Program Verification: Lecture 28

José Meseguer
University of lllinois at Urbana-Champaign

Meseguer Lecture 27

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (X, EUB,R)
when EU B is FVP by narrowing search with ~~g /g p) from a symbolic
initial state uq V...V uy,.

Meseguer Lecture 27 2/18

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (X, EUB,R)
when EU B is FVP by narrowing search with ~~g /g p) from a symbolic
initial state 1 V...V u,. Can this be generalized to narrowing-based
symbolic LTL model checking for such an R?

Meseguer Lecture 27 2/18

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (X, EUB,R)
when EU B is FVP by narrowing search with ~~g /g p) from a symbolic
initial state u7 V...V u;,. Can this be generalized to narrowing-based
symbolic LTL model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p € IT are satisfied in a symbolic state u, since some ground
instance up may satisfy some predicates in I, while another ground
instance uT may satisfy a different set of state predicates in I1.

Meseguer Lecture 27 2/18

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (X, EUB,R)
when EU B is FVP by narrowing search with ~~g /g p) from a symbolic
initial state u7 V...V u;,. Can this be generalized to narrowing-based
symbolic LTL model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p € IT are satisfied in a symbolic state u, since some ground
instance up may satisfy some predicates in I, while another ground
instance uT may satisfy a different set of state predicates in I1.

However, if the states R-reachable from uq V...V u, are deadlock-free,
and the equations D defining the satisfaction relation u |= p between
terms of top sort State and state predicates I1 for the true and false cases
ares.t. EUDUB is FVP and protects BOOL, LTL symbolic model
checking of R from a symbolic initial state uy V...V u, becomes
possible in a symbolic Kripke structure N}g(ul V...Vuy), whose
symbolic transitions are performed by a IT-aware narrowing relation ~>j.

Meseguer Lecture 27 2/18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D s.t.
EUDUB is FVP modulo B and protects BOOL, the II-aware narrowing
relation between terms u, w € Ty, gia(X) is defined as follows:

Meseguer Lecture 27 3/18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D s.t.
EUDUB is FVP modulo B and protects BOOL, the II-aware narrowing
relation between terms u, w € Ty, gia(X) is defined as follows:

U~ W

holds iff (by definition)

Meseguer Lecture 27 3/18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D s.t.
EUDUB is FVP modulo B and protects BOOL, the II-aware narrowing
relation between terms u, w € Ty, gia(X) is defined as follows:

U~ W
holds iff (by definition)

® Ju st u Wﬁ/(EUB) v

Meseguer Lecture 27 3/18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D s.t.
EUDUB is FVP modulo B and protects BOOL, the II-aware narrowing
relation between terms u, w € Ty, gia(X) is defined as follows:

Xy
U ~=11 W

holds iff (by definition)
® Ju st u Wﬁ/(EUB) v
® 3(by,...,by) € {true, false}*

Meseguer Lecture 27 3/18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D s.t.
EUDUB is FVP modulo B and protects BOOL, the II-aware narrowing
relation between terms u, w € Ty, gia(X) is defined as follows:

Xy
U ~=11 W

holds iff (by definition)
® Ju st u Wﬁ/(EUB) v
® 3(by,...,by) € {true, false}*
® JyeUnifp ppgEpr=biA...ANvEpr=Db)

Meseguer Lecture 27 3/18

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D s.t.
EUDUB is FVP modulo B and protects BOOL, the II-aware narrowing
relation between terms u, w € Ty, gia(X) is defined as follows:

Xy
U ~=11 W

holds iff (by definition)
® Ju st u Wﬁ/(EUB) v
® 3(by,...,by) € {true, false}*

® Jy € Unifp pp(vEpr=b1A...Av = pp=by)
such that w = v7y.

Meseguer Lecture 27 3/18

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure N5'(V;e; i)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =

{upy|i€l, by, ..., by) € {true, false}*, Iy € Unif g pop(ui Epr =bi AL A = pre=be) b
The Kripke structure N}g(\/iel u;) has states

Meseguer Lecture 27

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure N5'(V;e; i)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =

{upy|i€l, by, ..., by) € {true, false}*, Iy € Unif g pop(ui Epr =bi AL A = pre=be) b
The Kripke structure NJ (Ve u;) has states NJ (Vepu) =

Meseguer Lecture 27

The Kripke Structure N3 (V;c; 1:)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =
{wy i€l 3by,...,b) € {true false}*, Iy € Unif o p (i =p1 = b1 A Aw; b= pe = by)).
The Kripke structure NE(V/;cru;) has states NI (Vepu;) =

{w € Ty saee(X) | Fj, 1 <j < m, uj ~[yw}/~Eus,

Meseguer Lecture 27 4/18

The Kripke Structure N3 (V;c; 1:)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =
{wy i€l 3by,...,b) € {true false}*, Iy € Unif o p (i =p1 = b1 A Aw; b= pe = by)).
The Kripke structure NE(V/;cru;) has states NI (Vepu;) =

