting
Note that certain equations, for example equations (4) and (5) above, have a natural use, when applied from left to
right, as algebraic simplification rules. This is because their righthand side is clearly simpler, so that applying them
systematically from left to right leads to a simpler expression; that is, to a so-called simplified, or reduced form of the
original expression.

Even if an equation’s righthand side does not have an obviously simpler appearance, certain directions for apply-
ing an equation lead to special syntact forms for fully simplified expressions that are often preferred. For example,
applying equation (6) (distributivity) from left to right will lead to the standard way of displaying polynomials as sums
of products, whereas applying equation (4) (associativity of addition) will right-associate sums, which makes them
more readable than some random sum of monomials like (m1 + m2) + (m3 + (m4 + (m5))), which gets simplified to
m1+ (m2(+(m3(+m4+m5)))). Therefore, algebraic simplification produces a special type of equational proofs, called al-
gebraic simplification proofs, where equations are always applied from left to right. Here is an algebraic simplification
proof with equations in ALG for a polynomial expression:

([x+0]∗(y+(z∗1)))+x′ →ALG (x∗(y+[z∗1]))+x′ →ALG [x∗(y+z)]+x′ →ALG [((x∗y)+(x∗z))+x′]→ALG (x∗y)+((x∗z)+x′)

This process of reduction, i.e., of algebraic simplification is called term rewriting. We can make this process explicit
by choosing and orientation for an equation. That is, we can orient an equation t = t′ from left to right as a so-called
rewrite rule t → t′, and from right to left as the rewrite rule t′ → t. Of course, some orientations are better than others.
For example, the equation x ∗ 0 = 0 has a much better orientation as a rewrite rule x ∗ 0 → 0 than as a rewrite rule
0→ x∗0, not only because 0 is a simpler term than x∗0, but also because it has fewer variables. The main trouble with
using the orientation 0 → x ∗ 0 for algebraic simplification is that we have to guess what term should x be instantiated
to, since in principle there may be an infinite number of possible instantiations. For this reason, many authors rule out
orientations t → t′ such that vars(t′) ⊈ vars(t). I will however not impose any restrictions on rewrite rules, although
such restrictions will indeed be needed for some applications. Here are the precise definitions of rewrite rule, and of a
collection of rewrite rules as a term rewriting system.

Definition 23 (Rewrite Rules and Term Rewriting Systems). Given a sensible order-sorted signature Σ = ((S , <), F), a
Σ-rewrite rule is a sequent t → t′, where t, t′ ∈

⋃
TΣ(X), and where we require that the rule t → t′ is well typed, in the

sense that there are sorts s, s′ ∈ S such that t ∈ TΣ(X),s, t′ ∈ TΣ(X),s′ , and [s] = [s′]. This is obviously less demanding
than requiring that t and t′ have a common sort; but it is equivalent to such a requirement if Σ is a topped signature.
A term rewriting system (TRS) is then a pair (Σ,R), with Σ a sensible order-sorted signature, and R a set of Σ-rewrite
rules.

We should now formalize the process of term rewriting in a term rewriting system (Σ,R). The first matter that
needs to be made precise is the notion of a rule’s instance. For example, in the last simplification step of the above
simplification proof we have used the rule (x + y) + z → x + (y + z) by instantiating it with the substitution θ =

{(x, (x ∗ y)), (y, (x ∗ z)), (z, x′)}, where we think of θ as a function θ : {x, y, z} −→ TΣRNG ({x,y,z,x′}). Since we are in a
typed, order-sorted setting, variables have sorts, and substitutions must preserve such sorts. The general definition is as
follows:
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Definition 24 (Substitutions). Let Σ = ((S , <), F) be a sensible order-sorted signature, and let X,Y be S -indexed sets
of variables. Then a substitution θ is an S -indexed function θ = {θs : Xs −→ TΣ(Y),s}s∈S , mapping the variables of X
to Σ-terms with variables in Y. If X is finite, say, X = {x1 : s1, . . . , xn : sn}, then the S -indexed function θ can be
unambiguously specified by a finite set of the form θ = {(x1, t1), . . . , (xn, tn)} such that ti : si, 1 ≤ i ≤ n.

Given a term t ∈
⋃

TΣ(X), its instantiation by θ, denoted tθ, is defined inductively by:

1. xθ = θ(x), x ∈
⋃

X

2. aθ = a for each constant a : nil −→ s in Σ

3. f (u1, . . . , uk)θ = f (u1θ, . . . , ukθ).

For example, for θ = {(x, b), (y, (0 ∗ c))}, we have (x + y)θ = b + (0 ∗ c), and (y ∗ x)θ = (0 ∗ c) ∗ b.

Exercise 71 (Plugging a subterm into a context as substitution instantiation). Let Σ be a sensible kind-complete sig-
nature, and let [s] be one of its kinds. Let Y be an indexed set of variables, and consider the extended indexed set of
variables Y[], where Y[],[s] = Y[s] ⊎ {[]}, and Y[],s′ = Ys′ otherwise. That is, Y[] is obtained from Y just by adding a single
new variable [] of kind [s]. Call a term C ∈

⋃
TΣ(Y[]) with a single occurrence of the constant [] a context with hole of

kind [s]. We typically write C as C = C[]. Let now u ∈ TΣ(Y)[s]. Prove that the term C[u] ∈
⋃

TΣ(Y) obtained by plugging
u in the whole [] of C[] is exactly the instantiation C[]θ, for θ : Y[] −→ TΣ(Y) the substitution such that θ([]) = u, and
θ(y) = y otherwise.

We are now ready to characterize the term rewriting relation and rewrite proofs.

