Program Verification: Lecture 28

José Meseguer University of Illinois at Urbana-Champaign

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\leadsto_{R/(E \cup B)}$ from a symbolic initial state $u_1 \vee \ldots \vee u_n$.

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\leadsto_{R/(E \cup B)}$ from a symbolic initial state $u_1 \vee \ldots \vee u_n$. Can this be generalized to narrowing-based symbolic LTL model checking for such an \mathcal{R} ?

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\leadsto_{R/(E \cup B)}$ from a symbolic initial state $u_1 \vee \ldots \vee u_n$. Can this be generalized to narrowing-based symbolic LTL model checking for such an \mathcal{R} ?

The main problem is that, in general, it is meaningless to say which state predicates $p \in \Pi$ are satisfied in a symbolic state u , since some ground instance $u\rho$ may satisfy some predicates in Π , while another ground instance $u\tau$ may satisfy a different set of state predicates in Π .

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\leadsto_{R/(E \cup B)}$ from a symbolic initial state $u_1 \vee \ldots \vee u_n$. Can this be generalized to narrowing-based symbolic LTL model checking for such an \mathcal{R} ?

The main problem is that, in general, it is meaningless to say which state predicates $p \in \Pi$ are satisfied in a symbolic state u , since some ground instance $u\rho$ may satisfy some predicates in Π , while another ground instance *uτ* may satisfy a different set of state predicates in Π.

However, if the states \mathcal{R} -reachable from $u_1 \vee \ldots \vee u_n$ are deadlock-free, and the equations *D* defining the satisfaction relation $u \models p$ between terms of top sort *State* and state predicates Π for the true and false cases are s.t. *E* ∪ *D* ∪ *B* is FVP and protects BOOL, LTL symbolic model checking of R from a symbolic initial state $u_1 \vee \ldots \vee u_n$ becomes possible in a symbolic Kripke structure $\mathcal{N}^{\Pi}_\mathcal{R}(u_1 \vee \ldots \vee u_n)$, whose symbolic transitions are performed by a Π -aware narrowing relation \rightsquigarrow_{Π} .

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in R is defined by equations D s.t. *E* ∪ *D* ∪ *B* is FVP modulo *B* and protects BOOL, the Π-aware narrowing relation between terms $u, w \in T_{\Sigma, State}(X)$ is defined as follows:

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in R is defined by equations D s.t. *E* ∪ *D* ∪ *B* is FVP modulo *B* and protects BOOL, the Π-aware narrowing relation between terms $u, w \in T_{\Sigma, State}(X)$ is defined as follows:

$$
u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w
$$

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in R is defined by equations D s.t. *E* ∪ *D* ∪ *B* is FVP modulo *B* and protects BOOL, the Π-aware narrowing relation between terms $u, w \in T_{\Sigma, State}(X)$ is defined as follows:

$$
u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w
$$

•
$$
\exists v \ s.t. \ u \leadsto_R^{\alpha}(\text{E} \cup \text{B}) \ v
$$

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in R is defined by equations D s.t. *E* ∪ *D* ∪ *B* is FVP modulo *B* and protects BOOL, the Π-aware narrowing relation between terms $u, w \in T_{\Sigma, State}(X)$ is defined as follows:

$$
u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w
$$

•
$$
\exists v \ s.t. \ u \leadsto_R^{\alpha}(\text{E} \cup \text{B}) \ v
$$

$$
\bullet \ \exists (b_1, \ldots, b_k) \in \{ \mathit{true}, \mathit{false} \}^k
$$

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in R is defined by equations D s.t. *E* ∪ *D* ∪ *B* is FVP modulo *B* and protects BOOL, the Π-aware narrowing relation between terms $u, w \in T_{\Sigma, State}(X)$ is defined as follows:

$$
u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w
$$

•
$$
\exists v \ s.t. \ u \leadsto_R^{\alpha}(\text{E} \cup \text{B}) \ v
$$

- \bullet $\exists (b_1, \ldots, b_k) \in \{true, false\}^k$
- \bullet $\exists \gamma \in Unif_{E\cup D\cup B}(v \models p_1 = b_1 \land \ldots \land v \models p_k = b_k)$

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in R is defined by equations D s.t. *E* ∪ *D* ∪ *B* is FVP modulo *B* and protects BOOL, the Π-aware narrowing relation between terms $u, w \in T_{\Sigma, State}(X)$ is defined as follows:

$$
u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w
$$

•
$$
\exists v \ s.t. \ u \leadsto_R^{\alpha}(\text{E} \cup \text{B}) \ v
$$

•
$$
\exists (b_1, \ldots, b_k) \in \{true, false\}^k
$$

•
$$
\exists \gamma \in \text{Unif}_{E \cup D \cup B} (v \models p_1 = b_1 \land \dots \land v \models p_k = b_k)
$$

such that $w = v\gamma$.