{w € Tystate(X) | Fj, 1 <j < m, uj ~[; w}/~Epup, where v ~pup w iff

i ; i 1. — 0w
exists a variable renaming « s.t. vl ptt =B W!g p,

Meseguer Lecture 27 4/18

The Kripke Structure N3 (V;c; 1:)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =

{wy i€l 3by,...,b) € {true false}*, Iy € Unif o p (i =p1 = b1 A Aw; b= pe = by)).
The Kripke structure NE(V/;cru;) has states NI (Vepu;) =

{we Ty se(X) | F,1<j<m, u]’- ~i w}/~Eup, where v &g p w iff
exists a variable renaming « s.t. U!E/B“ =3 W!TS/B' transition relation

ML

Meseguer Lecture 27 4/18

The Kripke Structure N3 (Vier 1)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =

{wy i€l 3by,...,b) € {true false}*, Iy € Unif o p (i =p1 = b1 A Aw; b= pe = by)).
The Kripke structure NE(V/;cru;) has states NI (Vepu;) =

{w S TZState() | El], 1 <] <m, M] s w}/NEUB, where v ~fEUp W iff
exists a variable renaming « s.t. U'E/B =g w! S transition relation

~>11, and satisfaction relation [w] |—N1‘[) pi defined for each

Vier i)
[w] € N%(\/iel u;) and p; € I1 by the unique b} € {true, false}* such
that (w |= pi)!EODB = b;, 1<i<k.

Meseguer Lecture 27 4/18

The Kripke Structure N3 (Vier 1)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =

{wy i€l 3by,...,b) € {true false}*, Iy € Unif o p (i =p1 = b1 A Aw; b= pe = by)).
The Kripke structure NE (/e u;) has states NI (Vjerui) =

{w € Ty sare(X) | Fj, 1 <] <m, u} ~f; w}/~gup, where v =g g w iff

]

exists a variable renaming « s.t. U'E/B =p w! transition relation

"E/B’
~>11, and satisfaction relation [w] |—N1‘[Vieyu;) Pi defined for each
[w] € N%(\/iel u;) and p; € IT by the unique b: € {true, false}* such
that (w |= pi)!EODB = b;, 1<i<k.

If N}g(\/ie[u;) is deadlock-free, any LTL formula ¢ holds for initial state
Vier i in T3 if (resp. iff) it does in N5 (Vepu;) from {uf, ..., u},}
(resp. if N} (V;epu;) is finite or ¢ a safety formula) (see Appendix 1):

Meseguer Lecture 27 4/18

The Kripke Structure N3 (Vier 1)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =
{upy i €1, by, ..., by) € {true, false}*, Iy € Unifp p p(ti Ep1 = b1 AL Aw; = pe = b))
The Kripke structure NE(V/;cru;) has states NI (Vepu;) =

{w S TZStute() | El], 1 <] <m, 1/[] s w}/NEUB, where v ~fEUp W iff
exists a variable renaming « s.t. U'E/B =g w! S transition relation

~>11, and satisfaction relation [w] l—NH) pi defined for each

Vier i)

[w] € NY(Vierui) and p; € I by the unique b € {true, false}* such
that (w |: pi)!EGDB = b;, 1<i<k.

If N}g(\/ie[u;) is deadlock-free, any LTL formula ¢ holds for initial state
Vier i in T3 if (resp. iff) it does in N5 (Vepu;) from {uf, ..., u},}
(resp. if N} (V;epu;) is finite or ¢ a safety formula) (see Appendix 1):
Theorem

For ¢ € LTL(IT) (resp. if N3 (V/;cyu;) is finite or ¢ is a safety formula)

Ng(v Mi), {u’l, 500 ,Ll;n} 'ZLTL Q. = (resp. @) T%, [[\/ ui]]EUB |:LTL .
A i

State Space Reduction in 7 (Vjcj ;)

State Space Reduction in N3 (V;e; 14:)

By the above Theorem, if the state space N%(\/ie[u;) is finite, the
Kripke structure Ng(\/iel u;) supports explicit-state LTL model checking
using the decision procedure described in Lecture 23 to verify

T3, [Vier wileus oL ¢-

Meseguer Lecture 27 5/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction in N3 (V;e; 14:)

By the above Theorem, if the state space N%(\/ie[u;) is finite, the
Kripke structure Ng(\/iel 1;) supports explicit-state LTL model checking
using the decision procedure described in Lecture 23 to verify

T3, [Vier wileus oL ¢-

When NY (V;cyu;) is infinite, we can try one of the following three
possibilities to reduce the state space of N}g(\/ie] u;) to a finite state
space:

Meseguer Lecture 27 5/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction in N3 (V;e; 14:)

By the above Theorem, if the state space N%(\/ie[u;) is finite, the
Kripke structure N%(Viel 1;) supports explicit-state LTL model checking
using the decision procedure described in Lecture 23 to verify

T3, [Vier wileus oL ¢-

When NY (V;cyu;) is infinite, we can try one of the following three
possibilities to reduce the state space of N}g(\/ie] u;) to a finite state
space:
@ Perform LTL model checking by folding variant narrowing, provided
the folding ~~pr-narrowing forest from {u},...,u},} is finite.

