Program Verification: Lecture 27

José Meseguer University of Illinois at Urbana-Champaign

Given two transition systems $\mathcal{A} = (A, \rightarrow_A)$ and $\mathcal{B} = (B, \rightarrow_B)$, a simulation map *f* from A to B, denoted $f : A \rightarrow B$, is a function $f: A \rightarrow B$ that is "transition preserving" in the sense that any transition $a \rightarrow_\mathcal{A} a'$ in $\mathcal A$ is mapped by f to a corresponding transition $f(a) \rightarrow_{\mathcal{B}} f(a')$ in \mathcal{B} .

Given two transition systems $\mathcal{A} = (A, \rightarrow_A)$ and $\mathcal{B} = (B, \rightarrow_B)$, a simulation map *f* from A to B, denoted $f : A \rightarrow B$, is a function $f: A \rightarrow B$ that is "transition preserving" in the sense that any transition $a \rightarrow_\mathcal{A} a'$ in $\mathcal A$ is mapped by f to a corresponding transition $f(a) \rightarrow_{\mathcal{B}} f(a')$ in \mathcal{B} .

A simulation map $f: \mathcal{A} \rightarrow \mathcal{B}$ is called a bisimulation iff, in addition, for any state of the form $f(a) \in B$ and any transition $f(a) \rightarrow_B b$ there exists and $a' \in A$ and transition $a \to_{\mathcal{A}} a'$ such that $f(a') = b$.

Given two transition systems $\mathcal{A} = (A, \rightarrow_A)$ and $\mathcal{B} = (B, \rightarrow_B)$, a simulation map *f* from A to B, denoted $f : A \rightarrow B$, is a function $f: A \rightarrow B$ that is "transition preserving" in the sense that any transition $a \rightarrow_\mathcal{A} a'$ in $\mathcal A$ is mapped by f to a corresponding transition $f(a) \rightarrow_{\mathcal{B}} f(a')$ in \mathcal{B} .

A simulation map $f: \mathcal{A} \rightarrow \mathcal{B}$ is called a bisimulation iff, in addition, for any state of the form $f(a) \in B$ and any transition $f(a) \rightarrow_B b$ there exists and $a' \in A$ and transition $a \to_{\mathcal{A}} a'$ such that $f(a') = b$.

Given a transition system $\mathcal{A} = (A, \rightarrow_A)$ and subsets $U, V \subseteq A$, we are interested in the reachability property:

$$
\exists x\in U,\ \exists y\in V,\ x\rightarrow^*_\mathcal{A} y
$$

which we abbreviate to $\exists U \rightarrow^* V$. If this property holds for specific *U*, *V* ⊂ *A* we write: $A \models ∃U →^* V$.

Given two transition systems $\mathcal{A} = (A, \rightarrow_A)$ and $\mathcal{B} = (B, \rightarrow_B)$, a simulation map *f* from A to B, denoted $f : A \rightarrow B$, is a function $f: A \rightarrow B$ that is "transition preserving" in the sense that any transition $a \rightarrow_\mathcal{A} a'$ in $\mathcal A$ is mapped by f to a corresponding transition $f(a) \rightarrow_{\mathcal{B}} f(a')$ in \mathcal{B} .

A simulation map $f: \mathcal{A} \rightarrow \mathcal{B}$ is called a bisimulation iff, in addition, for any state of the form $f(a) \in B$ and any transition $f(a) \rightarrow_B b$ there exists and $a' \in A$ and transition $a \to_{\mathcal{A}} a'$ such that $f(a') = b$.

Given a transition system $\mathcal{A} = (A, \rightarrow_A)$ and subsets $U, V \subseteq A$, we are interested in the reachability property:

$$
\exists x \in U, \ \exists y \in V, \ x \rightarrow_A^* y
$$

which we abbreviate to $\exists U \rightarrow^* V$. If this property holds for specific *U*, *V* ⊂ *A* we write: $A \models ∃U →^* V$. Note that $A \not\models ∃U →^* V$ iff $\forall x \in U$, $\forall y \in V$, $x \not\rightarrow^*_{\mathcal{A}} y$ holds in \mathcal{A} , abbreviated $\mathcal{A} \models \forall U \not\rightarrow^* V$.