For $\bigvee_{i\in I}u_i$, $I=\{1,\ldots,n\}$, define its Π -instances $\{u'_1,\ldots,u'_m\}=\emptyset$ $\{u_i\gamma \mid i \in I, \exists (b_1,\ldots,b_k) \in \{true, false\}^k, \exists \gamma \in \text{Unif}_{E \cup D \cup B}(u_i \models p_1 = b_1 \land \ldots \land u_i \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i \in I} u_i)$ has states

For $\bigvee_{i\in I}u_i$, $I=\{1,\ldots,n\}$, define its Π -instances $\{u'_1,\ldots,u'_m\}=\emptyset$ $\{u_i\gamma \mid i \in I, \exists (b_1,\ldots,b_k) \in \{true, false\}^k, \exists \gamma \in \text{Unif}_{E \cup D \cup B}(u_i \models p_1 = b_1 \land \ldots \land u_i \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i \in I} u_i)$ has states $N^{\Pi}_{\mathcal{R}}(\bigvee_{i \in I} u_i) =$

For $\bigvee_{i\in I}u_i$, $I=\{1,\ldots,n\}$, define its Π -instances $\{u'_1,\ldots,u'_m\}=\emptyset$ $\{u_i\gamma \mid i \in I, \exists (b_1,\ldots,b_k) \in \{true, false\}^k, \exists \gamma \in \text{Unif}_{E \cup D \cup B}(u_i \models p_1 = b_1 \land \ldots \land u_i \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i)$ has states $N^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i) =$ $\{w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \leadsto_{\Pi}^* w\}/\approx_{E \cup B}^*$

For $\bigvee_{i\in I}u_i$, $I=\{1,\ldots,n\}$, define its Π -instances $\{u'_1,\ldots,u'_m\}=\emptyset$ $\{u_i\gamma \mid i \in I, \exists (b_1,\ldots,b_k) \in \{true, false\}^k, \exists \gamma \in \text{Unif}_{E \cup D \cup B}(u_i \models p_1 = b_1 \land \ldots \land u_i \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i)$ has states $N^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i) =$ ${w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \leadsto_{\Pi}^* w}$, $\gg_{E \cup B}^* w$ iff exists a variable renaming *α* s.t. $v!_{\vec{E}/B}a =_B w!_{\vec{E}/B}$,

For $\bigvee_{i\in I}u_i$, $I=\{1,\ldots,n\}$, define its Π -instances $\{u'_1,\ldots,u'_m\}=\emptyset$ $\{u_i\gamma \mid i \in I, \exists (b_1,\ldots,b_k) \in \{true, false\}^k, \exists \gamma \in \text{Unif}_{E \cup D \cup B}(u_i \models p_1 = b_1 \land \ldots \land u_i \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i)$ has states $N^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i) =$ ${w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \leadsto_{\Pi}^* w}$, $\gg_{E \cup B}^* w$ iff exists a variable renaming *α* s.t. $v!_{\vec{E}/B}a =_B w!_{\vec{E}/B}$, transition relation \rightsquigarrow Π,

For $\bigvee_{i\in I}u_i$, $I=\{1,\ldots,n\}$, define its Π -instances $\{u'_1,\ldots,u'_m\}=\emptyset$ $\{u_i\gamma \mid i \in I, \exists (b_1,\ldots,b_k) \in \{true, false\}^k, \exists \gamma \in \text{Unif}_{E \cup D \cup B}(u_i \models p_1 = b_1 \land \ldots \land u_i \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i)$ has states $N^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i) =$ ${w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \leadsto_{\Pi}^* w}$, $\gg_{E \cup B}^* w$ iff exists a variable renaming *α* s.t. $v!_{\vec{E}/B}a =_B w!_{\vec{E}/B}$, transition relation \rightsquigarrow_{Π} , and satisfaction relation $[w] \models_{\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i \in I} u_i)} p_i$ defined for each $[w] \in N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ and $p_i \in \Pi$ by the unique $b'_i \in \{true, false\}^k$ such that $(w \models p_i)!_{E\vec{\cup}D,B} = b'_i, 1 \leq i \leq k$.

For $\bigvee_{i\in I}u_i$, $I=\{1,\ldots,n\}$, define its Π -instances $\{u'_1,\ldots,u'_m\}=\emptyset$ $\{u_i\gamma \mid i \in I, \exists (b_1,\ldots,b_k) \in \{true, false\}^k, \exists \gamma \in \text{Unif}_{E \cup D \cup B}(u_i \models p_1 = b_1 \land \ldots \land u_i \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i)$ has states $N^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i) =$ ${w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \leadsto_{\Pi}^* w}$, $\gg_{E \cup B}^* w$ iff exists a variable renaming *α* s.t. $v!_{\vec{E}/B}a =_B w!_{\vec{E}/B}$, transition relation \rightsquigarrow_{Π} , and satisfaction relation $[w] \models_{\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i \in I} u_i)} p_i$ defined for each $[w] \in N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ and $p_i \in \Pi$ by the unique $b'_i \in \{true, false\}^k$ such that $(w \models p_i)!_{E\vec{\cup}D,B} = b'_i, 1 \leq i \leq k$.

If $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i\in I}u_i)$ is deadlock-free, any LTL formula φ holds for initial state $\bigvee_{i\in I}u_i$ in $\mathbb{T}^{\Pi}_{\mathcal{R}}$ if (resp. iff) it does in $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ from $\{u'_1,\ldots,u'_m\}$ (resp. if $N^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ is finite or φ a safety formula) (see Appendix 1):

For $\bigvee_{i\in I}u_i$, $I=\{1,\ldots,n\}$, define its Π -instances $\{u'_1,\ldots,u'_m\}=\emptyset$ $\{u_i\gamma \mid i \in I, \exists (b_1,\ldots,b_k) \in \{true, false\}^k, \exists \gamma \in \text{Unif}_{E \cup D \cup B}(u_i \models p_1 = b_1 \land \ldots \land u_i \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i)$ has states $N^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i) =$ ${w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \leadsto_{\Pi}^* w}$, $\gg_{E \cup B}^* w$ iff exists a variable renaming *α* s.t. $v!_{\vec{E}/B}a =_B w!_{\vec{E}/B}$, transition relation \rightsquigarrow_{Π} , and satisfaction relation $[w] \models_{\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i \in I} u_i)} p_i$ defined for each $[w] \in N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ and $p_i \in \Pi$ by the unique $b'_i \in \{true, false\}^k$ such that $(w \models p_i)!_{E\vec{\cup}D,B} = b'_i, 1 \leq i \leq k$.

