
Program Verification: Lecture 5

Program Verification: Lecture 5

José Meseguer

University of Illinois at Urbana-Champaign (USA)

1/28

Program Verification: Lecture 5

Subterms

In a Σ-term f (t1, . . . , tn), the t1, . . . , tn are called its immediate
subterms, denoted ti � f (t1, . . . , tn), 1 ≤ i ≤ n. Note that the
inverse relation �−1 = � is well-founded, i.e., terminating.

A term u is called a subterm of t iff t �∗ u, and a proper subterm
of t iff t �+ u. Note that the relation �+ is also well-founded and
a strict order.

Notation: T ◦Σ(X) =def
⋃

s∈S TΣ(X)s . Given a term t ∈ T ◦Σ(X), we

denote by vars(t) the set of its variables, that is,
vars(t) = {x ∈

⋃
X | t �∗ x}.

A term t may contain different occurrences of the same subterm u.
For example, the subterm g(a) occurss twice in the term
f (b, h(g(a)), g(a)).

2/28

Program Verification: Lecture 5

Context-Subterm Decomposition of a Term

To indicate where a subterm u is located we can replace u by a
hole, a new constant [], added at the kind level to the signature Σ,
marking where the subterm u was before we removed it.

For example, we can indicate the two places where g(a) occurs in
f (b, h(g(a)), g(a)) by f (b, h([]), g(a)) and f (b, h(g(a)), []). A term
with a single occurrence of a hole [] is called a context.

We write C [] to denote a context. Given a context C [] and a term
u, we can obtain a new term, denoted C [u], by replacing the hole
[] by the term u. For example, if C [] = f (b, h([]), g(a)) and
u = k(b, y), then C [u] = f (b, h(k(b, y)), g(a)).

3/28

Program Verification: Lecture 5

Context-Subterm Decomposition of a Term (II)

Of course, if C [] is the context obtained from a term t by placing a
hole [] were subterm u occurred, then we have the term identity
t = C [u].

That is, we can always decompose a term t into a context and a
chosen subterm at a chosen occurrence, where if t = C [u], then
the decomposition of t into the context-subterm pair (C [], u) is
succinctly indicated by the more compact notation C [u].

For example, we have, among others, the following decompositions
of our term f (b, h(g(a)), g(a)):

f (b, h([g(a)]), g(a)) = f (b, [h(g(a))], g(a)) = [f (b, h(g(a)), g(a))]

where the last decomposition has an “empty context” [].
4/28

Program Verification: Lecture 5

Equations and Equational Theories

Given a sensible order-sorted signature Σ = ((S , <),F ,G), a
Σ-equation is a formula t = t ′, where t, t ′ ∈ T ◦Σ(X), and where we

require that t = t ′ is well typed, in the sense that there are sorts
s, s ′ ∈ S such that t ∈ TΣ(X),s , t

′ ∈ TΣ(X),s′ , and [s] = [s ′].

An equational theory is then a pair (Σ,E), with Σ and order-sorted
signature, and E a set of Σ-equations.

In an equational theory (Σ,E) all equations t = t ′ ∈ E are
implicitly assumed to be universally quantified as

(∀x1 : s1, . . . , xn : sn) t = t ′

with vars(t = t ′) = {x1 : s1, . . . , xn : sn}, where, by definition,
vars(t = t ′) = vars(t) ∪ vars(t ′).

5/28

Program Verification: Lecture 5

Equational Deduction: Replacing Equals by Equals

Equational deduction is the systematic replacement of equals by
equals using the given equations E .

For example, we may use the semiring theory equations SR:
(1) x + y = y + x , (2) x ∗ y = y ∗ x , (3)
(x + y) + z = x + (y + z), (4) (x ∗ y) ∗ z = x ∗ (y ∗ z), (5)
x + 0 = x , (6) x ∗ 1 = x , (7) x ∗ (y + z) = (x ∗ y) + (x ∗ z), to
prove the polynomial equality y + (z + (0 + (1 ∗ x)) = (y + z) + x
by the following sequence of replaments of equals by equals:

(‡) y+(z+[0+(1∗x)]) = y+(z+[(1∗x)+0]) = y+(z+[1∗x]) =

y + (z + [x ∗ 1]) = [y + (z + x)] = (y + z) + x

where at each point the subterm where an equation is applied is
marked by the term decomposition.