The proofs of these two theorems are given in the Appendix.

The proofs of these two theorems are given in the Appendix.

Theorem

Let $f : A \to B$ be a simulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ implies $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(V)$ implies $\mathcal{A} \models \forall U \not\rightarrow^* V$.

The proofs of these two theorems are given in the Appendix.

Theorem

Let $f: \mathcal{A} \to \mathcal{B}$ be a simulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ implies $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(V)$ implies $\mathcal{A} \models \forall U \not\rightarrow^* V$.

Theorem

Let $f: \mathcal{A} \to \mathcal{B}$ be a bisimulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ iff $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{A} \models \forall U \not\to^* V$ $\text{iff } \mathcal{B} \models \forall f(U) \not\rightarrow^* f(V).$

The proofs of these two theorems are given in the Appendix.

Theorem

Let $f: \mathcal{A} \to \mathcal{B}$ be a simulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ implies $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(V)$ implies $\mathcal{A} \models \forall U \not\rightarrow^* V$.

Theorem

Let $f: \mathcal{A} \to \mathcal{B}$ be a bisimulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ iff $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{A} \models \forall U \not\to^* V$ $\text{iff } \mathcal{B} \models \forall f(U) \not\rightarrow^* f(V).$

Note the for $U, I \subseteq A$, *I* is an invariant from *U* iff $A \models \forall U \nrightarrow^* A \setminus I$. Thus, we can verify the invariant by proving $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(A \setminus I)$.

The proofs of these two theorems are given in the Appendix.

Theorem

Let $f: \mathcal{A} \to \mathcal{B}$ be a simulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ implies $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(V)$ implies $\mathcal{A} \models \forall U \not\rightarrow^* V$.

Theorem

Let $f: \mathcal{A} \to \mathcal{B}$ be a bisimulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ iff $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{A} \models \forall U \not\to^* V$ $\text{iff } \mathcal{B} \models \forall f(U) \not\rightarrow^* f(V).$

Note the for $U, I \subseteq A$, *I* is an invariant from *U* iff $\mathcal{A} \models \forall U \not\rightarrow^* A \setminus I$. Thus, we can verify the invariant by proving $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(A \setminus I)$. But we could have $\mathcal{B} \models \exists f(U) \rightarrow^* f(A \setminus I)$, while $\mathcal{A} \models \forall U \not\rightarrow^* A \setminus I$ (spurious counterexample).

The proofs of these two theorems are given in the Appendix.

Theorem

Let $f: \mathcal{A} \to \mathcal{B}$ be a simulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ implies $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(V)$ implies $\mathcal{A} \models \forall U \not\rightarrow^* V$.

Theorem

Let $f: \mathcal{A} \to \mathcal{B}$ be a bisimulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ iff $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{A} \models \forall U \not\to^* V$ $\text{iff } \mathcal{B} \models \forall f(U) \not\rightarrow^* f(V).$

Note the for $U, I \subseteq A$, *I* is an invariant from *U* iff $\mathcal{A} \models \forall U \not\rightarrow^* A \setminus I$. Thus, we can verify the invariant by proving $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(A \setminus I)$. But we could have $\mathcal{B} \models \exists f(U) \rightarrow^* f(A \setminus I)$, while $\mathcal{A} \models \forall U \not\rightarrow^* A \setminus I$ (spurious counterexample). However, if *f* is a bisimulation no spurious counterexamples can exist.

Simulation and bisimulation maps can be very useful to verify properties of concurrent systems specified as (not necessarily topmost) rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$, not by reasoning directly on \mathcal{R} , but by shifting our ground and reasoning on a quotient of \mathcal{R} .