If $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i\in I}u_i)$ is deadlock-free, any LTL formula φ holds for initial state $\bigvee_{i\in I}u_i$ in $\mathbb{T}^{\Pi}_{\mathcal{R}}$ if (resp. iff) it does in $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ from $\{u'_1,\ldots,u'_m\}$ (resp. if $N^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ is finite or φ a safety formula) (see Appendix 1):

Theorem

For
$$
\varphi \in LTL(\Pi)
$$
 (resp. if $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite or φ is a safety formula)

$$
\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{\substack{i\in I\\ \text{Meguer}}} u_i), \{u'_1, \ldots, u'_m\} \models_{LTL} \varphi. \Rightarrow (resp. \Leftrightarrow) \mathbb{T}_{\mathcal{R}}^{\Pi}, \llbracket \bigvee_{i\in I} u_i \rrbracket_{E\cup B} \models_{LTL} \varphi.
$$

By the above Theorem, if the state space $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite, the Kripke structure $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ supports explicit-state LTL model checking using the decision procedure described in Lecture 23 to verify $\mathbb{T}_{\mathcal{R}}^{\Pi}$, $\llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup B} \models_{LTL} \varphi$.

By the above Theorem, if the state space $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite, the Kripke structure $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ supports explicit-state LTL model checking using the decision procedure described in Lecture 23 to verify $\mathbb{T}_{\mathcal{R}}^{\Pi}$, $\llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup B} \models_{LTL} \varphi$.

When $N^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_{i})$ is infinite, we can try one of the following three possibilities to reduce the state space of $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i)$ to a finite state space:

By the above Theorem, if the state space $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite, the Kripke structure $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ supports explicit-state LTL model checking using the decision procedure described in Lecture 23 to verify $\mathbb{T}_{\mathcal{R}}^{\Pi}$, $\llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup B} \models_{LTL} \varphi$.

When $N^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_{i})$ is infinite, we can try one of the following three possibilities to reduce the state space of $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i)$ to a finite state space:

1 Perform LTL model checking by folding variant narrowing, provided the folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ is finite.

By the above Theorem, if the state space $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite, the Kripke structure $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ supports explicit-state LTL model checking using the decision procedure described in Lecture 23 to verify $\mathbb{T}_{\mathcal{R}}^{\Pi}$, $\llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup B} \models_{LTL} \varphi$.

When $N^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_{i})$ is infinite, we can try one of the following three possibilities to reduce the state space of $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i)$ to a finite state space:

- **1** Perform LTL model checking by folding variant narrowing, provided the folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ is finite.
- ² Define an equational abstraction R/*G* s.t.: (i) *E* ∪ *D* ∪ *G* ∪ *B* is FVP and *protects* BOOL, and (ii) the folding \rightarrow _Π-narrowing forest is finite for $\mathcal{N}_{\mathcal{R}/\mathcal{G}}^{\Pi}(\bigvee_{i\in I}u_i)$.

By the above Theorem, if the state space $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite, the Kripke structure $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ supports explicit-state LTL model checking using the decision procedure described in Lecture 23 to verify $\mathbb{T}_{\mathcal{R}}^{\Pi}$, $\llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup B} \models_{LTL} \varphi$.

When $N^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_{i})$ is infinite, we can try one of the following three possibilities to reduce the state space of $\mathcal{N}^{\Pi}_\mathcal{R}(\bigvee_{i \in I} u_i)$ to a finite state space:

- **1** Perform LTL model checking by folding variant narrowing, provided the folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ is finite.
- ² Define an equational abstraction R/*G* s.t.: (i) *E* ∪ *D* ∪ *G* ∪ *B* is FVP and *protects* BOOL, and (ii) the folding \rightarrow _Π-narrowing forest is finite for $\mathcal{N}_{\mathcal{R}/\mathcal{G}}^{\Pi}(\bigvee_{i\in I}u_i)$.
- **3** Perform bounded LTL symbolic model checking.

The construction of $FNG_R^\Pi(\bigvee_{j\in J}\mathcal U'_j)$ is similar to that of the folding narrowing graph from $\bigvee_{i \in I} u_i$ in Lecture 24, replacing the folding relation $v\sqsubseteq_{E\cup B} w$ by the folding relation $v\sqsubseteq_{E\cup D\cup B}^{\Pi} w$ defined by the equivalence:

The construction of $FNG_R^\Pi(\bigvee_{j\in J}\mathcal U'_j)$ is similar to that of the folding narrowing graph from $\bigvee_{i \in I} u_i$ in Lecture 24, replacing the folding relation $v\sqsubseteq_{E\cup B} w$ by the folding relation $v\sqsubseteq_{E\cup D\cup B}^{\Pi} w$ defined by the equivalence:

$$
v \sqsubseteq_{E \cup D \cup B}^{\Pi} w \Leftrightarrow_{def} v \sqsubseteq_{E \cup B} w \wedge \forall p \in \Pi, (v \models p)!_{E \vec{\cup} D, B} = (w \models p)!_{E \vec{\cup} D, B}.
$$

