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Program Verification: Lecture 6

Executability Conditions

A functional module fmod (Σ,E ) endfm with constructor
subsignature Ω ⊆ Σ satisfying: (1) Unique termination, (2)
Sufficient Completenes and (3) Sort Preservation, and, also,
(∀t ∈ TΩ) t!E⃗ = t, has a canonical term algebra CΣ/E as its
semantics.

Conditions (1)–(3), plus requirement (∀t ∈ TΩ) t!E⃗ = t, can best
be understood by noting that the red command mapping t ∈ TΣ

to t!
E⃗
∈ TΩ is just rewriting t to termination with the rules E⃗ .

But a functional module can have axioms B. That is, it can be of
the form fmod (Σ,E ∪ B) endfm. Then, the red command
simplifies t ∈ TΣ to t!

E⃗/B
∈ TΩ with the rules E⃗ modulo B.

What executability conditions ensure that CΣ/E ,B exists for fmod
(Σ,E ∪ B) endfm in general? They will be executability
requirements on the rewrite theory (Σ,B, E⃗ ).
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Executability Conditions (II)

In terms of the rewrite theory (Σ,B, E⃗ ),

1 Unique Termination will follow from E⃗ being:

terminating modulo B, and
confluent modulo B

2 Sufficiently Completeness will follow from E⃗ being so
modulo B, and

3 Sort Preservation will follow from E⃗ being sort decreasing.

The requirement (∀t ∈ TΩ) t!E⃗/B
= t will not be needed: it was

just a simplifying assumption. And we will make explicit an implicit
assumption on variables in the rules E⃗ essential for executability.

Under the above executability requirements we will then define the
canonical term algebra CΣ/E ,B of a functional module fmod
(Σ,E ∪ B) endfm with constructors Ω ⊆ Σ in full generality.
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No Extra Variables in Righthand Sides

Consider the rule 0→ x ∗ 0. This rule is problematic: we have to
guess how to instantiate the variable x in x ∗ 0 before applying it,
and there is an infinite number of instantiations for x .

Instead, the rule x ∗ 0→ 0 can be applied without problems, since
the same substitution obtained by matching for the lefthand side
can be reused to generate the righhand side replacement.

Therefore, for any functional module fmod (Σ,E ∪ B) endfm and
associated rewrite theory (Σ,B, E⃗ ) we will require:

For each t → t ′ ∈ E⃗ , any variable x occuring in t ′ must
also occur in t, i.e., vars(t ′) ⊆ vars(t).
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Sort Decreasingness

Another important requirement on (Σ,B, E⃗ ) is:

(SD) Sort-decreasingness: For each t → t ′ ∈ E⃗ , s ∈ S,
and each substitution θ we have tθ : s ⇒ t ′θ : s.

where t : s abbreviates t ∈ TΣ,s . Prove by well-founded induction
on the context C below which a rewrite C [tθ]→

E⃗
C [t ′θ] takes

place, that under condition (SD), if u →
E⃗
v , then u : s ⇒ v : s.

To see why without sort-decreasingness things can go wrong, let Σ
have sorts C and D with C < D, a constant c of sort C , a
constant d of sort D, and a subsort-overloaded unary function
f : C −→ C , f : D −→ D. Let B = ∅ and
E⃗ = {c → d , f (f (x : C ))→ f (x : C )}. With the second rule
f (f (c)) rewrites to f (c), and then to f (d) with the first rule. But
if we apply the first rule to f (f (c)) we get f (f (d)), which cannot
be further rewritten because sort information has been lost!
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Checking Sort-Decreasingness

Sort decreasingness can be easily checked, since we do not need to
check it on the (infinite) set of all substitutions θ. If
{x1 : s1, . . . , xn : sn} = vars(t → t ′), we only need to check it on
the finite set of substitutions of the form
{x1 : s1 7→ x ′1 : s

′
1, . . . , xn : sn 7→ x ′n : s ′n}, s ′i ≤ si , 1 ≤ i ≤ n, called

the sort specializations of the variables {x1 : s1, . . . , xn : sn}.

For example, for sorts Nat < Set, with ∪ set union, the rule
x → x ∪ x , with x : Set, is not sort-decreasing, since for the sort
specialization {x : Set 7→ x ′ : Nat} we have
ls(x ′) = Nat < Set = ls(x ′ ∪ x ′).