Simulation and bisimulation maps can be very useful to verify properties of concurrent systems specified as (not necessarily topmost) rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$, not by reasoning directly on \mathcal{R} , but by shifting our ground and reasoning on a quotient of \mathcal{R} . Specifically, we c an add more equations, say $G = E' \cup B'$ to $\mathcal R$ to identify more states.

Simulation and bisimulation maps can be very useful to verify properties of concurrent systems specified as (not necessarily topmost) rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$, not by reasoning directly on \mathcal{R} , but by shifting our ground and reasoning on a quotient of R . Specifically, we c an add more equations, say $G = E' \cup B'$ to $\mathcal R$ to identify more states. We then call the resulting rewrite theory $(\Sigma, E \cup B \cup G, R)$ an equational abstraction of R, denoted R/*G*.

Simulation and bisimulation maps can be very useful to verify properties of concurrent systems specified as (not necessarily topmost) rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$, not by reasoning directly on \mathcal{R} , but by shifting our ground and reasoning on a quotient of R . Specifically, we c an add more equations, say $G = E' \cup B'$ to $\mathcal R$ to identify more states. We then call the resulting rewrite theory $(\Sigma, E \cup B \cup G, R)$ an equational abstraction of R, denoted R/*G*.

The following theorem follows trivially from the fact that if $t \rightarrow_{R/E \cup B} t'$, then, a fortiori, $t \rightarrow R/E \cup B \cup G$ *t'*.

Simulation and bisimulation maps can be very useful to verify properties of concurrent systems specified as (not necessarily topmost) rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$, not by reasoning directly on \mathcal{R} , but by shifting our ground and reasoning on a quotient of \mathcal{R} . Specifically, we c an add more equations, say $G = E' \cup B'$ to $\mathcal R$ to identify more states. We then call the resulting rewrite theory $(\Sigma, E \cup B \cup G, R)$ an equational abstraction of R, denoted R/*G*.

The following theorem follows trivially from the fact that if $t \rightarrow_{R/E \cup B} t'$, then, a fortiori, $t \rightarrow R/E \cup B \cup G$ *t'*.

Theorem

Given a rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$, Σ -equations $G = E' \cup B'$, and a top sort *State*, the unique surjective Σ-homomorphism []*E*∪*B*∪*^G* : **T**Σ/*E*∪*^B* → **T**Σ/*E*∪*B*∪*^G* induces a simulation map $\left[\frac{1}{2}E\cup B\cup G:\left(T_{\Sigma/E\cup B}\right) \to \left(T_{\Sigma/E\cup B\cup G}\right) \to \left(T_{\Sigma/E\cup B\cup G}\right) \to \mathbb{R}/\mathbb{R} \cup G}$.

Equational abstractions can make the set of reachable states from an initial state *init* finite. In this way, invariants and, more generally, LTL properties that cannot be verified by explicit-state model checking can be verified using an equational abstraction R/*G*.

Equational abstractions can make the set of reachable states from an initial state *init* finite. In this way, invariants and, more generally, LTL properties that cannot be verified by explicit-state model checking can be verified using an equational abstraction R/*G*.

I refer to §12.4 and §13.4 of All About Maude for further details on the use of equational abstraction for explicit-state model checking of (respectively) invariants and LTL properties.

Equational abstractions can make the set of reachable states from an initial state *init* finite. In this way, invariants and, more generally, LTL properties that cannot be verified by explicit-state model checking can be verified using an equational abstraction R/*G*.

I refer to §12.4 and §13.4 of All About Maude for further details on the use of equational abstraction for explicit-state model checking of (respectively) invariants and LTL properties.

In what follows I shall focus on the use of equational abstractions for symbolic model checking. Therefore, I will assume a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ such that $E \cup B$ is FVP. We shall then be interested in equational abstractions of the form R/*G*, where $G = E' \cup B'$ is such that $E \cup E' \cup B \cup B'$ is also FVP modulo $B \cup B'$.

Equational abstractions can make the set of reachable states from an initial state *init* finite. In this way, invariants and, more generally, LTL properties that cannot be verified by explicit-state model checking can be verified using an equational abstraction R/*G*.