Definition 25 (The Rewrite Relation and Rewrite Proofs).3 Let Σ = ((S , <), F) be a sensible, kind-complete signature
with nonempty sorts, let (Σ,R) be a term rewriting system, and let Y = {Ys}s∈S be an S -indexed set of variables.4 Then
an R-rewrite step is a pair (u, v), denoted u →R v, such that u ∈

⋃
TΣ(Y) and there is a rewrite rule t → t′ ∈ R, a

substitution θ : vars(t → t′) −→ TΣ(Y), and a term decomposition u = C[tθ] such that v = C[t′θ], where, by definition,
vars(t → t′) = vars(t) ∪ vars(t′).

Since Σ is kind-complete, if t → t′ ∈ R and u = C[tθ] : [s], then we must have v = C[t′θ] : [s], that is, →R never
produces ill-formed terms, i.e., →R is a binary relation→R⊆ (

⋃
TΣ(Y))2. Furthermore, →R is kind-preserving,5 i.e., if

u→R v, u→R w, v : s, and w : s′, then [s] = [s′].
We denote by→+R the transitive closure of→R, and by→∗R the reflexive-transitive closure of→R. A (Σ,R)-rewrite

proof is, by definition, either a term t ∈
⋃

TΣ(Y), witnessing a 0-step rewrite proof t →∗R t, or a sequence of R-rewrite
steps of the form t0 →R t1 →R t2 . . . tn−1 →R tn, with n ≥ 1, witnessing an n-step rewrite proof t0 →

+
R tn.

For example, the algebraic simplification sequence discussed earlier in this Section is a 4-step rewrite proof wit-
nessing ((x+0)∗(y+(z∗1)))+ x′ →+ALG (x∗y)+((x∗z)+ x′), where→ALG is the one-step rewrite relation associated to the

set of left-to right rewrite rules {t → t′ | t = t′ ∈ ALG}, which we shall later denote by
−−−→
ALG = {t → t′ | t = t′ ∈ ALG}.

9.1.2 Equational Proofs
The notion of an equational proof, that is, a sequence of steps of replacement of equals by equals using equations
E, is a trivial instance of the notion of a rewrite proof. Given an equational theory (Σ, E), all we need to do is to
consider proofs in the term rewriting system (Σ,

−→
E ∪
←−
E ), where, by definition,

−→
E is the set of left-to-right orientations

−→
E = {t → t′ | t = t′ ∈ E}; and

←−
E is the set of right-to-left orientations

←−
E = {t′ → t | t = t′ ∈ E}.

3To simplify the exposition I am assuming a sensible order-sorted signature Σ that is kind-complete (see Def. 21). This assumptions
allows a considerably simpler treatment of term rewriting because, thanks to kind completeness, a rewrite step can never result in a non-
well-formed term. Since any order-sorted signature Σ can be naturally extended to a kind-complete one, in practice this assumption
does not entail any real loss of generality. I also assume that Σ has nonempty sorts, since this avoids the need for introducing explicit
quantifiers.

4For generality’s sake, I will assume that Y has a countably infinite set of variables Ys for each s ∈ S , that is, there is a bijective
S -indexed function α : Y −→ NS ; but this requirement is not essential: any S -indexed set of variables Y can be used. That is, the
relation→R is in fact parameterized by the chosen family of variables Y .

5For→R to be kind-preserving, the assumption that Σ is sensible is crucial, since this ensures Lemma 8. For a simple counterex-
ample, consider Σ with sorts A, B, and C, with corresponding constant symbols a, b, c, and f : A −→ B, f : A −→ C, and R with rules:
f (x : A)→ b and f (x : A)→ c. Then we have f (a)→R b, and f (a)→R c, but [B] , [C].
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Definition 26 (The Equality Relation and Equational Proofs).6 Let (Σ, E) be an equational theory with Σ = ((S , <), F)
a sensible, kind-complete signature with nonempty sorts, and Y an S -indexed set of variables7 Then an E-equality step
is, by definition, a (

−→
E ∪
←−
E )-rewrite step u→(

−→
E∪
←−
E ) v, denoted u↔E v, where u, v ∈

⋃
TΣ(Y).

We denote by↔+E the transitive closure of↔E; and by↔∗E the reflexive-transitive closure of↔E . ↔∗E is called the
E-equality relation, and is often abbreviated to =E . It is also called the relation of equality modulo E.

A (Σ, E)-equality proof is by, definition, either a term t ∈
⋃

TΣ(Y), witnessing a 0-step E-equality proof t ↔∗E t, or a
sequence of E-equality steps of the form t0 ↔E t1 ↔E t2 . . . tn−1 ↔E tn, with n ≥ 1, witnessing an n-step equality proof
t0 ↔

+
E tn.

For example, the sequence of equality steps (‡) discussed earlier in §9.1 is a 5-step equality proof witnessing
y + (z + (0 + (1 ∗ x)))↔+ALG (y + z) + x.
Notational Convention. Since in many applications a set of equations E will always be used from left to right, we shall
often abbreviate the rewrite relations→−→E ,→+−→

E
, and→∗−→

E
, associated to the term rewriting system (Σ,

−→
E ) by, respectively,

→E ,→+E , and→∗E . Likewise, we will abbreviate the rewrite relations→←−E ,→+←−
E

, and→∗←−
E

, associated to the term rewriting

system (Σ,
←−
E ) by, respectively,←E ,←+E , and←∗E .

Exercise 72 The theory of groups has an unsorted signature with a constant 1, a unary function ( )−1 and a binary
function ◦ and has the following equations G:

• x ◦ 1 = x

• x ◦ (y ◦ z) = (x ◦ y) ◦ z

• x ◦ (x)−1 = 1

Give G-equality proofs in the sense of Definition 26 for the following theorems of Group Theory:

• 1 ◦ x = x

• (x)−1 ◦ x = 1

• (x ◦ y)−1 = y−1 ◦ x−1

(Hint: if you prove any of those theorems, then you can use them as lemmas to prove some of the others.)

Exercise 73 Prove that the E-equality relation =E defines an equivalence relation on
⋃

TΣ(Y), and also on TΣ(Y),[s] for
each kind [s] ∈ S/<.