Exercise. For Σ preregular, prove that the rules E⃗ are sort
decreasing iff for each t → t ′ in E⃗ and for each sort specialization
ρ (a fine number of ρ’s if (S , <) is finite) we have: ls(tρ) ≥ ls(t ′ρ).
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B-Preregular Signatures

Recall that if Σ is preregular each term t has a least sort ls(t). For
axioms B we want the strongest property: that Σ is B-preregular,
i.e., (1) Σ is preregular, and (2) t =B t ′ implies ls(t) = ls(t ′).

How can we check that Σ is B-preregular? Very easily. Assume all
axioms B are such that for each (u = v) ∈ B we have
vars(u) = vars(v). Now consider the following:

Theorem

For Σ preregular and Σ-axioms B as above, Σ is B-preregular iff

the rewrite theory (Σ,
−→
B ∪
←−
B ) is sort decreasing.

The theorem follows easily from the properties of sort-decreasing
rules stated in previous slides. Furthermore, it can be effectively
checked for each (u = v) ∈ B using its sort specializations.
Maude automatically checks that Σ is B-preregular and gives a
warning if the property fails.
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The Algebra TΣ/B

For Σ B-preregular we can easily define the algebra TΣ/B , whose
elements are B-equivalence classes [t]B of terms modulo =B , i.e.,
t ′ ∈ [t]B ⇔ t =B t ′. Specifically, TΣ/B = (TΣ/B , TΣ/B

), where,
abbreviating [t]B to just [t], we define:

TΣ/B = {TΣ,s/=B}s∈S , with TΣ,s/=B written TΣ/B,s .

For a :→ s in Σ, aTΣ/B
= [a] ∈ TΣ/B,s .

For f : s1 . . . sn → s in Σ, fTΣ/B
: TΣ/B,s1 × . . .× TΣ/B,sn ∋

([t1], . . . , [tn]) 7→ [f (t1, . . . , tn)] ∈ TΣ/B,s .

Note that the definition of fTΣ/B
does not depend on the choice of

the t1, . . . , tn, since if ti =B t ′i , 1 ≤ i ≤ n, then we have:
f (t1, . . . , tn) =B f (t ′1, . . . , t

′
n), since we can build a proof from the

proofs of ti =B t ′i , 1 ≤ i ≤ n.
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Determinism

Another requirement on (Σ,B, E⃗ ) is determinism: if a term t is
simplified by E⃗ modulo B to two different terms u and v , and
u ̸=B v , then u and v can always be further simplified by E⃗
modulo B to a common term w .

This implies (Exercise!) that if t →⋆

E⃗/B
u and t →⋆

E⃗/B
v , and u

and v cannot be further simplified by E⃗ modulo B, then we must
have u =B v . This is the idea of determinism: if rewriting with E⃗
modulo B yields a fully simplified answer, then that answer must
be unique modulo B.

That is, modulo the axioms B, the final result of rewriting a term t
with the rules E⃗ modulo B should not depend on the particular
order in which the rewrites have been performed.
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Determinism = Confluence

Determinism is captured by confluence. The rules E⃗ of (Σ,B, E⃗ )
are confluent modulo B iff for each t ∈ T ◦

Σ(Y ), whenever

t →⋆

E⃗/B
u, t →⋆

E⃗/B
v , there is a w ∈ T ◦

Σ(Y ) such that u →⋆

E⃗/B
w

and v →⋆

E⃗/B
w . This can be described diagrammatically (dashed

arrows denote existential quantification):

t

⋆

E⃗/B ~~}}
}}
}}
}}

⋆

E⃗/B

  A
AA

AA
AA

A

u

⋆

E⃗/B

  

v

⋆

E⃗/B
~~

w

E⃗ is ground confluent modulo B if this holds for all t ∈ T ◦
Σ.
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Termination

Definition

For the rewrite theory (Σ,B, E⃗ ), rules E⃗ are called terminating
modulo B iff →

E⃗/B
is well-founded. E⃗ is called weakly terminating

modulo B iff any t ∈ T ◦
Σ(Y ) has a E⃗/B-normal form, i.e.,

∃v ∈ T ◦
Σ(Y ) s.t. t →

⋆

E⃗/B
v ∧ ̸ ∃w ∈ T ◦

Σ(Y ) s.t. v →E⃗/B
w .

(Notation: t →!
E⃗/B

v).

If (Σ,B, E⃗ ) is ground confluent and terminating modulo B, each
t ∈ TΣ reduces to an E⃗/B-normal form denoted t!

E⃗/B
, and t!