Meseguer Lecture 27 5/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction in N3 (V;e; 14:)

By the above Theorem, if the state space N%(\/ie[u;) is finite, the
Kripke structure N%(Viel 1;) supports explicit-state LTL model checking
using the decision procedure described in Lecture 23 to verify

T3, [Vier wileus oL ¢-

When NY (Ve u;) is infinite, we can try one of the following three
possibilities to reduce the state space of N}g(\/ie] u;) to a finite state
space:
@ Perform LTL model checking by folding variant narrowing, provided
the folding ~~pr-narrowing forest from {u},...,u},} is finite.
@® Define an equational abstraction R/G s.t.: (i) EUDUGUB is
FVP and protects BOOL, and (ii) the folding ~~r1-narrowing forest is
finite for N%/G(Viel ;).

Meseguer Lecture 27 5/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction in N3 (V;e; 14:)

By the above Theorem, if the state space N%(\/ie[u;) is finite, the
Kripke structure N%(Viel 1;) supports explicit-state LTL model checking
using the decision procedure described in Lecture 23 to verify

T3, [Vier wileus oL ¢-

When NY (Ve u;) is infinite, we can try one of the following three
possibilities to reduce the state space of N}g(\/ie] u;) to a finite state
space:

@ Perform LTL model checking by folding variant narrowing, provided
the folding ~~pr-narrowing forest from {u},...,u},} is finite.

@® Define an equational abstraction R/G s.t.: (i) EUDUGUB is
FVP and protects BOOL, and (ii) the folding ~~r1-narrowing forest is
finite for N}Q/G(Vief ;).

© Perform bounded LTL symbolic model checking.

Meseguer Lecture 27 5/18

State Space Reduction in 7 (Vjcj ;)

The Folding ~~yi-narrowing graph from {u,...,u,,}
Replacing ~+g/(pup) by ~~11, just as we have a folding narrowing graph
FNGR(Vieru;) for the ~>g (g p)-narrowing tree, we also have a folding
narrowing forest (a Kripke structurel) FNGH (V;epu;) for NK(Vepuy)
with initial state \/;¢; u]’., J={1,...m}, the IT-instances of \/;cj u;.

Meseguer Lecture 27 6/18

State Space Reduction in 7 (Vjcj ;)

The Folding ~~yi-narrowing graph from {u,...,u,,}
Replacing ~+g/(pup) by ~~11, just as we have a folding narrowing graph
FNGR(Vieru;) for the ~>g (g p)-narrowing tree, we also have a folding
narrowing forest (a Kripke structurel) FNGH (V;epu;) for NK(Vepuy)
with initial state \/;¢; u]’., J={1,...m}, the IT-instances of \/;cj u;.

The construction of FNG%(\/je] u]’) is similar to that of the folding

narrowing graph from \/;cju; in Lecture 24, replacing the folding relation
v Cpup w by the folding relation v EgUDUB w defined by the equivalence:

Meseguer Lecture 27 6/18

State Space Reduction in 7 (Vjcj ;)

The Folding ~~yi-narrowing graph from {u,...,u,,}
Replacing ~+g/(pup) by ~~11, just as we have a folding narrowing graph
FNGR(Vieru;) for the ~>g (g p)-narrowing tree, we also have a folding

narrowing forest (a Kripke structurel) FNGL (V;epu;) for N (Vepuy)
with initial state \/;¢; u]’., J={1,...m}, the IT-instances of \/;cj u;.

The construction of FNG%(\/je] u]’) is similar to that of the folding
narrowing graph from \/;cju; in Lecture 24, replacing the folding relation
v Cpup w by the folding relation v EgUDUB w defined by the equivalence:

% EELJDUB W Sgef U CruB ZU/\Vp ell, (v): p)!EOD,B = (w ': p)!EOD,B‘

Meseguer Lecture 27 6/18

State Space Reduction in 7 (Vjcj ;)

The Folding ~~yi-narrowing graph from {u,...,u,,}
Replacing ~+g/(pup) by ~~11, just as we have a folding narrowing graph
FNGRr (Ve u;) for the ~>R/(EUB)-narrowing tree, we also have a folding

narrowing forest (a Kripke structurel) FNGL (V;epu;) for N (Vepuy)
with initial state \/;¢; u]’., J={1,...m}, the IT-instances of \/;cj u;.