Prove also that, under the assumptions of Definition 26, =E does not depend on the set Y of variables, chosen to
define the equality relation =E . That is, given any two S -indexed sets of variables Z, Y with Z ⊆ Y, we have in fact two
equality relations, which should be notationally distinguished as =Z

E⊆ (
⋃

TΣ(Z))2, and =Y
E⊆ (
⋃

TΣ(Y))2. You are asked to
prove that for any terms u, v ∈

⋃
TΣ(Z) we have u =Z

E v iff u =Y
E v. The requirement that Σ has nonempty sorts is essential

for this to be the case, even in the many-sorted case. That is, there are signatures Σ and equational theories (Σ, E) such
that there are S -indexed sets of variables Z ⊆ Y and terms u, v ∈

⋃
TΣ(Z) such that u ,Z

E v, but u =Y
E v (see, [26, 13]).

9.2 Term Rewriting and Equational Reasoning Modulo Axioms
Certain equations are intrinsically problematic for term rewriting. Consider, for example, the commutativity equations
x + y = y + x, and x ∗ y = y ∗ x. Since the idea of term rewriting is to simplify a term to hopefully get a fully simplified,
equivalent term, a commutativity equation is intrinsically problematic for two reasons: (i) applying a commutativity
equation we do not obtain a simpler term, but only a “mirror image” of the original term; for example, (x ∗ 7) + (0 ∗ y)
is rewritten by the commutativity equation to its mirror image (0 ∗ y) + (x ∗ 7); and (ii) even worse, we can loop when
applying such equations, never reaching a fully simplified term, as in the infinite, alternating sequence

(x ∗ 7) + (0 ∗ y)→ALG (0 ∗ y) + (x ∗ 7)→ALG (x ∗ 7) + (0 ∗ y)→ALG (0 ∗ y) + (x ∗ 7)→ALG . . .

6To simplify the exposition I am assuming a sensible order-sorted signature Σ that is kind complete and has nonempty sorts (see
§8.5). These two assumptions allow a considerably simpler treatment because: (i) no explicit use of universal quantifiers is needed
(thanks to the nonempty sorts); and (ii) the replacement of equals by equals can never result in a non-well-formed term (thanks to kind
completeness). If Σ has some empty sorts, a treatment with explicitly quantified equations (∀x1 : s1, . . . , xn : sn) t = t′ is needed;
and if it is not kind complete, care must be taken not to generate non-well-formed terms (see, e.g., [24]). The fact that the presence of
empty sorts requires an explicit treatment of universal quantifiers in order to have a sound (and of course complete) inference system
for equational deduction is well-known, even for many-sorted equational logic, since [26, 13].

7Again, with a countably infinite set of variables for each sort s ∈ S for generality’s sake, although this requirement is not essential:
any S -indexed set Y can be used.
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Of course, this does not block us, humans, from simplifying the above polynomial to (7 ∗ x). But a standard imple-
mentation of term rewriting can easily loop when commutativity equations are used as rewrite rules. The solution to
this problem, provided by many symbolic algebra systems, and by equational programming languages such as OBJ3
[15], ASF+SDF [32], CafeOBJ [12], ELAN [5], and Maude [7], is to build in certain, commonly occurring equational
axioms, such as the above commutativity axioms, so that rewriting takes place modulo such axioms. For example, we
can decompose our equations ALG into a built-in, commutative part C = {x + y = y + x, x ∗ y = y ∗ x} and the rest, say,
ALG0 = {(x + y) + z = x + (y + z), x + 0 = x, x ∗ 1 = x, x ∗ (y + z) = (x ∗ y) + (x ∗ z)}, and then rewrite with the equations
in ALG0 from left to right applying them, not just to a given term t, but to any other term t′ which is provably equal to t
by the equations C, that is, any t′ such that t =C t′. This, more powerful rewrite relation is called rewriting modulo C,
and is denoted→ALG0/C . For example, we can simplify the expression ((0+ x) ∗ ((1 ∗ y)+ 7))+ z to (x ∗ y)+ ((x ∗ 7)+ z)
in just four steps of rewriting with→ALG0/C as follows:

((0+ x)∗((1∗y)+7))+z→ALG0/C (x∗((1∗y)+7))+z→ALG0/C (x∗(y+7))+z→ALG0/C ((x∗y)+(x∗7))+z→ALG0/C (x∗y)+((x∗7)+z)

What rewriting modulo axioms such as C achieves is raising the level of abstraction at which we simplify expressions,
bringing it closer to the human level. The point is that, since equality modulo a set of axioms like C is an equivalence
relation (see Exercise 73), rewriting with →ALG0/C achieves the effect of rewriting not just terms, but C-equivalence
classes of terms.

But why stopping with commutativity? How about associativity? An associativity equation such as (x + y) + z =
x + (y + z) does certainly not have any looping problems; but parentheses around associative operators are a nuisance
that can block the application of equations which can “obviously” be applied by humans. For example, the equation
x + −x = 0 can be applied modulo associativity and commutativity to the expression ((x + y) + z) + −(y + (z + x))
in one step of rewriting modulo the following set AC of associativity and commutativity axioms for + and ∗ ,
AC = {x + y = y + x, x ∗ y = y ∗ x, (x + y) + z = x + (y + z), (x ∗ y) ∗ z = x ∗ (y ∗ z)}, using from left to right the set of
equations ALG1 = {x + 0 = x, x ∗ 1 = x, x ∗ (y + z) = (x ∗ y) + (x ∗ z), x + −x = 0}, to the fully simplified form:

((x + y) + z) + −(y + (z + x))→ALG1/AC 0.

