
Program Verification: Lecture 7

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Local Confluence

Call a rewrite theory (Σ, B,R) locally confluent iff whenever we
have t −→R/B u and t −→R/B v, then u ↓R/B v.

Ex.7.1. Prove that if (Σ, B,R) is terminating and locally confluent,
then it is confluent.

Hint: use well-founded induction (see STACS §11.2) on the
well-founded relation −→R/B .

2

Checking Confluence: the Church-Rosser Checker

The Maude Church-Roser Checker, tries, under the assumption of
termination, to check the confluence property by checking local
confluence.

Given a B-terminating rewrite theory (Σ, B, E⃗) (with Σ

B-preregular) as a input, two things can happen:

1. If (Σ, B, E⃗) is both confluent and sort-decreasing, the tool will
respond confirming both properties.

2. Otherwise, the tool will provide counterexamples to either
confluence or sort-decreasingness.

In Case (2), (Σ, B, E⃗), although not confluent, may still be ground
confluent, i.e., be OK for execution. More reasoning will be needed
to see if ground confluence holds or not.

3

Checking Confluence: the Church-Rosser Checker (II)

In case the check fails, the proof obligations returned can be very
useful for further analysis, either to establish ground confluence, or
to find a conterexample.

The Church-Rosser Checker is part of the Maude Formal
Environment. It extends Full Maude, and checks the confluence of
Full Maude functional modules (assuming termination).

The module to be checked, say FOO, should have been declared in
Maude. We then give to the Church-Rosser Checker the command,

Maude> (check Church-Rosser FOO .)

enclosed in parentheses (followed by carriage return).

4

Checking Confluence: the Church-Rosser Checker (III)

We can illustrate the use of the Church-Rosser Checker with our
running example of natural number addition.

fmod NAT-MIXFIX is
sort Natural .
op 0 : -> Natural [ctor] .
op s_ : Natural -> Natural [ctor] .
op _+_ : Natural Natural -> Natural .
vars N M : Natural .
eq N + 0 = N .
eq N + s M = s(N + M) .
endfm

5

Checking Confluence: the Church-Rosser Checker (IV)

Assuming a separate proof of termination, we can check
NAT-MIXFIX confluent and sort-decreasing by giving the command:

(check Church-Rosser NAT-MIXFIX .)

Church-Rosser checking of NAT-MIXFIX
Checking solution :
The specification is Church-Rosser .

6

Ground Confluent but not Confluent

Sometimes a module will not pass the check, not because there is
any real problem with its equations, but simply because it is
ground confluent but not confluent.

In such a case, the tool will return a set of critical pairs as proof
obligations. Such critical pairs are equations t = t′ such that:

• E ∪B ⊢ t = t′, but

• the joinability property t ↓E⃗/B t′ fails.

But, as we shall see, these pairs are sufficient, as proof obligations,
to establish ground confluence. That is, if we can show
θ(t) ↓E⃗/B θ(t′) for each ground substitution θ, then E is indeed
ground confluent (assuming termination).

7

Ground Confluent but not Confluent (II)

We can illustrate ground confluence with the following module,

fmod ANOTHER-NAT is
sorts Zero Natural .
subsort Zero < Natural .
op 0 : -> Zero .
op s_ : Natural -> Natural .
ops (_+_) (_*_) : Natural Natural -> Natural [comm] .
vars N M : Natural .
eq 0 + N = N .
eq s N + M = s (N + M) .
eq 0 * N = 0 .
eq s N * M = M + (N * M) .

endfm

8

Ground Confluent but not Confluent (II)

(check Church-Rosser ANOTHER-NAT .)

Church-Rosser checking of ANOTHER-NAT
Checking solution :
var N : Natural .
var N@ : Natural .
cp s (N + (N@ + (N * N@))) = s (N@ + (N + (N * N@))) .
rewrites: 1368 in 0ms cpu (10ms real) (~ rewrites/second)

9

Ground Confluent but not Confluent (II)

Where does this critical pair come from? It comes from applying
the equation

eq s N * M = M + (N * M) .

modulo commutativity to the term s N * s M in two different ways
yielding terms that, after further simplification,

s M + (N * s M) = s(M + (N + (N * M)))

s N + (M * s N) = s(N + (M + (N * M)))

cannot be further simplified, and therefore cannot be joined,
showing that the equations are not confluent. However, every
ground instance can be joined.

10

Ground Confluent but not Confluent (III)

What can we do in such a situation? One of four things:

1. use the critical pair as useful information to transform the
equations into equivalent equations that are confluent and pass
the test; or

2. transform the theory, not by changing the equations, but by
adding some more axioms (here, adding assoc to + will work);
or

3. prove an inductive theorem about the rewriting relation −→E

itself, not about equality!, showing that for each ground
instance the pair can be joined; or

4. find a conterexample disproving ground confluence.