6/28

Program Verification: Lecture 5

Equational Deduction: Replacing Equals by Equals (II)

We can make the above proof of equality (‡) more informative by
using the name SR of the above set of equations (1)–(7), and
indicating a proof step t = t ′ by:

applying an equation from left to right by t →SR t ′, and

applying an equation from right to left by t SR← t ′.

With this notation we obtain the more informative proof:

y+(z+[0+(1∗x)])→SR y+(z+[(1∗x)+0])→SR y+(z+[1∗x])→SR

y + (z + [x ∗ 1])→SR [y + (z + x)] SR← (y + z) + x .

7/28

Program Verification: Lecture 5

Term Rewriting

Certain equations, for example equations (3)–(7) in SR, can be
applied from left to right as algebraic simplification rules, because
their righthand side is clearly simpler, so that applying them leads
to a simpler expressions.

Algebraic simplification produces a special type of equational
proofs, called algebraic simplification proofs, where equations are
always applied from left to right. Here is an algebraic simplification
proof with equations in SR for a polynomial expression:

([x+0]∗(y+(z∗1)))+x ′ →SR (x∗(y+[z∗1]))+x ′ →SR [x∗(y+z)]+x ′ →SR

[((x ∗ y) + (x ∗ z)) + x ′]→SR (x ∗ y) + ((x ∗ z) + x ′)

This left to right process is called term rewriting, or term reduction.

8/28

Program Verification: Lecture 5

Rewrite Rules and Term Rewriting Systems

We can make term rewriting explicit by choosing an orientation for
an equation: we can orient an equation t = t ′ from left to right as
a so-called rewrite rule t → t ′, and from right to left as the rewrite
rule t ′ → t.

Definition

(Rewrite Rules and Term Rewiting Systems). Given a sensible
order-sorted signature Σ = ((S , <),F ,G), a Σ-rewrite rule is a
sequent t → t ′, where t, t ′ ∈ T ◦Σ(X), and where we require that the

rule t → t ′ is well typed, in the sense that there are sorts s, s ′ ∈ S
such that t ∈ TΣ(X),s , t

′ ∈ TΣ(X),s′ , and [s] = [s ′].

A term rewriting system is then a pair (Σ,R), with Σ an
order-sorted signature, and R a set of Σ-rewrite rules.

9/28

Program Verification: Lecture 5

The Rewrite Relation

Definition

Let Σ = ((S , <),F ,G) be a sensible, kind-complete signature, let
(Σ,R) be a term rewriting system, and let Y = {Ys}s∈S be an
S-indexed set of variables. Then an R-rewrite step is a pair (u, v),
denoted u →R v , such that u, v ∈ T ◦Σ(Y) and there is a rewrite rule

t → t ′ ∈ R, a substitution θ : vars(t → t ′) −→ TΣ(Y), and a term
decomposition u = C [tθ] such that v = C [t ′θ], where, by
definition, vars(t → t ′) = vars(t) ∪ vars(t ′).

Since Σ is kind-complete, if t → t ′ ∈ R and u = C [tθ] : [s], then
we must have v = C [t ′θ] : [s], that is, →R never changes the kind
[s]. However, we may have ls(t ′) = [s], an “error” term.

We denote by →+
R the transitive closure of →R , and by →∗R the

reflexive-transitive closure of →R .

10/28

Program Verification: Lecture 5

Rewrite Proofs

Definition

A (Σ,R)-rewrite proof is, by definition, either:

a 0-step rewrite t →∗R t for some term t ∈ T ◦Σ(X) on some
variables Y , or

a sequence of R-rewrite steps of the form

t0 →R t1 →R t2 . . . tn−1 →R tn

with n ≥ 1, witnessing t0 →+
R tn.

11/28

Program Verification: Lecture 5

The Equality Relation and Equational Proofs

The notion of an equational proof, that is, a sequence of steps of
replacement of equals by equals using equations E , is a trivial
instance of the notion of a rewrite proof.

Given an equational theory (Σ,E), all we need to do is to consider

proofs in the term rewriting system (Σ,
−→
E ∪
←−
E), where, by

definition:
−→
E is the set of left-to-right orientations−→
E = {t → t ′ | t = t ′ ∈ E}; and

←−
E is the set of right-to-left orientations←−
E = {t ′ → t | t = t ′ ∈ E}.