That is, when rewriting modulo AC: (i) the order of the arguments does not matter (because of commutativity, C),
and (ii) parentheses do not matter (because of associativity, A). In fact, when rewriting modulo associativity (A), or
associativity-commutativity (AC), we can disregard parentheses altogether, and write an expression like ((x+y)+ z)+ x′

without such parentheses as x + y + z + x′, as it is standard practice in mathematics textbooks.
Likewise, we could also build in the unit element axioms U = {x + 0 = x, x ∗ 1 = x}. Or any combination of C,

and/or A, and/or U axioms could be built in. In fact, the idea of building in a set B of equational axioms, so that we
rewrite with a set of rules R modulo B, is entirely general, and is captured by the notion of a rewrite theory.

Definition 27 Let Σ be a sensible order-sorted signature. A rewrite theory8

is a triple (Σ, B,R), where B is a set of Σ-equations, and R is a set of Σ-rewrite rules.

Rewriting with R modulo B can then be formalized as follows.

Definition 28 (Rewriting and Rewrite Proofs Modulo B). Let (Σ, B,R) be a rewrite theory such that Σ is sensible and
kind-complete. Then an R-rewrite step modulo B is a pair (u, v) ∈ T 2

Σ(Y), denoted u →R/B v, such that there are terms
u′, v′ ∈ TΣ(Y) with u =B u′, u′ →R v′, and v′ =B v, that is, we have u =B u′ →R v′ =B v. We call →R/B the one-step
R-rewrite relation modulo B, and denote by →0

R/B the relation =B, called the 0-step R-rewrite relation modulo B, by
→+R/B the transitive closure of→R/B, and by→∗R/B the relation9 →+R/B ∪ =B.

An R-rewrite proof modulo B is either: (i) a pair (u, v) ∈ T 2
Σ(Y), with u =B v, witnessing a 0-step R-rewrite modulo B

proof, or (ii) a sequence of R-rewrite steps modulo B of the form v0 →R/B v1 →R/B v2 . . . vn−1 →R/B vn, n ≥ 1, witnessing
an n-step proof v0 →

+
R/B vn.

8The traditional use of rewriting modulo axioms has been to reason efficiently, and at a high level of abstraction, in an equational
theory (Σ, E ∪ B) where the equations E are applied from left to right as rewrite rules modulo B. This is the main use we will make
of rewrite theories (Σ, B,R) in these notes; that is, to perform simplification modulo B in the equational theory (Σ, B ∪ eq(R)), where
eq(R) are the equations associated to the rules R. However, in rewriting logic [23, 25], a rewrite theory (Σ, E,R), has (Σ, E) as its
underlying equational theory, but the rules R are not interpreted as equations at all, but as concurrent transitions in a concurren system,
whose states are axiomatized as E-equivalence classes of terms. Futhermore, the equations E in the equational theory (Σ, E) typically
decompose as a disjoint union G ∪ B, where the equations G can be used as simplification rules modulo B; that is, in a simpler rewrite
theory (Σ, B, G⃗) used for efficient equational reasoning, as the ones we will consider here. In the Maude language [7], both equational
theories of the form (Σ, B ∪ G), called functional modules, and rewrite theories of the general form (Σ,G ∪ B,R) with a concurrent
system semantics, called system modules are executed by rewriting with two different rewrite relations, namely,→G/B for equational
simplification, and→R/B for concurrent transitions. Maude’s functional modules are further discusses in §??.

9Note that, in general, →∗R/B does not coincide with the reflexive-transitive closure of →R/B, but only contains it. It should be
thought of as the reflexive-transitive closure of→R/B modulo B.
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A term u ∈
⋃

TΣ(Y) is said to be in R/B-normal form iff (∄u′). u →R/B u′, that is, iff u cannot be further rewritten
with R modulo B. Also, given a term t ∈

⋃
TΣ(Y), we say that u is a R/B-normal form of t iff t →∗R/B u, and u is in

R/B-normal form, which we abbreviate to t →!
R/B u.

Exercise 74 (Deconstructing Rewriting Modulo). What rewriting modulo B accomplishes is to raise the level of ab-
straction by “building in” B-equality proofs. This suggests that, at the heavy price of losing the higher level of abstrac-
tion thus gained, we can “deconstruct” a rewrite theory (Σ, B,R) into a semantically equivalent term rewriting system
(Σ,R ∪

−→
B ∪
←−
B), were we now make explicit each single step of B-equality. But is this true? Prove that if Σ is sensible

and kind-complete, then for any two Σ-terms t, t′ ∈
⋃

TΣ(Y) we have t →∗R/B t′ iff t →∗
R∪
−→
B∪
←−
B

t′.

Exercise 75 (Equational reasoning modulo axioms). Consider an equational theory of the form (Σ, E ⊎ B) with Σ
sensible and kind-complete. Then we can consider the rewrite theory (Σ, B,

−→
E ∪
←−
E ), and abbreviate the rewrite relation

→−→E∪
←−
E/B to just↔E/B. This captures the idea of doing equational reasoning with E modulo the axioms B, which is what

we humans do when performing algebraic reasoning, and what smart implementations of equational reasoning do as
well. But is it correct? Prove that for any Σ(Y)-terms t, t′ we have the equivalence:

t =E⊎B t′ ⇔ t ↔∗E/B t′.

(Hint: use Exercise 74).

9.3 Sort-Decreasingness, Confluence, and Termination
Given a rewrite theory (Σ, B,R), which executabilty conditions should be placed in practice on the rules R so that we
can effectively use it for equational simplification modulo B in the associated equational theory (Σ, B∪ eq(R)), in which
the rules t → t′ ∈ R are now understood as equations t = t′ ∈ eq(R)?

As already mentioned for the example of the problematic rule 0→ x ∗ 0 associated to the equation x ∗ 0 = 0 when
oriented from right to left, the most basic requirement is:

(1) for each t → t′ ∈ R, any variable x occuring in t′ must also occur in t.