11

Ground Confluent but not Confluent (IV)

In our example, alternative (1) yields a transformed module, by
realizing that the equation

eq s N * M = M + (N * M) .

is in a sense too general, since, the case M = 0 is covered by the
other equations for addition and multiplication. Therefore, we can
assume M = s M', and replace the above equation by the more
specialized equation,

eq s N * s M = s((N + M) + (N * M)) .

to get the confluent transformed module,

12

Ground Confluent but not Confluent (V)

fmod CONFLUENT-NAT is
sorts Zero Natural .
subsort Zero < Natural .
op 0 : -> Zero .
op s_ : Natural -> Natural .
ops (_+_) (_*_) : Natural Natural -> Natural [comm] .
vars N M : Natural .
eq 0 + N = N .
eq s N + M = s (N + M) .
eq 0 * N = 0 .
eq s N * s M = s((N + M) + (N * M)) .

endfm

13

Ground Confluent but not Confluent (VI)

(check Church-Rosser CONFLUENT-NAT .)

Church-Rosser checking of CONFLUENT-NAT
Checking solution :
The specification is Church-Rosser .

14

Justification of the Church-Rosser Checker

The justification will be somewhat incomplete, since it will be
resticted to term rewriting systems (Σ, E⃗) (i.e., B = ∅). A full
account of all the issues involved, covering both the rewriting
modulo B case and conditional rewrite rules, can be found in:

F. Durán and J. Meseguer, “On the Church-Rosser and Coherence
Properties of Conditional Order-Sorted Rewrite Theories,” JLAP,
81, 816–850, 2012, available online through the Grainger Library.

15

Justification of the Church-Rosser Checker (II)

The Church-Rosser Checker does two things:

• check that the equations are sort-decreasing; and

• check confluence (assuming termination) by checking local
confluence for all possible critical pairs.

Checking sort-decreasingness is relatively easy to do, since, as
explained in Lecture 6, assuming Σ is preregular, it reduces to
checking for each rewrite rule t → t′ that

ls(tρ) ≥ ls(t′ρ)

for each variable specializations ρ. This is easy, since if Σ is finite
there is only a finite number of such specializations.

16

Justification of the Church-Rosser Checker (III)

Consider, for example, that we want to check the
sort-decreasingness of an equation, with I of sort Integer,

eq I + 0 = I .

in a module INTEGER with two declarations of addition,

op _+_ : Natural Natural -> Natural .
op _+_ : Integer Integer -> Integer .

and with subsorts NzInteger, NzNatural, and Natural. Then, to
check that the equation is sort decreasing, it is enough to check
that the sort of the lefthand side is greater or equal to that of the
righthand side for the original equation, and for the equations
obtained replacing I by a variable in each of the subsorts.

17

Justification of the Church-Rosser Checker (IV)

Why should we check sort-decreasingness as well as (local)
confluence? Because, besides being an important property, lack of
sort decreasingness can also cause lack of confluence.

The rewrite rules shown in Lecture 6,
E⃗ = {c → d, f(f(x : C)) → f(x : C)} with c : C, d : D, and C < D,
have lefthand sides with no symbols in comon. As we shall see, this
is the best possible situation for confluence, since then there are no
critical pairs.

However, E⃗ is not confluent. Indeed, we can rewrite f(f(c)) to
both f(d) and f(f(d)), which cannot be further rewritten.

18

Justification of the Church-Rosser Checker (V)

So, the main questions remaining are:

• what is a critical pair? and

• why is checking joinability of critical pairs sufficient for
checking confluence under the termination (and the already
checked sort-decreasingness) assumptions?

19

Justification of the Church-Rosser Checker (VI)

As mentioned earlier in the lecture, a set E⃗ of oriented equations
that is locally confluent and terminating is confluent.

Therefore, under the termination assumption, all we need to do is
to convince ourselves that, given a term t, and given two one-step
simplifications t −→E⃗ t′, and t −→E⃗ t′′, we always can join t′ and
t′′. That is, we always have, t′ ↓E⃗ t′′.

The crucial point, then, is to analyze where in t do the rewrites
t −→E⃗ t′, and t −→E⃗ t′′ happen. For this we need to talk about
positions in a term.

20

Term Positions and Subterm Occurences

Each Σ-term can be viewed as a tree in the obvious way. Each
position in the tree can be denoted by a string of natural numbers,
indicating the path that we must follow to go down in the tree and
reach the position (see picture below).

At each level, the corresponding number in the string indicates the
argument position on which we must go down, to finally reach the
desired position. For example, the term f(h(d), q(b, a), g(a, k(c)))

has the subterm k(c) at position 3.2.