The construction of FNG%(\/je] u]’) is similar to that of the folding

narrowing graph from \/;cju; in Lecture 24, replacing the folding relation
v Cpup w by the folding relation v EgUDUB w defined by the equivalence:

II
0CEpuB W ©af U LCpup wAVp €11, (v E p)!EOD’B = (w [p)!EOD’B.
The Completeness Theorem of Folding Narrowing in Lecture 24
generalizes to (Ths 8,12 in Appendix 2):

Meseguer Lecture 27 6/18

State Space Reduction in 'M}(l(vi%l u;)

The Folding ~~yi-narrowing graph from {u,...,u,,}

Replacing ~+g/(pup) by ~~11, just as we have a folding narrowing graph
FNGRr (Ve u;) for the ~>R/(EUB)-narrowing tree, we also have a folding

narrowing forest (a Kripke structurel) FNGL (V;epu;) for N (Vepuy)
with initial state \/;¢; u]’., J ={1,...m}, the IT-instances of \/;c; u;.

The construction of FNG%(\/]E] u]’) is similar to that of the folding

narrowing graph from \/;cju; in Lecture 24, replacing the folding relation
v Cpup w by the folding relation v EgUDUB w defined by the equivalence:

II
0CEpuB W ©af U LCpup wAVp €11, (v E p)!EQD’B = (w [p)!EOD’B.
The Completeness Theorem of Folding Narrowing in Lecture 24
generalizes to (Ths 8,12 in Appendix 2):

Theorem
For ¢ € LTL(IT) (resp. ¢ a safety formula) we have:

PNGR(\), Vil g = (resp.) NE(V), Vij = .

iel j€l iel j€l

Meseguer Lecture 27 6/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions

Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

Meseguer Lecture 27 7/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions

Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENGR (N u), \V uf o = Ngyo(Vu), i = ¢

i€l leL i€l jeJ

Meseguer Lecture 27 7/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions

Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENGR (N u), \V uf o = Ngyo(Vu), i = ¢

i€l leL i€l j€J

where \/jcy uj are the Il-instances of \/;c 1 in R/G.

Meseguer Lecture 27 7/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions

Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENGR (N u), \V uf o = Ngyo(Vu), i = ¢

i€l leL i€l j€J

where /oy uj are the Il-instances of \/;c;u; in R/G. Furthermore, it is
proved in Appendix 1 that we also have the implications:

Meseguer Lecture 27 7/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions

Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENGR (N u), \V uf o = Ngyo(Vu), i = ¢

i€l leL i€l j€J

where /oy uj are the Il-instances of \/;c;u; in R/G. Furthermore, it is
proved in Appendix 1 that we also have the implications:

@) Neye(Vu), Vil o = Te [V ulevous Fir ¢ = Ty, [V wileos o ¢

i€l j€l iel i€l

Meseguer Lecture 27 7/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENGR (N u), \V uf o = Ngyo(Vu), i = ¢

i€l leL i€l j€J

where /oy uj are the Il-instances of \/;c;u; in R/G. Furthermore, it is
proved in Appendix 1 that we also have the implications:

@) Neye(Vu), Vil o = Te [V ulevous Fir ¢ = Ty, [V wileos o ¢

i€l j€l iel i€l

Therefore, from (1) and (1) if N5(V,eru;) is deadlock-free we get:

Meseguer Lecture 27 7/18

State Space Reduction in 'M}(l(vi%l u;)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENGr (V) Vui' o = Ngyg(Vu) \uj = ¢

iel el el jeJ

where /oy uj are the Il-instances of \/;c;u; in R/G. Furthermore, it is
proved in Appendix 1 that we also have the implications:

@) Neye(Vu), Vil o = Te [V ulevous Fir ¢ = Ty, [V wileos o ¢

i€l j€l i€l i€l
Therefore, from (1) and (1) if N5(V,eru;) is deadlock-free we get:

Theorem

Under the above assumptions about R and R /G the following
implication holds:

ENGR,c(V w), \V ' =@ = T, I\ uileus i ¢-

i€l leL i€l

Meseguer Lecture 27 7/18

State Space Reduction in ,\’%\j\;’[fl ;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
graph (and Kripke structure) FNGY (Ve u;)

Meseguer Lecture 27

State Space Reduction in V% (Vjcp ;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
graph (and Kripke structure) FNGY (\/;c; ;) (a more expensive, but
more accurate, version under-approximates N%(Viel 1;)).

Meseguer Lecture 27 8/18

State Space Reduction in 7 (Vjcj ;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
graph (and Kripke structure) FNGY (\/;c; ;) (a more expensive, but
more accurate, version under-approximates N}g(vie[1;)).

Algorithm: Given a bound n, incrementally build a depth < k
under-approximation of FNG%(VZCI u;), increasing k < n iteratively.

Meseguer Lecture 27 8/18

State Space Reduction in 7 (Vjcj ;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
graph (and Kripke structure) FNGY (\/;c; ;) (a more expensive, but
more accurate, version under-approximates N%(Viel 1;)).