E⃗/B

is unique modulo B, i.e., [t!
E⃗/B

] is unique. Furthermore, if Σ is

B-preregular, and E⃗ is sort-decreasing, both Unique Termination
and Sort Preservation hold, and we have an S-sorted function:

!
E⃗/B

: TΣ ∋ t 7→ [t!
E⃗/B

] ∈ TΣ/B
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Joinability and the Church-Rosser Property

Call two terms t, t ′ ∈ T ◦
Σ(Y ) joinable with E⃗ modulo B, denoted

t ↓
E⃗/B

t ′, iff (∃w ∈ T ◦
Σ(Y )) t →

⋆

E⃗/B
w ∧ t ′ →⋆

E⃗/B
w .

Execise. Prove that if (Σ,E ∪ B) is an order-sorted equational
theory whose rules E⃗ are confluent modulo B, then the following
equivalence, called the Church-Rosser property, holds for any two
terms t, t ′ ∈ T ◦

Σ(Y ):

(†) t =E∪B t ′ ⇔ t ↓
E⃗/B

t ′.

Prove that if E⃗ is also terminating modulo B we also have:

(‡) t =E∪B t ′ ⇔ t!
E⃗/B

=B t ′!
E⃗/B

Since =B (with B A,C ,U axioms) is decidable, we can decide
t =E∪B t ′ by deciding t!

E⃗/B
=B t ′!

E⃗/B
, which we can do in Maude

by typing: red t == t’ . (†) reduces equational deduction to
rewriting, and (‡) makes it decidable.12/24
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Subsignatures and Constructor Subsignatures

Before defining sufficient completeness we make more precise the
notions of subsignature and constructor subsignature.

Definition

An order-sorted signature Σ′ = ((S ′, <′),F ′,G ′),Σ′ is called a
subsignature of an order-sorted signature Σ = ((S , <),F ,G ),
denoted Σ′ ⊆ Σ, iff:

1 S ′ ⊆ S , <′⊆<, and F ′ ⊆ F .

2 G ′ ⊆ G , i.e., for each (f ′ : w ′ → s ′) ∈ G ′ we have
(f ′ : w ′ → s ′) ∈ G .

If S ′ = S and <′=< we say that Σ′ ⊆ Σ on the same sort poset.

In a functional module fmod (Σ,E ∪ B) endfm, the ctor
declaration defines a subsignature Ω ⊆ Σ on the same sort poset
(S , <), called the constructor subsignature.
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Sufficient Completeness Defined

Definition

Let the rewrite theory (Σ,B, E⃗ ) be terminating, and Ω ⊆ Σ a
subsignature inclusion, where Ω has the same poset of sorts as Σ.
We call the rules E⃗ sufficiently complete modulo B with respect to
the constructor subsignature Ω iff for each t ∈ TΣ and each
E⃗/B-normal form of t, i.e., each u ∈ TΣ s.t. t →!

E⃗/B
u, we have

u ∈ TΩ.
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More on Sufficient Completeness

If Σ2 is kind-complete, then the above requirement that for each
t ∈ TΣ, if t →!

E⃗/B
u then u ∈ TΩ should apply only to t ∈ TΣ,s

with s ∈ S in the original set of sorts, before adding the “kind” [s]
on top of each connected component [s] and lifting operators to
kinds. I.e., the sufficient completeness for E⃗ modulo B should be
required only for terms in the original signature Σ before
kind-completing it to Σ2.

Example. For sorts Nat and NzNat with Nat < NzNat, and
constructors 0 :→ Nat and s : Nat → NzNat, the predecessor
function p : NzNat → Nat defined by the equation p(s(x)) = x is
sufficiently complete. But the term p(0) of kind [Nat] is in normal
form, yet is not a constructor term.
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More on Sufficient Completeness (II)

If (Σ,B, E⃗ ) has Ω ⊆ Σ as a constructor subsignature with E⃗
terminating modulo B, we say that the constructors Ω are free
modulo B in (Σ,B, E⃗ ) iff for each sort s which is not a kind and
each u ∈ TΩ,s we have u = u!

E⃗/B
. That is, each u ∈ TΩ,s is in

E⃗ ,B-normal form.

Example. Multisets of natural numbers, with Nat < MSet, and
constructors ∅ :→ MSet and , : MSet MSet → MSet and axioms
ACU for , are free modulo ACU. But Sets of natural numbers,
obtained by adding the equation n, n = n, where n has sort Nat
are not free modulo ACU. For example, the set 0, 0, s(0) is not in
E⃗ ,B-normal form, since (0, 0, s(0))!