Otherwise, t → t′ is problematic as a rewrite rule, since we have to guess how to instantiate the extra variables in t′, and
there can be an infinity of guesses. For example, if we tried to use the rule 0→ x∗0 to “simplify” the term (a+b)+0,we
could obtain (a+b)+ (0∗0), or (a+b)+ (z∗0), or (a+b)+ ((c∗d)∗0), and so on, depending on whether the substitution
we chose was θ = {(x, 0)}, or θ = {(x, z)}, or θ = {(x, (c ∗ d))}, and so on. Instead, if we apply the equation x + 0 = x to
the same term, there is only one substitution possible to simplify (a + b) + 0, namely, θ = {(x, (a + b)}. Note that, under
assumption (1), if u→R v, then no new variables are introduced in v; that is, we always have vars(v) ⊆ vars(u).

The additional requirement that Σ is preregular is also very useful for efficient rewriting. This is because, for a
rewrite step C[tθ] → C[t′θ] with a rule t → t′ in R to be legal, we need to check that θ is well-sorted; that is, that for
each (x : s, u) ∈ θ we indeed have u : s. But for Σ preregular this just becomes the easy syntactic check ls(u) ≤ s.

A second important requirement is:

(2) sort-decreasingness, that is, for each t → t′ ∈ R, sort s ∈ S , and substitution θ we should have the
implication tθ : s ⇒ t′θ : s.

It is then easy to check by well-founded induction on the context C below which a rewrite C[tθ]→R C[t′θ] takes place,
that under condition (2) the rewrite relation →R preserves sorts, that is, if u →R v, then u : s ⇒ v : s. This is of
course always the case for unsorted or many-sorted rewriting, but it can fail to hold for order-sorted rewrite theories
and, unless the signature Σ is kind-complete, can lead to non-well-formed terms. Consider, for example, a subsort
inclusion Nat < Set, where Nat has operators 0 and s, and Set has a set union operator ∪ , that is, we view each
natural number n as a singleton set. Then the rule x→ x ∪ x with x of sort Set fails to be sort-decreasing, since, for n a
variable of sort Nat, the substitution θ = {(x, n)} is such that n : Nat, but n ∪ n does not have sort Nat. This does indeed
lead to ill-formed tems, since we then have the rewrite s[0] → s[0 ∪ 0], where the term s(0 ∪ 0) is not a well-formed
term, unless the signature is kind-complete, so that both s and ∪ are lifted to the kind [Set]. Sort decreasingness is
an easily checkable condition, since we do not need to check it on the, in general infinite, set of all substitutions θ: if
{x1 : s1, . . . , xn : sn} = vars(t → t′), we only need to check it on the, typically finite, set of substitutions of the form
{(x1 : s1, x′1 : s′1), . . . , (xn : sn, x′n : s′n)} with s′i ≤ si, 1 ≤ i ≤ n, which are called the sort specializations [11] of the
set of variables {x1 : s1, . . . , xn : sn}. For example, for the above rule x → x ∪ x, the failure was detected for the sort
specialization {(x : Set, x′ : Nat)}, which was abbreviated to θ = {(x, n)}.

Exercise 76 Let (Σ,R) be a term-rewriting system with Σ preregular. Prove that the rules R are sort decreasing iff for
each sort specialization ρ as defined above and for each t → t′ in R we have: ls(tρ) ≥ ls(t′ρ).
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To see why things can go wrong when sorts are not preserved by rewriting; that is, when the rules are not sort-
decreasing, consider the following simple example. There are two sorts C and D with C < D, a constant c of sort
C, a constant d of sort D, and a subsort-overloaded unary function f : C −→ C, f : D −→ D. Let B = ∅ and
R = {c → d, f ( f (x : C)) → f (x : C)}. Now consider the term f ( f (c)). Using the second rule we can rewrite it to f (c),
which can be further rewritten to f (d) with the first rule. But if we apply the first rule to f ( f (c)) we get f ( f (d)) which
cannot be further rewritten! The point is that the rule c→ d is not sort-decreasing, so the information that c had sort C
has been lost, and now we are stuck with f ( f (d)), since we cannot apply the second rule.

A third requirement is one of determinism: if a term t is simplified by R modulo B to two different terms u and
v, and u ,B v, then u and v can always be further simplified by R modulo E to a common term w. This implies (see
Exercise 77 below) that if t →∗R/B u and t →∗R/B v, and u and v cannot be further simplified by R modulo B, then we
must have u =B v. This is the idea of determinism: if rewriting with R modulo B yields a fully simplified answer, then
that answer must be unique modulo B. That is, the final result of a reduction with the rules R modulo B should not
depend on the order of evaluation, i.e., on the particular order in which the rewrites have been performed in the rewrite
sequence. This is precisely captured by the requirement of confluence below. Note that, since the relation u→∗R v is just
the special case of the relation u→∗R/B v in which B = ∅, confluence of R is a special case of confuence of R modulo B.

Definition 29 Let (Σ, B,R) be a rewrite theory. Then the rules R are called confluent modulo B (resp., ground confluent
modulo B) iff for each t ∈

⋃
TΣ(Y) (resp., for each t ∈

⋃
TΣ), and each pair of rewrites t →∗R/B u, t →∗R/B v, there is a term

w ∈
⋃

TΣ(Y) (resp., w ∈
⋃

TΣ) such that u→∗R/B w and v→∗R/B w. This condition can be described diagrammatically as
follows (the dashed arrows denote existential quantification):

t

∗

R/B �� ∗

R/B
��

u

∗

R/B
  

v

∗

R/B
��

w

Therefore, our third requirement of “determinism” is that:

(3) the rules R should be confluent modulo B (or at least (3′) ground confluent modulo B if, as when we
use (Σ, B,R) as a declarative program, we are only interested in evaluating ground terms).