12/28

Program Verification: Lecture 5

The Equality Relation and Equational Proofs (II)

Definition

Given an equational theory (Σ,E) with Σ kind-complete and with
nonempty sorts (i.e., ∀s ∈ S , TΣ,s ̸= ∅), an E -equality step is, by

definition, a (
−→
E ∪
←−
E)-rewrite step u →

(
−→
E ∪
←−
E)

v , denoted u ↔E v ,

where u, v ∈ T ◦Σ(Y) for some variables Y .

↔+
E denotes the transitive closure of ↔E ; and ↔∗E the

reflexive-transitive closure of ↔E . ↔∗E is called the E -equality
relation, and is often abbreviated to =E . It is also called the
relation of equality modulo E .

A (Σ,E)-equality proof is by, definition, either a 0-step E -equality
t ↔∗E t for some term t ∈ T ◦Σ(Y), or a sequence of E -equality steps
of the form t0 ↔E t1 ↔E t2 . . . tn−1 ↔E tn, with n ≥ 1, witnessing
t0 ↔+

E tn.
13/28

Program Verification: Lecture 5

Term Rewriting Modulo Axioms

Certain equations are intrinsically problematic for term rewriting.
For example, the commutativity equation x + y = y + x is
intrinsically problematic for rewriting because:

we do not obtain a simpler term, but only a “mirror image” of
the original term; for example, (x ∗ 7) + (0 ∗ y) is rewritten to
(0 ∗ y) + (x ∗ 7); and

even worse, we can easily loop when applying this equation, as
in the infinite, alternating sequence

(x ∗7)+(0∗y)→E (0∗y)+(x ∗7)→E (x ∗7)+(0∗y)→E . . .

The solution to this problem is to build in certain, commonly
occurring equational axioms, such as the above commutativity
axioms, so that rewriting takes place modulo such axioms.

14/28

Program Verification: Lecture 5

Term Rewriting Modulo Axioms (II)

For example, we can decompose our equations SR into a built-in,
commutative part C = {x + y = y + x , x ∗ y = y ∗ x} and the rest,
say, SR0 = {(x + y) + z = x + (y + z), (x ∗ y) ∗ z =
x ∗ (y ∗ z), x + 0 = x , x ∗ 1 = x , x ∗ (y + z) = (x ∗ y) + (x ∗ z)},
and then rewrite with the equations in SR0 from left to right
applying them, not just to the given term t, but to any other term
t ′ which is provably equal to t by the commutativity axioms C .

This, more powerful rewrite relation is called rewriting modulo C ,
and is denoted →SR0/C . For example, we can simplify the
expression ((0 + x) ∗ ((1 ∗ y) + 7)) + z to (x ∗ y) + ((x ∗ 7) + z) in
just four steps with →SR0/C as follows:

([0+x]∗((1∗y)+7))+z →SR0/C (x∗([1∗y]+7))+z →SR0/C [x∗(y+7)]+z →SR0/C

[((x ∗ y) + (x ∗ 7)) + z] →SR0/C (x ∗ y) + ((x ∗ 7) + z)
15/28

Program Verification: Lecture 5

Term Rewriting Modulo Axioms (III)

But why stopping with commutativity? How about associativity?
An associativity (A) equation such as (x + y)+ z = x +(y + z) has
no looping problems; but parentheses around associative operators
are a nuisance and can block the application of some equations.

For example, we can simplify to 0 the term
((x + y) + z) + −(y + (z + x)) in one step of rewriting modulo
the following set AC of associativity and commutativity axioms for
+ and ∗ , AC = {x + y = y + x , x ∗ y = y ∗ x , (x + y) + z =

x + (y + z), (x ∗ y) ∗ z = x ∗ (y ∗ z)}, using the single equation
INV+ = {x + −x = 0} oriented as the rule x + −x → 0 in ⃗INV+.

((x + y) + z) + −(y + (z + x))→ ⃗INV+/AC
0.

That is, when rewriting modulo AC : (i) the order of the arguments
does not matter (because of commutativity, C), and (ii)
parentheses do not matter (because of associativity, A).