Given a Σ-term t and a position p we denote by t|p the subterm
occuring at that position; thus, f(h(d), q(b, a), g(a, k(c)))|3.2 = k(c).

21

22

Notation for Term Decomposition at a Position

Given a position p ∈ (N≥1)
∗ in a term t we denote by t[]p the

context obtained by placing a hole [] at position p. For example,
f(h(d), q(b, a), g(a, k(c)))[]3.2 = f(h(d), q(b, a), g(a, [])).

Therefore, if p is a position in t, we obtain a context-subterm
decomposition of t as the pair (t[]p, t|p), For example,
f(h(d), q(b, a), g(a, k(c))) decomposes at 3.2 as the contex-subterm
pair (f(h(d), q(b, a), g(a, [])), k(c))

Given a context t[]p and a term u, the result of replacing the hole
by u, that is, the term (t[]p)[u] is abbreviated to t[u]p. Of course, if
u = t|p we have the identity t = t[t|p]p.

23

Justification of the Church-Rosser Checker (VII)

Recall that a simplification step with E⃗ must happen at a given
position p in t. Therefore, for t −→E⃗ t′, and t −→E⃗ t′′ we must
have two positions, p and q in t and two oriented equations u → v

and u′ → v′ in E⃗ with substitutions θ and µ such that:

• t = t[uθ]p = t[u′µ]q;

• t′ = t[vθ]p;

• t′′ = t[v′µ]q.

all now hinges upon where p and q are located in t.

24

Justification of the Church-Rosser Checker (VIII)

There are essentially three possibilities (see the picture):

1. nested simplification with overlap: there is a path r such that
q = p.r (or p = q.r, but this case is symmetric) and r is a
nonvariable position in u;

2. nested simplification without overlap: there is a path r such
that q = p.r, but r is not a nonvariable position in u;

3. sideways simplification: there isn’t such an r at all.

25

Three Possibilities for p and q

�
�
�
�

�
�
�
�

�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�

�
�
��

A
A
A
A
A
A
AA

�
�
�
�

��

A
A
A
A
AA

CC
�
�
CC
��
CC

t =

p

q

u

u
′

�
�

�
�
�
�

�
�
�

�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�

�
�
�
�

��

A
A
A
A
A
A
AA

�
�
�

A
A
A

CC
�
�
CC
�
�
@@
�
�

t =

p

q

u

u
′

�
�
�
�

�
�
�

�
�
�

��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

��
E
E

��
�
�
��

E
E
EE
�
�
�HHH

t =

p q

u u
′

26

Justification of the Church-Rosser Checker (IX)

In the sideways case, where neither q = p.r, nor p = q.r, the
positions are totally independent, in the sense that we have (see
Ex.7.2):

t = (t[uθ]p)[u
′µ]q = (t[u′µ]q)[uθ]p.

Therefore, we have:

• t′ = t[vθ]p = (t[u′µ]q)[vθ]p = (t[vθ]p)[u
′µ]q; and

• t′′ = t[v′µ]q = (t[uθ]p)[v
′µ]q = (t[v′µ]q)[uθ]p.

27

Justification of the Church-Rosser Checker (X)

Therefore we have a term w of the form (see the picture):

w = t′[v′µ]q = (t[vθ]p)[v
′µ]q = (t[v′µ]q)[vθ]p = t′′[vθ]p.

and therefore, t′ −→E⃗ w, and t′′ −→E⃗ w.

28

Sideways Simplification

�
�
�

�
�
�

�
��

A
A
A
A
A
A
A
AA

�
�

��

A
A
AA

�
�
��

A
A
AA

�
�
DD

�
�

C
CC
��
@
@p q

u u
′

�
�
�

�
�
�

�
��

A
A
A
A
A
A
A
AA

�
�

��

A
A
AA

�
�
��

A
A
AA

�
�
DD

�
�

C
CC
��
@
@p q

v v
′

�
�
�

�
�
�

�
��

A
A
A
A
A
A
A
AA

�
�

��

A
A
AA

�
�
��

A
A
AA

�
�
DD

�
�

C
CC
��
@
@p q

v u
′

�
�
�
�

�
�
�

��

A
A
A
A
A
A
A
AA

�
�

��

A
A
AA

�
�

��

A
A
AA

�
�
DD

�
�

C
CC
��
@
@p q

u v
′

�
�=

Z
Z
Z~

Z
Z~

�
�

�=

29

30

Justification of the Church-Rosser Checker (XI)

The case of nested simplification without overlap is also always
joinable. The detailed proof is left as a (non-trivial) exercise
(Ex.7.3); but note that, since a variable x may occur several times
in both u and v, the occurrence of an instance of u′ underneath an
instance of u may both appear several times in the original term t

and may be copied several times by the simplification with the
equation u = v. This means that to reach a common w from t′

several steps of simplification may be needed (see the general
picture and a concrete example in the two subsequent slides).

