
Appendix to Lecture 8: Local Confluence Checking Algorithm

José Meseguer, CS Department, UIUC

This appendix gives a detailed account of the local confluence checking method explained
in Lecture 8. It assumes an order-sorted equational theory (Σ, E) whose left-to-right oriented
equations define a term rewriting system (Σ, E⃗), where the rules E⃗ are assumed terminating, so
that if (Σ, E⃗) is locally confluent, then it is also confluent. I refer to the paper [1] for a detailed
account of how the case of confluence checking for an equational theory (Σ, E) generalizes to
checking local confluence for an equational theory (Σ, E ∪ B) with associated rewrite theory
(Σ, B, E⃗) with →E⃗ terminating, replacing syntacting unification by B-unification.

Definition. Under the above assumptions about (Σ, E⃗), assume without loss of generality
that the rules E⃗ = {u1 → v1, . . . , un → vn} do not share any variables, i.e., vars(ui →
vi)∩ vars(uj → vj) = ∅ for all i, j s.t. 1 ≤ i < j ≤ n. Assume, further, that for each ui → vi in

E⃗ we have chosen a variable-renamed version of it u′i → v′i such that vars(ui → vi)∩vars(u′i →
v′i) = ∅. The the set CP (Σ, E⃗) of critical pairs of (Σ, E⃗) is then defined as the union:

CP (Σ, E⃗) = (
⋃

1≤i<j≤n

CP (ui → vi, uj → vj) ∪ CP (uj → vj , ui → vi)) ∪
⋃

1≤i≤n

CP (ui → vi, u
′
i → v′i)

where for any Σ-rules u → v and w → q not sharing any variables, the set of critical pairs CP (u →
v, w → q) is defined as the set of pairs of Σ-terms:

CP (u → v, w → q) = {(vθ, (u[q]p)θ) | p ∈ PosΣ(u) ∧ θ ∈ Unif Σ(u|p = w)}

where, Unif Σ(u|p = w) denotes the set of order-sorted (according to the signature Σ) unifiers of the
equation u|p = w and, by definition, the set PosΣ(u) of non-variable positions of u is the set

PosΣ(u) = {p ∈ Pos(u) | u|p ̸∈ vars(u)}

The main theorem proved in Lecture 8 is then:

Theorem. Under the above assumptions on (Σ, E), the term rewriting system (Σ, E⃗) is locally
confluent (and therefore confluent by the assumption that →E⃗ is terminating) iff

∀(t, t′) ∈ CP (Σ, E⃗), t ↓E⃗ t′

Remark 1. A necessary condition for a critical pair (vθ, (u[q]p)θ) to exist in CP (u → v, w → q)
is that top(w) = top(u|p), where for any non-variable term t = f(t1, . . . , tn), top(t) = f . This
is clearly a necessary condition for Unif Σ(u|p = w) to be non-empty, since if top(w) ̸= top(u|p)
there can be no unifiers of the equation u|p = w. In practice this makes it easy to detect
that some critical pairs do not exist. For example, CP (f(h(x), y) → k(x, y), g(z) → l(z)) = ∅,
because {f, h} ∩ {g} = ∅. That is, if top(w) does not appear anywhere in u, then there are no
critical pairs in CP (u → v, w → q).

Remark 2. In the case of the set CP (ui → vi, u
′
i → v′i) of self-overlaps of a rule ui → vi with

a renamed copy of itself u′i → v′i, there is always a trivial critical pair at the top position p = ε,
namely, (v′i, v

′
i), for which v′i ↓E⃗ v′i trivially holds. This is because Unif Σ(ui = u′i) = {α},

with α the variable-renaming substitution such that u′i → v′i = uiα → viα. Therefore, when
generating CP (ui → vi, u

′
i → v′i) we can always discard the case of the empty position p = ε.

Remark 3. For a Maude functional module fmod (Σ, E) endfm one can automate the checking
of the joinability t ↓E⃗ t′ of a critical pair (t, t′) ∈ CP (Σ, E⃗) by giving the Maude command:

1

red t == t’ so that if the result is true, then t ↓E⃗ t′. This is because red t == t’ returns
true iff t!E⃗ = t′!E⃗ . The only cavet is that if, say, we have a critical pair (x + s(y), s(x + y))
with, say, x of sort NzNat and y of sort Nat variables not declared in fmod (Σ, E) endfm then
the reduce command should declare the variables x and y on the fly as:

red x:Nat + s(y:NzNat) == s(x:Nat + y:NzNat).

References

[1] F. Durán and J. Meseguer. On the Church-Rosser and coherence properties of conditional
order-sorted rewrite theories. J. Algebraic and Logic Programming, 81:816–850, 2012.

2