16/28

Program Verification: Lecture 5

Rewrite Theories

Likewise, we could also build in the unit element axioms
U = {x + 0 = x , x ∗ 1 = x}. In general, any combination of C ,
and/or A, and/or U axioms could be built in.

In fact, the idea of building in a set B of equational axioms, so
that we rewrite with a set of rules R modulo B, is entirely general,
and can be formalized by the notion of a rewrite theory.

Definition

Let Σ be a sensible order-sorted signature. A rewrite theory is a
triple (Σ,B,R), where B is a set of Σ-equations, and R is a set of
Σ-rewrite rules.

Rewriting with R modulo B can then be formalized as follows.
17/28

Program Verification: Lecture 5

Rewriting Modulo B

Definition

For (Σ,B,R) a rewrite theory with Σ sensible and kind-complete,
an R-rewrite step modulo B is a pair (u, v) ∈ T ◦Σ(Y) × T ◦Σ(Y),

denoted u →R/B v , such that ∃u′, v ′ ∈ T ◦Σ(Y) such that:

u =B u′ →R v ′ =B v .

We call →R/B the one-step R-rewrite relation modulo B, and
denote by →0

R/B the relation =B , called the 0-step R-rewrite

relation modulo B, by →+
R/B the transitive closure of →R/B , and

by →⋆
R/B the relation →+

R/B ∪(=B).

E.g., ((x + y) + z) + −(y + (z + x))→ ⃗INV+/AC
0 holds because:

((x + y) + z) + −(y + (z + x)) =AC ((x + y) + z) + −((x + y) + z) → ⃗INV+
0

18/28

Program Verification: Lecture 5

Rewrite Proofs Modulo B

Definition

An R-rewrite proof modulo B is either:

a 0-step R-rewrite modulo B of the form u →0
R/B v , so that,

by definition, u =B v , for u, v ∈ TΣ(Y), or

a sequence of R-rewrite steps modulo B of the form

v0 →R/B v1 →R/B v2 . . . vn−1 →R/B vn,

n ≥ 1, witnessing v0 →+
R/B vn.

19/28

Program Verification: Lecture 5

The Natural Numbers with a C Equality Predicate

The built-in module NAT protects BOOL. It simultaneously and
efficiently supports both Peano (0 and s) and decimal notation.
Here we add to it a commutative equality predicate.

fmod NAT-EQ is protecting NAT .

op _.=._ : Nat Nat -> Bool [comm] . *** equality predicate .

vars N M : Nat .

eq N .=. N = true .

eq 0 .=. s(N) = false .

eq s(N) .=. s(M) = N .=. M .

endfm

Maude> red s(0) .=. s(s(s(0))) .

result Bool: false

==

Maude> red 7 .=. 13 .

result Bool: false

==

red 1000000 .=. 1000000 .

result Bool: true

20/28

Program Verification: Lecture 5

Example of Equational Simplification Modulo AU

fmod LIST-AU is protecting NAT-EQ .

sort List . subsort Nat < List .

op nil : -> List [ctor] .

op _;_ : List List -> List [assoc id: nil ctor] .

op _in_ : Nat List -> Bool .

var N M : Nat . vars L L’ : List .

eq N in nil = false .

eq N in L ; N ; L’ = true . *** not needed, but more efficient

eq N in M ; L = if N .=. M then true else N in L fi .

endfm

Maude> red 7 in 3 ; 4 ; 9 .

result Bool: false

==

Maude> red 7 in 4 ; 3 ; 7 .

result Bool: true

21/28

Program Verification: Lecture 5

Example of Equational Simplification Modulo A

fmod LIST-A is protecting NAT-EQ .

sort List . subsort Nat < List .

op nil : -> List [ctor] .

op _;_ : List List -> List [assoc ctor] .

op _in_ : Nat List -> Bool .

vars N M : Nat . vars L L’ : List .

eq nil ; L = L .

eq L ; nil = L .

eq N in nil = false .

eq N in M = N .=. M .

eq N in N ; L = true . *** not needed, but more efficient

eq N in L ; N = true . *** not needed, but more efficient

eq N in L ; N ; L’ = true . *** not needed, but more efficient

eq N in M ; L = if N .=. M then true else N in L fi .

endfm

Maude> red 7 in 3 ; 4 ; 9 .