Note that, without sort-decreasingness confluence may be hard to get, so conditions (2) and (3) should go together. For
example, the already-discussed rewrite rules R = {c→ d, f ( f (x : C))→ f (x : C)} with c : C, d : D, and C < D are not
confluent, even though the two rules have disjoint function symbols. Indeed, we can rewrite f ( f (c)) to both f (d) and
f ( f (d)), but these two terms cannot be further rewritten.

Exercise 77 (Confluence implies uniqueness of normal forms). Let (Σ, B,R) be a rewrite theory. Prove that if (Σ, B,R)
is confluent modulo B, then if t ∈

⋃
TΣ(Y) has a R/B-normal form, then such a normal form is unique up to B-equality,

that is, v is another R/B-normal form of t iff u =B v.
Because of this uniqueness, if (Σ, B,R) is confluent modulo B, we call a R/B-normal form of t, it it exists, a R/B-

canonical form of t, and denote it, up to B-equality, by canR/B(t).

Exercise 78 (Church-Rosser Property). Call two terms t, t′ ∈
⋃

TΣ(Y) joinable with R modulo B, denoted t ↓R/B t′,
iff (∃w ∈

⋃
TΣ(Y)) t →∗R/B w ∧ t′ →∗R/B w. Prove that if (Σ, E ∪ B) is an order-sorted equational theory satisfying

the requirements in Definition 26, and the rules E⃗ are confluent modulo B, then the following equivalence, called the
Church-Rosser property, holds for any two terms t, t′ ∈

⋃
TΣ(Y):

t =E∪B t′ ⇔ t ↓E/B t′.

where, as usual, we abbreviate t ↓E⃗/B t′ to just t ↓E/B t′. (Hint: Use Exercise 75).

It is of course highly desirable that rewriting with R modulo B terminates, so that a final, fully simplified result can
be obtained for each term t; so this should be our next requirement.

Definition 30 Let (Σ, B,R) be a rewrite theory. R is called terminating or strongly normalizing modulo B (resp.,
ground terminating or strongly ground normalizing modulo B), iff →R/B is well-founded (resp. →R/B ∩(

⋃
TΣ)2 is

well-founded). We call R weakly terminating or normalizing modulo B (resp., ground weakly terminating or ground
normalizing modulo B), iff any t ∈

⋃
TΣ(Y) (resp., any t ∈

⋃
TΣ) has a R/B- normal form.
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Therefore, a highly desirable fourth requirement is:

(4) the rules R are terminating modulo B, or at least the weaker requirement (4′) that the rules R are
(ground) weakly terminating modulo B.

Exercise 79 Prove that if Σ has non-empty sorts, then given a rewrite theory (Σ, B,R) where all rules satisfy condition
(1) above, R is terminating modulo B iff R is ground terminating modulo B.

Exhibit a rewrite theory (Σ, B,R) satisfying condition (1) where Σ has non-empty sorts and R is ground weakly
terminating modulo B, but is not weakly terminating modulo B.

Exercise 80 Call a rewrite theory (Σ, B,R) locally confluent iff whenever we have t −→R/B u and t −→R/B v, then
u ↓R/B v.

• prove that if (Σ, B,R) is terminating and locally confluent, then it is confluent (Hint: use well-founded induction)

• exhibit a rewrite theory that is localy confluent but not confluent.

Essentially, requirements (1)–(4) are all we need of a rewrite theory (Σ, B,R) so that we can effectively use it for
equational simplification modulo B in the associated equational theory (Σ, eq(R)∪B). Requirement (1) makes rewriting
efficiently implementable, since we do not need to guess the substitution for new variables in the righthand side. Sort
decreasingness (requirement (2)) is essential for simplified terms to remain well-formed, so that they do not go up to
the kind level if kinds are added, and to avoid that rewrites that were possible before do not get blocked because sort
information is lost. Requirement (4) (confluence) is really essential and powerful since, thanks to the Church-Rosser
property (see Exercise 78), equational deduction can be simulated by equational simplification, in the sense that we
have the equivalence t =eq(R)∪B t′ ⇔ t ↓R/B t′. Requirement (4) (termination, or at least weak termination (4’)), should
not be made into an absolute requirement, but is a very good thing to have.

Of course, even with requirements (1)–(4) all satisfied, unless some further requirements are placed on the equa-
tional axioms B so that they can be effectively “built in,” the rewrite relation→R/B may be hopelessly inefficient (and
in general undecidable), since otherwise we may need to actually perform steps of B-equational deduction explicitly.
Here are three very useful conditions to require about B. The first one is also well-known for unsorted rewriting, but
the remaining two are typical of an order-sorted setting:

• There shoud be a B-matching algorith, that is, and algorithm such that, given Σ-terms t and t′, gives us a finite,
complete10 set of substitutions θ such that tθ =B t′, or fails if no such θ exists. If tθ =B t′ holds, we say that t′

B-matches the pattern t.

• The variables in the axioms B should all be at the kind level, i.e., of the form x : [s], for [s] a kind in (S , <), so
that the equations B apply in their fullest possible generality.

• The equations B should be B-preregular, in the sense that, given a B-equivalence class [t]B, the set {s ∈ S | t′ ∈
[t]B ∧ t′ : s} has a minimum element, denoted ls([t]B), that can be effectively computed.

The first condition holds, for example, for B any combination of associativity and/or commutativity and/or identity
axioms. For such axioms, the second and third conditions are syntactically checkable, as done in fact in the Maude
language [7, 4.4.1 and 22.2.5], where the rules R are also checked and completed so that the first condition achieves in
fact the effect of rewriting in B-equivalence classes [7, 4.8].

Exercise 81 Let (Σ, B,R) be a rewrite theory with Σ preregular and such that each u = v ∈ B has vars(u) = vars(v)
and is sort-preserving in the precise sense that both

−→
Band

←−
B are sort-decreasing (note that this is an easily checkable

condition thanks to Exercise 76). Prove the following:

1. (Σ, B,R) in B-preregular.