The construction of $FNG_R^\Pi(\bigvee_{j\in J}\mathcal U'_j)$ is similar to that of the folding narrowing graph from $\bigvee_{i \in I} u_i$ in Lecture 24, replacing the folding relation $v\sqsubseteq_{E\cup B} w$ by the folding relation $v\sqsubseteq_{E\cup D\cup B}^{\Pi} w$ defined by the equivalence:

 $v \sqsubseteq_{E \cup D \cup B}^{\Pi} w \iff_{def} v \sqsubseteq_{E \cup B} w \land \forall p \in \Pi, (v \models p)!_{E \vec{\cup} D,B} = (w \models p)!_{E \vec{\cup} D,B}.$ The Completeness Theorem of Folding Narrowing in Lecture 24 generalizes to $(Ths 8, 12)$ in Appendix 2):

The construction of $FNG_R^\Pi(\bigvee_{j\in J}\mathcal U'_j)$ is similar to that of the folding narrowing graph from $\bigvee_{i \in I} u_i$ in Lecture 24, replacing the folding relation $v\sqsubseteq_{E\cup B} w$ by the folding relation $v\sqsubseteq_{E\cup D\cup B}^{\Pi} w$ defined by the equivalence:

 $v \sqsubseteq_{E \cup D \cup B}^{\Pi} w \iff_{def} v \sqsubseteq_{E \cup B} w \land \forall p \in \Pi, (v \models p)!_{E \vec{\cup} D,B} = (w \models p)!_{E \vec{\cup} D,B}.$ The Completeness Theorem of Folding Narrowing in Lecture 24 generalizes to $(Ths 8, 12)$ in Appendix 2):

Theorem

For $\varphi \in LTL(\Pi)$ (resp. φ a safety formula) we have:

$$
FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I} u_i), \bigvee_{j\in J} u'_j \models \varphi \Rightarrow (resp. \Leftrightarrow) \ \mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I} u_i), \bigvee_{j\in J} u'_j \models \varphi.
$$

State Space Reduction through Equational Abstractions

Under the assumptions about $\mathcal R$ in pg. 2, and those about $\mathcal R/G$ in (2) of pg. 5, we are back in the game: \mathcal{R}/G itself satisfies the assumptions in pg. 2. Therefore, for $\varphi \in LTL(\Pi)$ we have (by **Theorem** in pg. 6):

State Space Reduction through Equational Abstractions

Under the assumptions about $\mathcal R$ in pg. 2, and those about $\mathcal R/G$ in (2) of pg. 5, we are back in the game: \mathcal{R}/G itself satisfies the assumptions in pg. 2. Therefore, for $\varphi \in LTL(\Pi)$ we have (by **Theorem** in pg. 6):

$$
(\dagger) \text{ FNG}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{l \in L} u_l'' \models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{j \in J} u_j' \models \varphi
$$

State Space Reduction through Equational Abstractions

Under the assumptions about $\mathcal R$ in pg. 2, and those about $\mathcal R/G$ in (2) of pg. 5, we are back in the game: R/*G* itself satisfies the assumptions in pg. 2. Therefore, for $\varphi \in LTL(\Pi)$ we have (by **Theorem** in pg. 6):

$$
(\dagger) \text{ FNG}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{l \in L} u_l'' \models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{j \in J} u_j' \models \varphi
$$

where $\bigvee_{l \in L} u_l''$ are the Π -instances of $\bigvee_{i \in I} u_i$ in \mathcal{R}/G .

State Space Reduction through Equational Abstractions Under the assumptions about $\mathcal R$ in pg. 2, and those about $\mathcal R/G$ in (2) of pg. 5, we are back in the game: \mathcal{R}/G itself satisfies the assumptions

in pg. 2. Therefore, for $\varphi \in LTL(\Pi)$ we have (by **Theorem** in pg. 6):

$$
(\dagger) \text{ FNG}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{l \in L} u_l'' \models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{j \in J} u_j' \models \varphi
$$

where $\bigvee_{l \in L} u_l''$ are the Π -instances of $\bigvee_{i \in I} u_i$ in \mathcal{R}/G . Furthermore, it is proved in Appendix 1 that we also have the implications:

State Space Reduction through Equational Abstractions Under the assumptions about $\mathcal R$ in pg. 2, and those about $\mathcal R/G$ in (2) of pg. 5, we are back in the game: \mathcal{R}/G itself satisfies the assumptions in pg. 2. Therefore, for $\varphi \in LTL(\Pi)$ we have (by **Theorem** in pg. 6):

$$
(\dagger) \text{ FNG}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{l \in L} u_l'' \models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{j \in J} u_j' \models \varphi
$$

where $\bigvee_{l \in L} u_l''$ are the Π -instances of $\bigvee_{i \in I} u_i$ in \mathcal{R}/G . Furthermore, it is proved in Appendix 1 that we also have the implications:

$$
(\ddag)\ \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i\in I}u_i),\bigvee_{j\in J}u'_j\models\varphi\ \Rightarrow\ \mathbb{T}_{\mathcal{R}/G}^{\Pi}, [\bigvee_{i\in I}u_i]\!\!]_{E\cup G\cup B}\models_{LTL}\varphi\ \Rightarrow\ \mathbb{T}_{\mathcal{R}}^{\Pi}, [\bigvee_{i\in I}u_i]\!\!]_{E\cup B}\models_{LTL}\varphi
$$