result Bool: false

==

Maude> red 7 in 4 ; 3 ; 7 .

result Bool: true

22/28

Program Verification: Lecture 5

Example of Equational Simplification Modulo ACU (III)

fmod MSET-ACU is protecting NAT-EQ .

sort MSet .

subsort Nat < MSet .

op nil : -> MSet [ctor] .

op _;_ : MSet MSet -> MSet [assoc comm id: nil ctor] .

op _in_ : Nat MSet -> Bool .

vars N M : Nat . var S : MSet .

eq N in nil = false .

eq N in N ; S = true . *** not needed, but more efficient

eq N in M ; S = if N .=. M then true else N in S fi .

endfm

Maude> red 7 in 3 ; 4 ; 9 .

result Bool: false

==

Maude> red 7 in 4 ; 3 ; 7 .

result Bool: true

23/28

Program Verification: Lecture 5

Example of Equational Simplification Modulo AC

fmod MSET-AC is protecting NAT-EQ .

sort MSet . subsort Nat < MSet .

op nil : -> MSet [ctor] .

op _;_ : MSet MSet -> MSet [assoc comm ctor] .

op _in_ : Nat MSet -> Bool .

vars N M : Nat . var S : MSet .

eq nil ; S = S .

eq N in nil = false .

eq N in M = N .=. M .

eq N in N ; S = true . *** not needed, but more efficient

eq N in M ; S = if N .=. M then true else N in S fi .

endfm

Maude> red 7 in 3 ; 4 ; 9 .

result Bool: false

==

Maude> red 7 in 4 ; 3 ; 7 .

result Bool: true

24/28

Program Verification: Lecture 5

Example of Equational Simplification Modulo AC

AC finite sets of naturals using identity and idempotency equations.

fmod NAT-SET is protecting NAT-EQ .

sort NatSet . subsort Nat < NatSet .

op mt : -> NatSet [ctor] . *** empty set

op _,_ : NatSet NatSet -> NatSet [ctor assoc comm] . *** set union

op _/\ _ : NatSet NatSet -> NatSet [assoc comm] . *** intersection

vars X Y : NatSet . vars N M : Nat .

eq mt,X = X . *** identity

eq X,X = X . *** idempotency

eq mt /\ X = mt .

eq N /\ M = if N .=. M then N else mt fi . *** singletons inters

eq N /\ (M,X) = (N /\ M),(N /\ X) . *** distributivity

eq (N,X) /\ (M,Y) = (N /\ M),(N /\ Y),(X /\ M),(X /\ Y) . *** distributivity

endfm

Maude> red (1,1,2,3,3,3,4,5,5) /\ (3,3,4,4,5,6,6,7,7,7) .

result NatSet: 3,4,5

25/28

Program Verification: Lecture 5

Caveats on Equational Simplification Modulo U

Equational simplification modulo identity can be tricky. For
example, the innocent-looking idempotency equation in

fmod NAT-SET-NONTERMINATING is protecting NAT .

sort NatSet .

subsort Nat < NatSet .

op mt : -> NatSet [ctor] .

op _,_ : NatSet NatSet -> NatSet [ctor assoc comm id: mt] .

var X : NatSet .

eq X,X = X .

endfm

is nonterminating, since we have,

mt =ACU mt, mt −→
E⃗
mt =ACU mt, mt −→

E⃗
mt . . .

26/28

Program Verification: Lecture 5

Caveats on Equational Simplification Modulo U (II)

Nontermination can be avoided by giving instead a more careful
equation, where we restrict idempotency to singleton sets (set
elements) with the same effect, sice this ensures that all repeated
elements will be eliminated by the (now terminating) equation,

var N : Nat .

eq N,N = N .

Another alternative is to use subsort overloading to declare:

sort NatSet NeNatSet .

subsort Nat < NeNatSet < NatSet .

op mt : -> NatSet [ctor] .

op _,_ : NatSet NatSet -> NatSet [ctor assoc comm id: mt] .

op _,_ : NeNatSet NeNatSet -> NeNatSet [ctor assoc comm id: mt] .

var X : NeNatSet .

eq X,X = X .

27/28

Program Verification: Lecture 5

Readings

All the theoretical aspects of the material presented in this lecture
are covered in detail in STAC 9.1 and 9.2.

28/28