Algorithm: Given a bound 1, incrementally build a depth <k
under-approximation of FNG%(VZ'GI u;), increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to
verify ¢ in the depth < k under-approximation of FNG%(ViGI ;).
If a counterexample is found, stop and return the counterexample.

Meseguer Lecture 27 8/18

State Space Reduction in 7 (Vjcj ;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
graph (and Kripke structure) FNGJ (\/;cyu;) (a more expensive, but
more accurate, version under-approximates N}g(\/iel 1;)).

Algorithm: Given a bound 1, incrementally build a depth <k
under-approximation of FNG%(V;'GI u;), increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to
verify ¢ in the depth < k under-approximation of FNG%(\/ZQ ;).
If a counterexample is found, stop and return the counterexample.

® Suppose that there is no counterexample at depth < k.

Meseguer Lecture 27 8/18

State Space Reduction in ,"\f%—\,l(\/i{l u;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
graph (and Kripke structure) FNGJ (\/;cyu;) (a more expensive, but
more accurate, version under-approximates N}g(\/iel 1;)).

Algorithm: Given a bound 1, incrementally build a depth <k
under-approximation of FNG%(V;'GI u;), increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to
verify ¢ in the depth < k under-approximation of FNG%(\/ZQ ;).
If a counterexample is found, stop and return the counterexample.
® Suppose that there is no counterexample at depth < k.

@ If k = n, stop and report that the model does not violate ¢ up to the
current bound n.

Meseguer Lecture 27 8/18

State Space Reduction in 'M}(l(vi%l u;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
graph (and Kripke structure) FNGJ (\/;cyu;) (a more expensive, but
more accurate, version under-approximates Ng(\/iel 1;)).

Algorithm: Given a bound 1, incrementally build a depth <k
under-approximation of FNG%(VZ'GI u;), increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to
verify ¢ in the depth < k under-approximation of FNG%(\/ZQ ;).
If a counterexample is found, stop and return the counterexample.
® Suppose that there is no counterexample at depth < k.

@ If k = n, stop and report that the model does not violate ¢ up to the
current bound n.
® Otherwise, generate the depth < k + 1 under-approximation of

ENGR (Vier)

Meseguer Lecture 27 8/18

State Space Reduction in 'M}(l(vi%l u;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
graph (and Kripke structure) FNGJ (\/;cyu;) (a more expensive, but
more accurate, version under-approximates N%(Viel u;)).

Algorithm: Given a bound n, incrementally build a depth < k
under-approximation of FNG%(VZ'GI u;), increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to
verify ¢ in the depth < k under-approximation of FNG%(\/ZQ ;).
If a counterexample is found, stop and return the counterexample.
® Suppose that there is no counterexample at depth < k.

@ If k = n, stop and report that the model does not violate ¢ up to the
current bound n.
® Otherwise, generate the depth < k + 1 under-approximation of

ENGR (Vier i)
@ If no new nodes are added to the < k under-approximation,
FNG%(\/,E, u;) has been actually generated! Then return true;

Meseguer Lecture 27 8/18

State Space Reduction in 'N'R (Vier i)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
graph (and Kripke structure) FNGJ (\/;cyu;) (a more expensive, but
more accurate, version under-approximates N%(Viel u;)).

Algorithm: Given a bound n, incrementally build a depth < k
under-approximation of FNG%(VZ'GI u;), increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to
verify ¢ in the depth < k under-approximation of FNG%(\/ZQ ;).
If a counterexample is found, stop and return the counterexample.

® Suppose that there is no counterexample at depth < k.

@ If k = n, stop and report that the model does not violate ¢ up to the
current bound n.
® Otherwise, generate the depth < k + 1 under-approximation of
ENGR (Vier)
@ If no new nodes are added to the < k under-approximation,
FNG%(\/,E, u;) has been actually generated! Then return true;
@® Otherwise, go to Step 1 with the depth < k + 1 under-approximation
of FNGH (Vier).

Meseguer Lecture 27 8/18

State Space Reduction in ,\’%\j\;’[fl ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:

Meseguer Lecture 27

State Space Reduction in V% (Vjcp ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool
Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/
A README overview with links to various examples, can be found here:

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool
Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:

https://github.com/kquine/maude-model-checker/
A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool
Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/
A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:
@ Enters into this special version of Maude a topmost module M.

Meseguer Lecture 27 9/18

State Space Reduction in ,"\f%—\,l(\/i{l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:
https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc
As explained in the README overview, the user:

@ Enters into this special version of Maude a topmost module M.
® Then gives the command load symbolic-checker.

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md
It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:
https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc
As explained in the README overview, the user:

@ Enters into this special version of Maude a topmost module M.

® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool
Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/
A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:
@ Enters into this special version of Maude a topmost module M.
® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:
® the equation for the state predicates IT just as for Maude's LTL
model checker, but giving to all equations the [variant] attribute.