31

Nested Simplification without Overlap

�
�
�

�
�
�

�
��

A
A
A
A
A
A
A
AA

�
�
�

�
�
�

A
A
A
A
A
A

�
��

A
AA

DD
��
E
E
�
�

p

q
u

u
′

�
�
�

�
�
�

�
��

A
A
A
A
A
A
A
AA

�
�
�

�
�
�

A
A
A
A
A
A

�
�
A
A

�
�
A
A

DD
��

…
v

v
′

v
′

�
�
�

�
�
�

�
��

A
A
A
A
A
A
A
AA

�
�
�

�
�
�

A
A
A
A
A
A

�
��

A
AA

DD
��
E
E
�
�

p

q
u

v
′

�
�
�
�

�
�
�

��

A
A
A
A
A
A
A
AA

�
�
�

�
�
�

A
A
A
A
A
A

�
�
A
A

�
�
A
A

DD
��

…
v

u
′

u
′

�
�=

Z
Z
Z~

Z
Z~

�
�

�=
**

32

33

Nested Simplifications with Overlap

Therefore, we have reduced the confluence property (assuming
termination) to the joinablilty problem for nested simplifications
with overlap in which we have equations u = v and u′ = v′ in E

(Note: u′ = v′ could be the same equation u = v considered twice!)
and should consider terms t with positions p and p.r, and a
substitution α = θ ⊎ ρ such that:

1. tp = uα;

2. r is a nonvariable position in u, and tp.r = urα = u′α.

This formulation of the overlap situation assumes that the variables
in u and u′ are disjoint, or have been made so by renaming their
variables, even in the case when the equation u = v is considered
twice (self-overlap).

34

Nested Simplifications with Overlap Example

35

Context-Free Nested Simplifications with Overlap

The joinabiliy problem for nested simplifications with overlap then
consists in showing,

(∗) t[vα]p ↓E⃗ (t[uα[v′α]r]p).

Our next reduction of the problem comes from the observation that
the context t in which all this happens is irrelevant. That is, we
can reduce the problem to that of checking joinability for all
context-free nested simplifications with overlap of the form,

(♭) vα ↓E⃗ uα[v′α]r.

36

Context-Free Nested Simplifications with Overlap (II)

Of course, (∗) ⇒ (♭), but we also have (♭) ⇒ (∗), because of the
following,

Context Lemma: Let t = t[u]p ∈ TΣ(X), and suppose that we have,
u

∗−→E⃗ v. Then we have, t[u]p
∗−→E⃗ t[v]p.

Proof: It is obviously enough to check it for one step (−→E⃗), that
is, for u −→E⃗ v. But by sort-decreasingness of −→E⃗ we then have a
well-formed term t[v]p ∈ TΣ(X), where if the rewriting of u
happened at, say, position r, then the rewriting of t = t[u]p now
happens at position p.r and yields, t[u]p −→E⃗ t[v]p. q.e.d.

37

Justification of the Church-Rosser Checker (XII)

Therefore, we have so far reduced the problem of confluence (under
the termination assumption) to the considerably simpler problem of
joinability of context-free nested simplifications with overlap, and
the question still remains,

What is a critical pair? Stay tuned!

38

Readings and Additional Exercises

The paper, F. Durán and J. Meseguer, “On the Church-Rosser and
coherence properties of conditional order-sorted rewrite theories,”
J. Log. Algebraic Methods Program. 81 (7-8): 816-850 (2012), is
available online through the Grainger library. It explains how the
Curch-Rosser Checker checks local confluence modulo axioms B.

Ex.7.2.

• check the confluence of several simple examples of your own
(where some binary operators may have axioms B of
associativity and/or commutativity and/or unit element), and

• if the tool responds with some critical pairs, analyze such pairs
to understand how those critical pairs were originated and
attempt a hand transformation of the specification into an
equivalent one that is confluent.

39

Readings and Additional Exercises (II)

Ex.7.3. Given two positions p, q ∈ (N≥1)
∗ in a term t, p is called a

prefix of q iff there is a string r ∈ (N≥1)
∗ such that p · r = q. Call

two positions p, q ∈ (N≥1)
∗ disjoint if neither p is a prefix of q nor q

a prefix of p. Prove the following two results: (1) If a position p of t
can be expressed as p = q · r, then for any term u,
t[u]p = t[t|q[u]r]q. (2) If p, q are disjoint positions in t, the following
syntactic equality between terms holds for any terms u, v:

(t[u]p)[v]q = [(t[v]q)[u]p

Ex.7.4. Prove joinablity of Nested Simplification without Overlap
in detail.
Ex.7.5. Give an example of an equational theory (Σ, E) such that
its oriented equations E⃗ are locally confluent but fail to be
confluent.

40

