Appendix to Lecture 8: Local Confluence Checking Algorithm

José Meseguer, CS Department, UIUC

This appendix gives a detailed account of the local confluence checking method explained in Lecture 8. It assumes an order-sorted equational theory (Σ, E) whose left-to-right oriented equations define a term rewriting system (Σ, \vec{E}) , where the rules \vec{E} are assumed terminating, so that if (Σ, \vec{E}) is locally confluent, then it is also confluent. I refer to the paper [1] for a detailed account of how the case of confluence checking for an equational theory (Σ, E) generalizes to checking local confluence for an equational theory $(\Sigma, E \cup B)$ with associated rewrite theory (Σ, B, \vec{E}) with $\rightarrow_{\vec{E}}$ terminating, replacing syntacting unification by *B*-unification.

Definition. Under the above assumptions about (Σ, \vec{E}) , assume without loss of generality that the rules $\vec{E} = \{u_1 \rightarrow v_1, \ldots, u_n \rightarrow v_n\}$ do not share any variables, i.e., $vars(u_i \rightarrow v_i) \cap vars(u_j \rightarrow v_j) = \emptyset$ for all i, j s.t. $1 \le i < j \le n$. Assume, further, that for each $u_i \rightarrow v_i$ in \vec{E} we have chosen a variable-renamed version of it $u'_i \rightarrow v'_i$ such that $vars(u_i \rightarrow v_i) \cap vars(u'_i \rightarrow v'_i) = \emptyset$. The the set $CP(\Sigma, \vec{E})$ of critical pairs of (Σ, \vec{E}) is then defined as the union:

$$CP(\Sigma, \vec{E}) = (\bigcup_{1 \le i < j \le n} CP(u_i \to v_i, u_j \to v_j) \cup CP(u_j \to v_j, u_i \to v_i)) \ \cup \ \bigcup_{1 \le i \le n} CP(u_i \to v_i, u_i' \to v_i')$$

where for any Σ -rules $u \to v$ and $w \to q$ not sharing any variables, the set of critical pairs $CP(u \to v, w \to q)$ is defined as the set of pairs of Σ -terms:

$$CP(u \to v, w \to q) = \{ (v\theta, (u[q]_p)\theta) \mid p \in Pos_{\Sigma}(u) \land \theta \in Unif_{\Sigma}(u|_p = w) \}$$

where, $Unif_{\Sigma}(u|_p = w)$ denotes the set of order-sorted (according to the signature Σ) unifiers of the equation $u|_p = w$ and, by definition, the set $Pos_{\Sigma}(u)$ of non-variable positions of u is the set

$$Pos_{\Sigma}(u) = \{ p \in Pos(u) \mid u|_{p} \notin vars(u) \}$$

The main theorem proved in Lecture 8 is then:

Theorem. Under the above assumptions on (Σ, E) , the term rewriting system (Σ, E) is locally confluent (and therefore confluent by the assumption that $\rightarrow_{\vec{E}}$ is terminating) iff

$$\forall (t,t') \in CP(\Sigma,\vec{E}), \ t\downarrow_{\vec{E}} t'$$

Remark 1. A necessary condition for a critical pair $(v\theta, (u[q]_p)\theta)$ to exist in $CP(u \to v, w \to q)$ is that $top(w) = top(u|_p)$, where for any non-variable term $t = f(t_1, \ldots, t_n)$, top(t) = f. This is clearly a necessary condition for $Unif_{\Sigma}(u|_p = w)$ to be non-empty, since if $top(w) \neq top(u|_p)$ there can be no unifiers of the equation $u|_p = w$. In practice this makes it easy to detect that some critical pairs do not exist. For example, $CP(f(h(x), y) \to k(x, y), g(z) \to l(z)) = \emptyset$, because $\{f, h\} \cap \{g\} = \emptyset$. That is, if top(w) does not appear anywhere in u, then there are no critical pairs in $CP(u \to v, w \to q)$.

Remark 2. In the case of the set $CP(u_i \to v_i, u'_i \to v'_i)$ of *self-overlaps* of a rule $u_i \to v_i$ with a renamed copy of itself $u'_i \to v'_i$, there is always a *trivial critical pair* at the top position $p = \varepsilon$, namely, (v'_i, v'_i) , for which $v'_i \downarrow_{\vec{E}} v'_i$ trivially holds. This is because $Unif_{\Sigma}(u_i = u'_i) = \{\alpha\}$, with α the variable-renaming substitution such that $u'_i \to v'_i = u_i \alpha \to v_i \alpha$. Therefore, when generating $CP(u_i \to v_i, u'_i \to v'_i)$ we can always *discard* the case of the empty position $p = \varepsilon$.

Remark 3. For a Maude functional module fmod (Σ, E) endfm one can automate the checking of the joinability $t \downarrow_{\vec{E}} t'$ of a critical pair $(t, t') \in CP(\Sigma, \vec{E})$ by giving the Maude command:

red t == t' so that if the result is true, then $t \downarrow_{\vec{E}} t'$. This is because red t == t' returns true iff $t!_{\vec{E}} = t'!_{\vec{E}}$. The only cavet is that if, say, we have a critical pair (x + s(y), s(x + y))with, say, x of sort NzNat and y of sort Nat variables not declared in fmod (Σ, E) endfm then the reduce command should declare the variables x and y on the fly as:

red x:Nat + s(y:NzNat) == s(x:Nat + y:NzNat).

References

[1] F. Durán and J. Meseguer. On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. J. Algebraic and Logic Programming, 81:816–850, 2012.