Meseguer Lecture 27 9/18

State Space Reduction in 'N'R (Vier i)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:
@ Enters into this special version of Maude a topmost module M.
® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:
® the equation for the state predicates IT just as for Maude's LTL
model checker, but giving to all equations the [variant] attribute.
® a subsort inclusion User-State < State

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:
@ Enters into this special version of Maude a topmost module M.
® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:
® the equation for the state predicates IT just as for Maude's LTL
model checker, but giving to all equations the [variant] attribute.

® a subsort inclusion User-State < State
® imports M and SYMBOLIC-CHECKER as submodules.

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:
@ Enters into this special version of Maude a topmost module M.
® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:
® the equation for the state predicates IT just as for Maude's LTL
model checker, but giving to all equations the [variant] attribute.

® a subsort inclusion User-State < State
® imports M and SYMBOLIC-CHECKER as submodules.

©® Then one can give symbolic model checking commands to the tool.

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports narrowing-based symbolic
LTL model checking. Its web page can be found here:
https://github.com/kquine/maude-model-checker/

A README overview with links to various examples, can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS which can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:
@ Enters into this special version of Maude a topmost module M.
® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:
® the equation for the state predicates IT just as for Maude's LTL
model checker, but giving to all equations the [variant] attribute.
® a subsort inclusion User-State < State
® imports M and SYMBOLIC-CHECKER as submodules.
©® Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9/18

State Space Reduction in V% (Vjcp ;)

Symbolic LTL Model Checking: a R&W Example

This special version of Maude supports the LTL symbolic model checker:

Meseguer Lecture 27

State Space Reduction in AV

Symbolic LTL Model Checking: a R&W Example

This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-1ltlr-lmc.darwin64
NARRRRRRRR RN RN NAYS

--- Welcome to Maude ---
ARRRRRRRRRRRRRRRRRAN
Maude 3.3.1 built: Nov 22 2023 21:46:36
Copyright 1997-2023 SRI International
Sat Nov 25 20:42:15 2023
Maude>

Meseguer Lecture 27 10/18

State Space Reduction in AV

Symbolic LTL Model Checking: a R&W Example

This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-1ltlr-lmc.darwin64
NARRRRRRRR RN RN NAYS

--- Welcome to Maude ---
ARRRRRRRRRRRRRRRRRAN
Maude 3.3.1 built: Nov 22 2023 21:46:36
Copyright 1997-2023 SRI International
Sat Nov 25 20:42:15 2023
Maude>

We then load the module of interest, here R&W:

Meseguer Lecture 27 10/18

State Space Reduction in AV

Symbolic LTL Model Checking: a R&W Example

This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-1ltlr-lmc.darwin64
NARRRRRRRR RN RN NAYS
--- Welcome to Maude ---
ARRRRRRRRRRRRRRRRRAN
Maude 3.3.1 built: Nov 22 2023 21:46:36
Copyright 1997-2023 SRI International
Sat Nov 25 20:42:15 2023
Maude>

We then load the module of interest, here R&W:

mod R&W is
sort Natural .
op ® : -> Natural [ctor]
op s : Natural -> Natural [ctor]
sort Config .
op <_,_> : Natural Natural -> Config [ctor]

vars R W : Natural .

rl [enter-w] : <0, ® > => < 0, s(0) > [narrowing]

rl [leave-w] : < R, s(W) > => < R, W > [narrowing]

rl [enter-r] : <R, ® > => < s(R), 0 > [narrowing]

rl [leave-r] : < s(R), W > => < R, W > [narrowing]
endm

Meseguer Lecture 27 10/18

State Space Reduction in V% (Vjcp ;)

Symbolic LTL Model Checking: a R&W Example (II)

We then load the symbolic LTL model checker and enter the R&W-CHECK
module enclosed in parentheses:

Meseguer Lecture 27 11/18

State Space Reduction in AV

Symbolic LTL Model Checking: a R&W Example (II)

We then load the symbolic LTL model checker and enter the R&W-CHECK
module enclosed in parentheses:

load symbolic-checker
(mod R&W-CHECK is
protecting R&W .
including SYMBOLIC-CHECKER .

subsort Config < State .

vars N M : Natural .

op reads : -> Prop .

eq < s(N), M > |= reads = true [variant]

eq < 0, M > |= reads = false [variant]

op writes : -> Prop .

eq < M, s(N) > |= writes = true [variant]

eq < M, ® > |= writes = false [variant]

op writers>1 : -> Prop .

eq < M, s(s(N)) > |= writers>1 = true [variant]
eq < M, s(® > |= writers>1 = false [variant]

eq < M, 0 > |= writers>1 = false [variant]

endm)

Meseguer Lecture 27 11/18

State Space Reduction in 7 (Vjcj ;)

Symbolic LTL Model Checking: a R&W Example (lII)

We can now give symbolic model checking commands enclosed in
parentheses. The Imc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Meseguer Lecture 27 12/18