State Space Reduction through Equational Abstractions Under the assumptions about $\mathcal R$ in pg. 2, and those about $\mathcal R/G$ in (2) of pg. 5, we are back in the game: R/*G* itself satisfies the assumptions in pg. 2. Therefore, for $\varphi \in LTL(\Pi)$ we have (by **Theorem** in pg. 6):

$$
(\dagger) \text{ FNG}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{l \in L} u_l'' \models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{j \in J} u_j' \models \varphi
$$

where $\bigvee_{l \in L} u_l''$ are the Π -instances of $\bigvee_{i \in I} u_i$ in \mathcal{R}/G . Furthermore, it is proved in Appendix 1 that we also have the implications:

$$
(\ddagger)\ \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i\in I}u_i),\bigvee_{j\in J}u'_j\models\varphi\;\Rightarrow\;\mathbb{T}_{\mathcal{R}/G}^{\Pi},[\bigvee_{i\in I}u_i]\!]_{E\cup G\cup B}\models_{LTL}\varphi\;\Rightarrow\;\mathbb{T}_{\mathcal{R}}^{\Pi},[\bigvee_{i\in I}u_i]\!]_{E\cup B}\models_{LTL}\varphi
$$

Therefore, from (\dagger) and (\dagger) if $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ is deadlock-free we get:

State Space Reduction through Equational Abstractions Under the assumptions about $\mathcal R$ in pg. 2, and those about $\mathcal R/G$ in (2) of pg. 5, we are back in the game: R/*G* itself satisfies the assumptions in pg. 2. Therefore, for $\varphi \in LTL(\Pi)$ we have (by **Theorem** in pg. 6):

$$
(\dagger) \text{ FNG}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{l \in L} u_l'' \models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \bigvee_{j \in J} u_j' \models \varphi
$$

where $\bigvee_{l \in L} u_l''$ are the Π -instances of $\bigvee_{i \in I} u_i$ in \mathcal{R}/G . Furthermore, it is proved in Appendix 1 that we also have the implications:

$$
(\ddag)\ \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i\in I}u_i),\bigvee_{j\in J}u'_j\models\varphi\;\Rightarrow\;\mathbb{T}_{\mathcal{R}/G}^{\Pi},[\bigvee_{i\in I}u_i]\bigupbrace_{E\cup G\cup B}\models_{LTL}\varphi\;\Rightarrow\;\mathbb{T}_{\mathcal{R}}^{\Pi},[\bigvee_{i\in I}u_i]\bigupbrace_{E\cup B}\models_{LTL}\varphi
$$

Therefore, from (\dagger) and (\dagger) if $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ is deadlock-free we get:

Theorem

Under the above assumptions about R and R/G the following implication holds:

$$
FNG_{\mathcal{R}/G}^{\Pi}(\bigvee_{i\in I} u_i), \bigvee_{l\in L} u''_l \models \varphi \Rightarrow \mathbb{T}_{\mathcal{R}}^{\Pi}, \llbracket \bigvee_{i\in I} u_i \rrbracket_{E\cup B} \models_{LTL} \varphi.
$$
• Construct a depth $\leq k$ under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$

• Construct a depth ≤ *k* under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I}u_i)$ (a more expensive, but more accurate, version under-approximates $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$).

• Construct a depth ≤ *k* under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I}u_i)$ (a more expensive, but more accurate, version under-approximates $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$).

• Construct a depth ≤ *k* under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I}u_i)$ (a more expensive, but more accurate, version under-approximates $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$).

Algorithm: Given a bound *n*, incrementally build a depth $\leq k$ $\mathsf{under}\text{-}\mathsf{approximation}$ of $FNG_R^\Pi(\bigvee_{i \in I} u_i)$, increasing $k \leq n$ iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to $\text{Verify } \varphi \text{ in the depth } \leq k \text{ under-approximation of } FNG_{\mathcal{R}}^{\Pi}(\mathsf{V}_{i \in I} u_i).$ If a counterexample is found, stop and return the counterexample.

• Construct a depth ≤ *k* under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I}u_i)$ (a more expensive, but more accurate, version under-approximates $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$).

- **1** Apply a standard explicit-state LTL model checking algorithm to $\text{Verify } \varphi \text{ in the depth } \leq k \text{ under-approximation of } FNG_{\mathcal{R}}^{\Pi}(\mathsf{V}_{i \in I} u_i).$ If a counterexample is found, stop and return the counterexample.
- 2 Suppose that there is no counterexample at depth $\leq k$.

• Construct a depth ≤ *k* under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I}u_i)$ (a more expensive, but more accurate, version under-approximates $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$).

- **1** Apply a standard explicit-state LTL model checking algorithm to $\text{Verify } \varphi \text{ in the depth } \leq k \text{ under-approximation of } FNG_{\mathcal{R}}^{\Pi}(\mathsf{V}_{i \in I} u_i).$ If a counterexample is found, stop and return the counterexample.
- 2 Suppose that there is no counterexample at depth $\leq k$.
	- **1** If $k = n$, stop and report that the model does not violate φ up to the current bound *n*.

• Construct a depth ≤ *k* under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I}u_i)$ (a more expensive, but more accurate, version under-approximates $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$).