2. Whenever t →R/B t′, then ls([t]B) = ls(t) ≥ ls(t′) = ls([t′]B), that is, sort-decreasingness holds at the level of
equivalence classes.

Also, for B any combination of A and/or C operators, give examples of rewrite theories (Σ, B,R) with B sort-preserving
(with a proof of it) and with B failing to be sort-preserving (with a counterexample).

Note that the sort-preservation requirement on B is typically too strong in the presence of identity axioms U (a
good example of lack of sort preservation is the right identity axiom x ; nil = x, with x : List, ; an associative list
concatenation operator, and with a subsort relation, say, Nat < List). However, identity axioms can be dealt with using
the theory transformation described in [9].

10Complete in the sense that for any other substitution γ not in the set and such that tγ =B t′, there is a θ in the set such that for each
x ∈ vars(t) we have xγ =B xθ.
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9.4 Canonical Term Algebras

Suppose that we have an equational theory (Σ, E ⊎ B), where we use the oriented rules E⃗ to simplify Σ-terms by
rewriting with E⃗ modulo B, that is, with the rewrite theory (Σ, B, E⃗). Suppose, further, that (Σ, B, E⃗) satisfies the
executability conditions (1)–(4), or at least the slightly weaker (1)–(2), and (3’)–(4’). Then, by termination (or at least
weak termination), every term t ∈

⋃
TΣ can be simplified to a normal form canE/B(t), so that we have t →!E/BcanE/B.

And by confluence (or at least ground confluence), canE/B(t) is unique up to B-equality (see Exercise 77). Furthermore,
by the Church-Rosser property (see Exercise 78) we have the following extremely useful equivalence for any t, t′ ∈

⋃
TΣ

(which also holds for terms with variables t, t′ ∈
⋃

TΣ(Y) if (Σ, B, E⃗) is confluent):

t =E⊎B t′ ⇔ t ↓E/B t′ ⇔ canE/B(t) =B canE/B(t′).

This is indeed very powerful! In order for us to know if two terms t, t′ are provably equal in the theory (Σ, E ⊎ B) all
we need to do is to reduce them to canonical form with →E/B and perform the equality test canE/B(t) =B canE/B(t′),
which if B has a B-matching algorithm is a decidable test. Of course, for the special case B = ∅, this becomes a test for
syntactic equality canE(t) = canE(t′).

This suggests considering the terms in E/B-canonical form as the values of an algebra. Let us consider a simple
example, namely, an unsorted signature Σwith a constant 0, a unary successor function s, and a binary addition function
+ , and the following set E of equations: E = {x+0 = x, x+ s(y) = s(x+ y)}. It is easy to check that the term rewriting

system (Σ, E⃗) is confluent and terminating. It is also easy to check that the set of ground terms in E⃗-canonical form is
the set CΣ/E = {0, s(0), s(s(0)), . . . , sn(0), . . .}, that is the natural numbers in Peano notation. This is certainly a set of
values, but for which algebra? Well, for each operation on such values, we can agree that the result of the operation is,
by definition, its canonical form. That is, we can define a Σ-algebra CΣ/E = (CΣ/E , CΣ/E ) as follows:

1. 0CΣ/E = canE(0) = 0.

2. for each t ∈ CΣ/E , sCΣ/E (t) = canE(s(t)) = s(t).

3. for each (t, t′) ∈ C2
Σ/E , t +CΣ/E t′ = canE(t + t′).

Obviously, in cases (1) and (2), terms like 0, or sn+1(0) are already in canonical form, so the results are just purely
syntactic, like in a term algebra. But case (3) is different. Let us try some examples:

• 0 +CΣ/E 0 = 0

• s(0) +CΣ/E s(0) = s(s(0))

• s(s(0)) +CΣ/E s(s(0)) = s(s(s(s(0))))

• s(s(s(0))) +CΣ/E s(s(0)) = s(s(s(s(s(0)))))

So, it turns out that the function +CΣ/E is just the addition function on natural numbers! What could be more natural!
So, the algebra CΣ/E of terms in E-canonical form is just the algebra of natural numbers with the standard intepretation
for the symbols 0, s, and + .

Here is the general definition, under the weakest possible assumptions.

Definition 31 (Canonical Term Algebra). Let (Σ, E ⊎ B) be an equational theory satisfying conditions (1)–(2), which
is also (3′) ground confluent, and (4′) weakly terminating. Then the S -indexed set CΣ/E,B = {CΣ/E,B,s}s∈S , where for each
s ∈ S we define CΣ/E,B,s = {[canE/B(t)]B ∈ TΣ,[s]/=B | t ∈ TΣ,[s] ∧ ∃t′ ∈ [canE/B(t)]B, t′ : s}, can be given a Σ-algebra
structure called the canonical term algebra associated to the theory (Σ, E ⊎ B) and denoted CΣ/E,B = (CΣ/E,B, CΣ/E,B ),
where the structure map CΣ/E,B assigns to each f : w −→ s in Σ the function fCΣ/E,B : Cw

Σ/E,B −→ CΣ/E,B,s, which is
defined:

• for w = nil, by the identity fCΣ/E,B (∅) = canE/B( f ), and

• for w = s1 . . . sn, n ≥ 1, by the function

fCΣ/E,B = λ([t1]B, . . . , [tn]B) ∈ CΣ/E,B,s1 × . . . ×CΣ/E,B,sn . [canE/B( f (t1, . . . , tn))]B.