E⃗/ACU
= 0, s(0).
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The Canonical Term Algebra

Let fmod (Σ,E ∪ B) enfm have Σ B-preregular and constructor
subsignature Ω ⊆ Σ; and let (Σ,B, E⃗ ) be sort-decreasing,
confluent, terminating and sufficiently complete modulo B (w.r.t.
Ω). Then, the semantics of fmod (Σ,E ∪ B) enfm is defined by its
canonical term algebra CΣ/E ,B = (CΣ/E ,B , CΣ/E ,B

), where:

for each s ∈ S , CΣ/E ,B,s = {[u] ∈ TΩ/B,s | u = u!
E⃗/B
}

For a :→ s in Σ, aCΣ/E ,B
= [a!

E⃗/B
] ∈ CΣ/E ,B,s .

For f : s1 . . . sn → s in Σ,
fCΣ/E ,B

: CΣ/E ,B,s1 × . . .× CΣ/E ,B,sn ∋ ([t1], . . . , [tn]) 7→
[f (t1, . . . , tn)!E⃗/B

] ∈ CΣ/E ,B,s .

Ground confluence and termination imply Unique Termination.
Sufficient Completeness is guaranteed. Sort-decreasingness and
B-preregularity imply Sort Preservation. CΣ/E ,B now allows: (i)
axioms B, and (ii) constructors that need not be free modulo B.
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Example of Canonical Term Algebra

Consider the following:

A signature Ω of constructors with sorts Nat and Set, subsort
Nat < Set, and constructors 0 :→ Nat, s : Nat → Nat,
∅ :→ Set and , : Set Set → Set and axioms B = ACU for
, .

Σ adds to Ω the function symbol +1 : Set → Set.

E = {(n, n) = n, +1(∅) = ∅, +1(n, S) = s(n),+1(S)}, where
n has sort Nat and S has sort Set.

Then, up to the slight change of representation n1, . . . , nk versus
{n1, . . . , nk}, CΣ/E ,B is the algebra with sorts Nat, resp. Set,
interpreted as N, resp. Pfin(N), set union function, denoted
, CΣ/E ,B

, and the function +1CΣ/E ,B
increases by 1 each set

element.
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Examples of Sufficient Completeness Modulo B

For example, consider the reverse function in the list module

fmod MY-LIST is protecting NAT .

sorts NeList List .

subsorts Nat < NeList < List .

op _;_ : List List -> List [assoc] .

op _;_ : NeList NeList -> NeList [assoc ctor] .

op nil : -> List [ctor] .

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .

endfm

Are nil and ; (plus 0 and s) really the constructors of this
module as claimed?
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Examples of Sufficient Completeness Modulo B (II)

The answer is that they are not, as witnessed by:

Maude> red rev(7) .

reduce in MY-LIST : rev(7) .

rewrites: 0 in 0ms cpu (0ms real) (~ rewrites/second)

result List: rev(7)

The problem is that the above two equations would have been
sufficient if we had also declared the id: nil attribute for ; but
do not fully define rev if only the assoc attribute is used.

In future lectures we shall see how sufficient completness can be
automatically checked under reasonable assumptions.
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Examples of Sufficient Completeness Modulo B (III)

So, suppose we add an extra equation for rev

fmod MY-LIST is protecting NAT .

sorts NeList List .

subsorts Nat < NeList < List .

op _;_ : List List -> List [assoc] .

op _;_ : NeList NeList -> NeList [assoc ctor] .

op nil : -> List [ctor] .

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat) = N:Nat .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .

endfm

Is now this module sufficiently complete?
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Examples of Sufficient Completeness Modulo B (IV)

Indeed we now have

Maude> red rev(7) .

reduce in MY-LIS

But it is still not sufficiently complete, since

Maude> red nil ; 7 .

reduce in MY-LIST : nil ; 7 .

result List: nil ; 7

is not a constructor term, since ; is a constructor on NeList but
a defined function on List.
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Examples of Sufficient Completeness Modulo B (V)

The really sufficiently complete specification, making the
constructors free modulo assoc, is

fmod MY-LIST is protecting NAT . sorts NeList List .

subsorts Nat < NeList < List .

op _;_ : List List -> List [assoc] .

op _;_ : NeList NeList -> NeList [assoc ctor] .

op nil : -> List [ctor] .

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat) = N:Nat .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .

eq nil ; L:List = L:List .

eq L:List ; nil = L:List .

endfm

Maude> red nil ; 7 .

reduce in MY-LIST : nil ; 7 .

result NzNat: 7
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Examples of Sufficient Completeness Modulo B (VI)

Sets of natural numbers do not have free constructors. The
following is another example of an executable equational theory
whose constructors are not free.

fmod NAT/3 is

sorts Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

eq s(s(s(0))) = 0 .

endfm
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