- **1** Apply a standard explicit-state LTL model checking algorithm to $\text{Verify } \varphi \text{ in the depth } \leq k \text{ under-approximation of } FNG_{\mathcal{R}}^{\Pi}(\mathsf{V}_{i \in I} u_i).$ If a counterexample is found, stop and return the counterexample.
- 2 Suppose that there is no counterexample at depth $\leq k$.
	- **1** If $k = n$, stop and report that the model does not violate φ up to the current bound *n*.
	- 2 Otherwise, generate the depth $\leq k+1$ under-approximation of $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I}u_i)$

• Construct a depth ≤ *k* under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I}u_i)$ (a more expensive, but more accurate, version under-approximates $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$).

- **1** Apply a standard explicit-state LTL model checking algorithm to $\text{Verify } \varphi \text{ in the depth } \leq k \text{ under-approximation of } FNG_{\mathcal{R}}^{\Pi}(\mathsf{V}_{i \in I} u_i).$ If a counterexample is found, stop and return the counterexample.
- 2 Suppose that there is no counterexample at depth $\leq k$.
	- **1** If $k = n$, stop and report that the model does not violate φ up to the current bound *n*.
	- 2 Otherwise, generate the depth $\leq k+1$ under-approximation of $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I}u_i)$
		- **1** If no new nodes are added to the $\leq k$ under-approximation, $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I}u_{i})$ has been actually generated! Then return *true*;

• Construct a depth ≤ *k* under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I}u_i)$ (a more expensive, but more accurate, version under-approximates $\mathcal{N}^{\Pi}_{\mathcal{R}}(\bigvee_{i\in I}u_i)$).

- **1** Apply a standard explicit-state LTL model checking algorithm to $\text{Verify } \varphi \text{ in the depth } \leq k \text{ under-approximation of } FNG_{\mathcal{R}}^{\Pi}(\mathsf{V}_{i \in I} u_i).$ If a counterexample is found, stop and return the counterexample.
- 2 Suppose that there is no counterexample at depth $\leq k$.
	- **1** If $k = n$, stop and report that the model does not violate φ up to the current bound *n*.
	- 2 Otherwise, generate the depth $\leq k+1$ under-approximation of $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I}u_i)$
		- **1** If no new nodes are added to the $\leq k$ under-approximation, $FNG_R^\Pi(\bigvee_{i \in I} u_i)$ has been actually generated! Then return *true*;
		- 2 Otherwise, go to Step [1](#page-36-0) with the depth $\leq k+1$ under-approximation of $FNG_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$.

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a topmost module M.

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- **1** Enters into this special version of Maude a topmost module M.
- **2** Then gives the command load symbolic-checker.

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- **1** Enters into this special version of Maude a topmost module M.
- **2** Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- **1** Enters into this special version of Maude a topmost module M.
- **2** Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:
	- the equation for the state predicates Π just as for Maude's LTL model checker, but giving to all equations the [variant] attribute.

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- **1** Enters into this special version of Maude a topmost module M.
- **2** Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:
	- the equation for the state predicates Π just as for Maude's LTL model checker, but giving to all equations the [variant] attribute.
	- a subsort inclusion User-State < State

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- **1** Enters into this special version of Maude a topmost module M.
- **2** Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:
	- the equation for the state predicates Π just as for Maude's LTL model checker, but giving to all equations the [variant] attribute.
	- a subsort inclusion User-State < State
	- imports M and SYMBOLIC-CHECKER as submodules.

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

- **1** Enters into this special version of Maude a topmost module M.
- **2** Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:
	- the equation for the state predicates Π just as for Maude's LTL model checker, but giving to all equations the [variant] attribute.
	- a subsort inclusion User-State < State
	- imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Maude's Logical LTL Model Checker supports narrowing-based symbolic LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

- **1** Enters into this special version of Maude a topmost module M.
- **2** Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:
	- the equation for the state predicates Π just as for Maude's LTL model checker, but giving to all equations the [variant] attribute.
	- a subsort inclusion User-State < State
	- imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

This special version of Maude supports the LTL symbolic model checker:

This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-ltlr-lmc.darwin64 \||||||||||||||||||/ --- Welcome to Maude --- /||||||||||||||||||\ Maude 3.3.1 built: Nov 22 2023 21:46:36 Copyright 1997-2023 SRI International Sat Nov 25 20:42:15 2023 Maude>

This special version of Maude supports the LTL symbolic model checker:

```
meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-ltlr-lmc.darwin64
     \||||||||||||||||||/
   --- Welcome to Maude ---
     /||||||||||||||||||\
     Maude 3.3.1 built: Nov 22 2023 21:46:36
     Copyright 1997-2023 SRI International
   Sat Nov 25 20:42:15 2023
Maude>
```
We then load the module of interest, here R&W:

This special version of Maude supports the LTL symbolic model checker:

```
meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-ltlr-lmc.darwin64
     \||||||||||||||||||/
   --- Welcome to Maude ---
     /||||||||||||||||||\
     Maude 3.3.1 built: Nov 22 2023 21:46:36
     Copyright 1997-2023 SRI International
   Sat Nov 25 20:42:15 2023
Maude>
```
We then load the module of interest, here R&W:

```
mod R&W is
  sort Natural .
  op 0 : \rightarrow Natural [ctor].
  op s : Natural -> Natural [ctor] .
  sort Config .
  op <_,_> : Natural Natural -> Config [ctor] .
  vars R W : Natural .
  rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing].
  rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .
  rl [enter-r] : \langle R, \emptyset \rangle \Rightarrow \langle S(R), \emptyset \rangle [narrowing].
  rl [leave-r] : \langle s(R), W \rangle \Rightarrow \langle R, W \rangle [narrowing].
endm
```
We then load the symbolic LTL model checker and enter the R&W-CHECK module enclosed in parentheses:

We then load the symbolic LTL model checker and enter the R&W-CHECK module enclosed in parentheses:

```
load symbolic-checker
```

```
(mod R&W-CHECK is
  protecting R&W .
  including SYMBOLIC-CHECKER .
  subsort Config < State .
  vars N M : Natural .
  op reads : -> Prop .
  eq \langle s(N), M \rangle |= reads = true [variant].
  eq < 0, M > |- reads = false [variant].
  op writes : -> Prop .
  eq \langle M, S(N) \rangle = writes = true [variant].
  eq \langle M, 0 \rangle = writes = false [variant].
  op writers>1 : -> Prop .
  eq \langle M, s(s(N)) \rangle = = writers \geq 1 = true [variant].
   ea \leq M, s(0) > = writers>1 = false [variant].
  eq \langle M, \rangle 0 > | = writers >1 = false [variant].
endm)
```
We can now give symbolic model checking commands enclosed in parentheses. The lmc commands from the symbolic initial state $\langle N, \mathbf{0} \rangle$ to verify mutex and one-writer invariants do not terminate, but we can model check check them up to, e.g., bound 100:

We can now give symbolic model checking commands enclosed in parentheses. The lmc commands from the symbolic initial state $\langle N, \mathbf{0} \rangle$ to verify mutex and one-writer invariants do not terminate, but we can model check check them up to, e.g., bound 100:

```
Maude> (lmc [100] < N, 0 > |= [] \tilde{ } (reads \wedge writes) .)
```
result: no counterexample found within bound 100

```
Maude> (lmc [100] < N, 0 > = [1] \degree (writers>1) .)
```
result: no counterexample found within bound 100

We can now give symbolic model checking commands enclosed in parentheses. The lmc commands from the symbolic initial state $\langle N, \mathbf{0} \rangle$ to verify mutex and one-writer invariants do not terminate, but we can model check check them up to, e.g., bound 100:

```
Maude> (lmc [100] < N, 0 > |= [] \tilde{ } (reads \wedge writes) .)
```
result: no counterexample found within bound 100

```
Maude> (lmc [100] < N, 0 > = [] \tilde{ } (writers>1) .)
```
result: no counterexample found within bound 100

However, the folding 1 fmc commands terminate proving the invariants:

We can now give symbolic model checking commands enclosed in parentheses. The lmc commands from the symbolic initial state $\langle N, \mathbf{0} \rangle$ to verify mutex and one-writer invariants do not terminate, but we can model check check them up to, e.g., bound 100:

```
Maude> (lmc [100] < N, 0 > |= [] \tilde{ } (reads \wedge writes) .)
```

```
result: no counterexample found within bound 100
```

```
Maude> (lmc [100] < N, 0 > = [] \tilde{ } (writers>1) .)
```
result: no counterexample found within bound 100

However, the folding 1 fmc commands terminate proving the invariants:

```
Maude> (lfmc < N, 0 > = \lceil \rceil \tilde{ } (reads \wedge writes) .)
```

```
result: true (complete with depth 3)
```

```
Maude> (\text{lfmc} < N, 0 > |= \lceil 1 \rceil (writers>1).
```
result: true (complete with depth 3)

Likewise, we can prove (or disprove) some non-starvation properties:

Likewise, we can prove (or disprove) some non-starvation properties:

```
Maude> (lmc < N, 0 > | = | \cdot | reads .)
result: counterexample found at depth 4
prefix
  \{< 0.0 > none, 'enter-w}
loop
  \{< 0, s(0)>, none, 'leave-w\}\{< 0.0 > none.'enter-w}
Maude> (lmc < N, 0 > 1 = 1 < writes .)
result: counterexample found at depth 3
prefix
  \{<\ N:Natural,0>, 'N <- s(%1:Natural), 'leave-r}
loop
  \{<\ N:Natural.\geq \geq \leq \leq
```
Maude> (lfmc < N, 0 > $=$ $\Box \diamond$ (reads \/ writes) .)

result: true
Symbolic LTL Model Checking: a BAKERY Example The following BAKERY version is harder to verify than that in Lecture 23:

Symbolic LTL Model Checking: a BAKERY Example The following BAKERY version is harder to verify than that in Lecture 23:

```
fmod BAKERY-SYNTAX is
 sort Name .
 op 0 : \rightarrow Name [ctor].
 op s : -> Name [ctor] .
 op __ : Name Name -> Name [ctor comm assoc id: 0] .
 sorts ModeIdle ModeWait ModeCrit Mode Conf .
 subsorts ModeIdle ModeWait ModeCrit < Mode .
 sorts ProcIdle ProcWait Proc ProcIdleSet ProcWaitSet ProcSet .
 subsorts ProcIdle < ProcIdleSet .
 subsorts ProcWait < ProcWaitSet .
 subsorts ProcIdle ProcWait < Proc < ProcSet .
 subsorts ProcIdleSet < ProcWaitSet < ProcSet .
 op idle : -> ModeIdle .
 op wait : Name -> ModeWait .
 op crit : Name -> ModeCrit .
 op [_] : ModeIdle -> ProcIdle .
 op [_] : ModeWait -> ProcWait .
 op \lceil \rceil : Mode -> Proc .
 op none : -> ProcIdleSet .
 op __ : ProcIdleSet ProcIdleSet -> ProcIdleSet [assoc comm ] .
 op : ProcWaitSet ProcWaitSet -> ProcWaitSet [assoc comm ] .
 op __ : ProcSet ProcSet -> ProcSet [assoc comm ] .
```

```
op _;_;_ : Name Name ProcSet -> Conf .
endfm
```
Symbolic LTL Model Checking: a BAKERY Example (II)

```
mod BAKERY is
 protecting BAKERY-SYNTAX .
 var PS : ProcSet . vars N M : Name .
 rl [wake] : N : M; [idle] PS => s N ; M ; [wait(N)] PS [narrowing].
 rl [crit] : N; M; [wait(M)] PS => N; M; [crit(M)] PS [narrowing].
 rl [exit] : N : M : [crit(M)] PS \Rightarrow N : s M : [idle] PS [narrowina].
endm
load symbolic-checker
(mod BAKERY-CHECK1 is
 pr BAKERY .
 including SYMBOLIC-CHECKER .
  subsort Conf < State .
 ops was-wait? was-crit? : -> Prop . *** was or is in wait (resp. crit)
 vars N M : Name . vars PS : ProcSet .
 eq s N ; M ; PS | = was-wait? = true [variant].
 eq 0 ; M ; PS |= was-wait? = false [variant] .
 eq N : S M : PS = was-crit? = true [variant].
 eq N : 0 : PS |= was-crit? = false [variant].
endm)
```
Symbolic LTL Model Checking: a BAKERY Example (III) Does having been waiting always lead to some process being in the critical section?

Symbolic LTL Model Checking: a BAKERY Example (III) Does having been waiting always lead to some process being in the critical section?

```
(lfmc N ; N ; [idle] [idle] = [] (was-wait? -> \iff was-crit?) .)
result: true (complete with depth 5)
```

```
(lfmc N : M : IS: ProcIdleSet = [] (was-wait? -> \lt was-crit?) .)
```
result: counterexample found at depth 5 *** deadlock counterexample

```
prefix
 {(s #1:Name); 0 ; IS:ProcIdleSet,'IS <- %1:ProcIdleSet[idle],'wake}
 {(s s %2:Name); 0 ; %1:ProcIdleSet[wait(s %2:Name)],'%1 <-[idle],'wake}
loop
  {(s s s %2:Name); 0 ;[wait(s %2:Name)][wait(s s %2:Name)],none,deadlock}
(lfmc N : M : WS:ProcWaitSet = [1 (was-wait? -> <> was-crit?) .)
result: counterexample found at depth 3 *** non-deadlock counterexample
prefix
 {(s #1:Name); 0 ; WS:ProcWaitSet,'WS <- %1:ProcWaitSet[idle],'wake}
loop
```

```
{(s #1:Name); 0 ; WS:ProcWaitSet,'WS <- %1:ProcWaitSet[idle],'wake}
```
Symbolic LTL Model Checking: a BAKERY Example (IV)

Does mutual exclusion hold?

Symbolic LTL Model Checking: a BAKERY Example (IV)

Does mutual exclusion hold?

```
(mod BAKERY-CHECK2 is pr BAKERY . including SYMBOLIC-CHECKER .
  subsort Conf < State .
 ops mutex : -> Prop .
 var WS : ProcWaitSet . var IS : ProcIdleSet . var PS : ProcSet .
 vars N M M1 M2 : Name .
 eq N ; M ; WS |= mutex = true [variant].
 eq N : M : [crit(M1)] WS | =  mutex =  true [variant].
 eq N : M : [crit(M1)] [crit(M2)] PS |= mutex = false [variant].
endm)
(lmc [100] N:Name ; N:Name ; [idle] [idle] |= [] mutex .)
result: no counterexample found within bound 100
(lfmc N:Name : N:Name : [idle] [idle] | = 1] mutex .)
result: true (complete with depth 5)
```
Symbolic LTL Model Checking: a BAKERY Example (V)

```
(lfmc N ; M ; WS | = \lceil mutex .)
result: counterexample found at depth 5
prefix
{N:Name ; M:Name ; WS:ProcWaitSet,'WS <- %1:ProcWaitSet[wait(M:Name)],'crit}
{N:Name ; M:Name ; %1:ProcWaitSet[crit(M:Name)],'%1 <- %3:ProcWaitSet[wait(M:Name)],'crit}
{N:Name ; M:Name ; %3:ProcWaitSet[crit(M:Name)][crit(M:Name)],'%3 <-[wait(M:Name)],'crit}
loop
 nil
(lfmc N ; N ; WS | = \lceil mutex .)
result: counterexample found at depth 5
prefix
{N:Name ; N:Name ; WS:ProcWaitSet,'WS <- %1:ProcWaitSet[wait(N:Name)],'crit}
{N:Name ; N:Name ; %1:ProcWaitSet[crit(N:Name)],'%1 <- %2:ProcWaitSet[wait(N:Name)],'crit}
{N:Name ; N:Name ; %2:ProcWaitSet[crit(N:Name)][crit(N:Name)],'%2 <-[wait(N:Name)],'crit}
loop
 nil
(1fmc [100] N ; N ; IS | = [] mutex .)
result: no counterexample found within bound 100
```