Exercise 82 Prove that under the assumptions of Definition 31 the function fCΣ/E,B = λ([t1]B, . . . , [tn]B) ∈ CanΣ/E,B,s1 ×

. . . × CanΣ/E,B,sn . [canE/B( f (t′1, . . . , t
′
n))]B is well-defined, that is, it does not depend on the choice of representatives

ti ∈ [ti]B, 1 ≤ i ≤ n.
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9.5 Sufficient Completeness
Consider again our equations E = {x + 0 = x, x + s(y) = s(x + y)} on the unsorted signature Σ with symbols 0, s and
+ . And observe the interesting point that its set CanΣ/E of canonical forms is precisely the set TDL of terms in the

Dedekind-Lawvere signature with symbols 0 and s. That is, the addition symbol has completely disappered! This is
as it should be, since the equations E = {x + 0 = x, x + s(y) = s(x + y)} provide a complete definition of the addition
function on natural numbers. Note that we obviously have a strict inclusion ΣDL ⊂ Σ.

This is a more general fact, not just about numbers, but about any equational theory (Σ, E⊎B) satisfying conditions
(1)–(2) and (3′)–(4′), where some operations in a subsignature Ω ⊆ Σ (in our example ΣDL ⊂ Σ) are used as data con-
structors, and the remaning operations in Σ-Ω are viewed as functions operating on data built with the data constructors
Ω and returning as result another data value built with the constructors Ω. The definition of the function associated to a
function symbol f ∈ Σ-Ω is given by the equations E modulo B or, more precisely, by the function fCΣ/E,B associated to
f in the canonical term algebra CΣ/E,B. In our example, we had Σ-ΣDL = { + }, and the function +CΣ/E was just the
addition function on natural numbers.

This is useful, because we can then ask the question: have we given enough equations to fully define all functions
in Σ-Ω? This exactly means that the defined function symbols should disapper from any ground term after such a
term has been fully reduced, so that its canonical form has only constructor symbols. This would fail, for example,
if we had forgotten to define the case of adding 0 to a number, and had tried to define addition by the single equation
x + s(y) = s(x + y). Then we would have terms in canonical form like 0 + 0, s(0) + 0, s((s(0) + 0) + 0), and so on, so
that the + symbol would no longer disappear. For complex specifications, forgetting some corner case like this when
defining a function is not uncommon. Such forgetfulness is called a failure of sufficient completeness, in the sense
that the function f in question has not been sufficiently defined, because some equations are missing. And the failure is
detected precisely by the presence of ground terms in canonical form where the symbol that was supposed to disappears
has not gone away.

Before giving the general definition, we need to make more precise the notion of subsignature.

Definition 32 An order-sorted signature Ω = ((S ′, <′),G) is called a subsignature of an order-soted signature Σ =
((S , <), F), denoted Ω ⊆ Σ, iff:

1. S ′ ⊆ S and <′⊆<, and

2. for each (w′, s′) ∈ List(S ′) × S ′ there is a subset inclusion Gw′ ,s′ ⊆ Fw′ ,s′ , which we abbreviate with the notation
G ⊆ F.

For example, the process of adding variables to a signature gives rise to a subsignature inclusion Σ ⊆ Σ(X). Likewise,
the top completion (resp. kind completion) of a signature Σ gives rise to a signature inclusion Σ ⊆ Σ⊤ (resp. Σ ⊆ Σ̂).

Here is now our sough-after notion of sufficient completeness, in as general a form as possible.

Definition 33 Let (Σ, B,R) be a rewrite theory that is weakly ground terminating, and let Ω ⊆ Σ be a subsignature
inclusion where Ω has the same poset of sorts as Σ, that is, Σ = ((S , <), F), Ω = ((S , <),G), and G ⊆ F. We say that the
rules R are sufficiently complete modulo B with respect to the constructor subsignature Ω iff for each s ∈ S and each
t ∈ TΣ,s there is a t′ ∈ TΩ,s such that t →!

R/B t′.

If Σ is kind-complete, then the above requirement that for each t ∈ TΣ,s there is a t′ ∈ TΩ,s such that t →!
R/B t′

should apply only to the sorts s ∈ [s] in each connected component, but not to the kinds [s]. Therefore, the sufficient
completeness requirement for R modulo B should be placed on a signature Σ before kind-completing it to Σ̂. This is
because, since terms that have a kind [s] but not a sort s, correspond to undefined or error expressions, such as 7/0, or
p(0) for p the predecessor function on natural numbers, it is perfectly possible that a completely well-defined function
on the right sorts cannot be simplified away when applied to the wrong arguments. For example, we can define the
predecessor function in a theory with sorts Nat and NzNat with subsort inclusion Nat < NzNat, subsignature Ω of
constructors: s : Nat −→ NzNat, 0 : nil −→ Nat, and defined function symbol p : NzNat −→ Nat, with the single
equation p(s(x)) = x, with x : Nat. This theory is obviously sufficiently complete, that is, the canonical forms of all
ground terms are all Ω-terms. However, in its kind completion we have the term p(0) : [Nat], which is in canonical
form, because p is only defined for nonzero natural numbers.

Therefore, if we have identified for our rewrite theory (Σ, B,R) a subsignature of Ω of constructors, a fifth and last
requirement should be:

(5) the rules R are sufficiently complete modulo B.

Condition (1) is syntactically checkable, and so is condition (2). Confluence is a decidable property for (Σ, B,R)
when B consists of associativity, and/or commutativity, and/or identity axioms and any associative operator is also
commutative. Since term rewriting can simulate Turing machines (see, e.g., [1, 5.1]), because of the halting problem
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termination is undecidable. Sufficient completeness is also decidable for (Σ, B,R) when R is weakly terminating modulo
B, and B consists of associativity, and/or commutativity, and/or identity axioms and any associative operator is also
commutative, if for any t → t′ ∈ R, any variable x of t occurs only once in t (the so-called left-linearity of t → t′).

Maude (see [7]) automatically checks condition (1), can automatically check confluence and condition (2) with
its Church-Rosser Checker (CRC) tool [10], and also condition (5) under the above assumptions with its Sufficient
Completeness Checker (SCC) tool [17]. Although termination is undecidable, it can be proved in practice for many
equational theories using Maude’s Termination Tool (MTT) [8].
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