State Space Reduction in 7 (Vjcj ;)

Symbolic LTL Model Checking: a R&W Example (lII)

We can now give symbolic model checking commands enclosed in
parentheses. The Imc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Maude> (Imc [100] < N, O > |= [] " (reads /\ writes) .)
result: no counterexample found within bound 100
Maude> (Imc [100] < N, O > |= [] ~ (writers>1) .)

result: no counterexample found within bound 100

Meseguer Lecture 27 12/18

State Space Reduction in 7 (Vjcj ;)

Symbolic LTL Model Checking: a R&W Example (lII)

We can now give symbolic model checking commands enclosed in
parentheses. The Imc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Maude> (Imc [100] < N, O > |= [] ~ (reads /\ writes) .)
result: no counterexample found within bound 100
Maude> (Imc [100] < N, O > |= [] ~ (writers>1) .)
result: no counterexample found within bound 100

However, the folding 1fmc commands terminate proving the invariants:

Meseguer Lecture 27 12/18

State Space Reduction in N

Symbolic LTL Model Checking: a R&W Example (lII)

We can now give symbolic model checking commands enclosed in
parentheses. The Imc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Maude> (Imc [100] < N, O > |= [] ~ (reads /\ writes) .)

result: no counterexample found within bound 100

Maude> (Imc [100] < N, O > |= [] ~ (writers>1) .)

result: no counterexample found within bound 100

However, the folding 1fmc commands terminate proving the invariants:
Maude> (1fmc < N, O > |= [] ~ (reads /\ writes) .)

result: true (complete with depth 3)

Maude> (1fmc < N, 0 > |= [] ~ (writers>1) .)

result: true (complete with depth 3)

Meseguer Lecture 27 12/18

State Space Reduction in V% (Vjcp ;)

Symbolic LTL Model Checking: a R&W Example (IV)

Likewise, we can prove (or disprove) some non-starvation properties:

Meseguer Lecture 27

State Space Reduction in AV

Symbolic LTL Model Checking: a R&W Example (IV)

Likewise, we can prove (or disprove) some non-starvation properties:
Maude> (Imc < N, ® > |= []<> reads .)
result: counterexample found at depth 4
prefix
{< 0,0 >,none, ’enter-w}
loop
{< 0,s(0)>,none, 'leave-w}
{< 0,0 >,none, 'enter-w}
Maude> (Imc < N, ® > |= []<> writes .)
result: counterexample found at depth 3
prefix
{< N:Natural,® >,’N <- s(%l:Natural),’leave-r}
loop
{< N:Natural,® >,’N <- s(%l:Natural),’leave-r}
Maude> (1fmc < N, ® > |= []<> (reads \/ writes) .)

result: true

Meseguer Lecture 27 13/18

State Space Reduction in V% (Vjcp ;)

Symbolic LTL Model Checking: a BAKERY Example

The following BAKERY version is harder to verify than that in Lecture 23:

Meseguer Lecture 27

State Space Reduction in N

Symbolic LTL Model Checking: a BAKERY Example

The following BAKERY version is harder to verify than that in Lecture 23:
fmod BAKERY-SYNTAX is

sort Name .

op ® : -> Name [ctor]

op s : -> Name [ctor]

op __ : Name Name -> Name [ctor comm assoc id: 0]

sorts ModeIdle ModeWait ModeCrit Mode Conf .

subsorts ModeIdle ModeWait ModeCrit < Mode .

sorts ProcIdle ProcWait Proc ProcIdleSet ProcWaitSet ProcSet .
subsorts ProcIdle < ProcIdleSet .

subsorts ProcWait < ProcWaitSet .

subsorts ProcIdle ProcWait < Proc < ProcSet .

subsorts ProcIdleSet < ProcWaitSet < ProcSet .

op idle : -> ModeIdle .

op wait : Name -> ModeWait .

op crit : Name -> ModeCrit .

op [_] : ModeIdle -> ProcIdle .
op [_] : ModeWait -> ProcWait .
op [_] : Mode -> Proc .

op none : -> ProcIdleSet .
op __ : ProcIdleSet ProcIdleSet -> ProcIdleSet [assoc comm]
op __ : ProcWaitSet ProcWaitSet -> ProcWaitSet [assoc comm]
op __ : ProcSet ProcSet -> ProcSet [assoc comm]
op _;_;_ : Name Name ProcSet -> Conf .

endfm

Meseguer Lecture 27 14 /18

State Space Reduction in N

Symbolic LTL Model Checking: a BAKERY Example (1)

mod BAKERY is
protecting BAKERY-SYNTAX .

var PS : ProcSet . vars N M : Name

rl [wake] : N ; M ; [idle] PS = s N ;

rl [crit] : N ; M ; [wait(M)] PS =N ; M

rl [exit] : N ; M ; [crit(M] PS == N s
endm

M ; [wait(N)] PS [narrowing]
; [crit(M)] PS [narrowing]
M ; [idle] PS [narrowing]

load symbolic-checker

(mod BAKERY-CHECK1 is
pr BAKERY .
including SYMBOLIC-CHECKER .
subsort Conf < State .

ops was-wait? was-crit? : -> Prop . *** was or is in wait (resp. crit)

vars N M : Name . vars PS : ProcSet .

eq s N ; M ; PS |= was-wait? = true [variant]

eq ® ; M ; PS |= was-wait? = false [variant]

eq N ; s M ; PS |= was-crit? = true [variant]

eq N; 0 ; PS |= was-crit? = false [variant]
endm)

Meseguer Lecture 27 15/18

State Space Reduction in ,\’%\j\;’[fl ;)

Symbolic LTL Model Checking: a BAKERY Example (I11)

Does having been waiting always lead to some process being in the
critical section?

Meseguer Lecture 27

State Space Reduction in AV

Symbolic LTL Model Checking: a BAKERY Example (I11)

Does having been waiting always lead to some process being in the
critical section?

(lfmc N ; N ; [idle] [didle] |= [] (was-wait? -> <> was-crit?) .)
result: true (complete with depth 5)
(lfmc N ; M ; IS:ProcIdleSet |= [] (was-wait? -> <> was-crit?) .)
result: counterexample found at depth 5 *** deadlock counterexample
prefix

{(s #1:Name); ® ; IS:ProcIdleSet,’IS <- %l:ProcIdleSet[idle], ’wake}

{(s s %2:Name); 0 ; %l:ProcIdleSet[wait(s %2:Name)],’ %1l <-[idle], 'wake}
loop

{(s s s %2:Name); 0 ;[wait(s %2:Name)][wait(s s %2:Name)],none,deadlock}
(l1fmc N ; M ; WS:ProcWaitSet |= [] (was-wait? -> <> was-crit?) .)
result: counterexample found at depth 3 *** non-deadlock counterexample
prefix

{(s #1:Name); ® ; WS:ProcWaitSet,’WS <- %l:ProcWaitSet[idle], ’'wake}

loop
{(s #1:Name); O ; WS:ProcWaitSet,’WS <- %l:ProcWaitSet[idle], ’'wake}

Meseguer Lecture 27 16/18

State Space Reduction in ,\'R (Vieru;)

Symbolic LTL Model Checking: a BAKERY Example (1V)

Does mutual exclusion hold?

Meseguer Lecture 27

State Space Reduction in N

Symbolic LTL Model Checking: a BAKERY Example (1V)

Does mutual exclusion hold?

(mod BAKERY-CHECK2 is pr BAKERY . including SYMBOLIC-CHECKER .
subsort Conf < State .
ops mutex : -> Prop .

var WS : ProcWaitSet . var IS : ProcIdleSet . var PS : ProcSet .
vars N M M1 M2 : Name .

eq N ; M ; WS |= mutex = true [variant]

eq N ; M ; [crit(M1)] WS |= mutex = true [variant]

eq N ; M ; [crit(M1)] [crit(M2)] PS |= mutex = false [variant]
endm)
(Imc [100] N:Name ; N:Name ; [idle] [idle] |= [] mutex .)
result: no counterexample found within bound 100

(1fmc N:Name ; N:Name ; [idle] [idle] |= [] mutex .)

result: true (complete with depth 5)

Meseguer Lecture 27 17 /18

State Space Reduction in N

Symbolic LTL Model Checking: a BAKERY Example (V)

(1fmc N ; M ; WS |= [] mutex .)
result: counterexample found at depth 5

prefix
{N:Name ; M:Name ; WS:ProcWaitSet,’'WS <- %l:ProcWaitSet[wait(M:Name)],’crit}
{N:Name ; M:Name ; %l:ProcWaitSet[crit(M:Name)],’ %1l <- %3:ProcWaitSet[wait(M:Name)],’crit}
{N:Name ; M:Name ; %3:ProcWaitSet[crit(M:Name)][crit(M:Name)], %3 <-[wait(M:Name)], crit}
loop

nil
(1fmc N ; N ; WS |= [] mutex .)
result: counterexample found at depth 5
prefix
{N:Name ; N:Name ; WS:ProcWaitSet,’WS <- %l:ProcWaitSet[wait(N:Name)], crit}
{N:Name ; N:Name ; %l:ProcWaitSet[crit(N:Name)],’ %l <- %2:ProcWaitSet[wait(N:Name)],’ ’crit}
{N:Name ; N:Name ; %2:ProcWaitSet[crit(N:Name)][crit(N:Name)], %2 <-[wait(N:Name)], crit}
loop

nil
(lfmc [100] N ; N ; IS |= [] mutex .)

result: no counterexample found within bound 100

Meseguer Lecture 27 18/18

	Narrowing-Based Symbolic LTL Model Checking
	State Space Reduction in NR(i Iui)