I refer to §12.4 and §13.4 of All About Maude for further details on the use of equational abstraction for explicit-state model checking of (respectively) invariants and LTL properties.

In what follows I shall focus on the use of equational abstractions for symbolic model checking. Therefore, I will assume a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ such that $E \cup B$ is FVP. We shall then be interested in equational abstractions of the form R/*G*, where $G = E' \cup B'$ is such that $E \cup E' \cup B \cup B'$ is also FVP modulo $B \cup B'$.

Since for each pattern term with variables p , the quotient homomorphism $[$ $]_{E\cup B\cup G}:$ $\mathbb{T}_{\Sigma/E\cup B}(X) \to \mathbb{T}_{\Sigma/E\cup B\cup G}(X)$ maps each $[p]_{E\cup B}$ to $[p]_{E\cup B\cup G}$, *p* in \mathcal{R}/G just describes the image under $\lceil \frac{P}{E \cup B \cup G} \rceil$ of *p* in \mathcal{R} as the symbolic description of the set $\llbracket p \rrbracket_R$ of all $E \cup B$ -equivalence classes of ground instances of *p*, which is just $[\![p]\!]_{\mathcal{R}/G}$.

In particular, if the complement of an invariant *I* in $\mathcal R$ is symbolically described by a finite set of pattern terms p_1,\ldots,p_k , in case the symbolic state space to reach an instance of some p_i from a symbolic initial state *u* is infinite, we can use a topmost equational abstraction \mathcal{R}/G whose equations are FVP to try to make the symbolic search space finite.

In particular, if the complement of an invariant *I* in R is symbolically described by a finite set of pattern terms p_1,\ldots,p_k , in case the symbolic state space to reach an instance of some p_i from a symbolic initial state *u* is infinite, we can use a topmost equational abstraction \mathcal{R}/G whose equations are FVP to try to make the symbolic search space finite.

Then, by the first Theorem in pg. 3 of this 3 of this lecture, we can use symbolic model checking from a symbolic initial state *u* to show in R/*G* that $\forall u\not\rightarrow^* p_i$, $1\leq i\leq k$. However, in some cases we might get some spurious counterexample.

In particular, if the complement of an invariant *I* in $\mathcal R$ is symbolically described by a finite set of pattern terms p_1,\ldots,p_k , in case the symbolic state space to reach an instance of some p_i from a symbolic initial state *u* is infinite, we can use a topmost equational abstraction \mathcal{R}/G whose equations are FVP to try to make the symbolic search space finite.

Then, by the first Theorem in pg. 3 of this 3 of this lecture, we can use symbolic model checking from a symbolic initial state *u* to show in R/*G* that $\forall u\not\rightarrow^* p_i$, $1\leq i\leq k$. However, in some cases we might get some spurious counterexample.

But by the second Theorem in page 3 of this lecture, no spurious counterexamples will exist if the homomorphism []*E*∪*B*∪*^G* : **T**Σ/*E*∪*^B* → **T**Σ/*E*∪*B*∪*^G* actually defines a bisimulation. I shall focus on bisimulations in what follows.

Recall that it was impossible to verify the mutual exclusion and one-writer invariants for BAKERY from $\langle 0, 0 \rangle$ by narrowing in a forwards direction: one had to narrow backwards.

Recall that it was impossible to verify the mutual exclusion and one-writer invariants for BAKERY from $<$ 0, 0 $>$ by narrowing in a forwards direction: one had to narrow backwards. But we can symbolicallt verify both invariants by forwards narrowing in an equational abstraction of R&W from < 0 , $0 >$.

Recall that it was impossible to verify the mutual exclusion and one-writer invariants for BAKERY from $<$ 0, 0 $>$ by narrowing in a forwards direction: one had to narrow backwards. But we can symbolicallt verify both invariants by forwards narrowing in an equational abstraction of R&W from < 0 , $0 >$. Can you guess the *G*?

Recall that it was impossible to verify the mutual exclusion and one-writer invariants for BAKERY from $\langle 0, 0 \rangle$ by narrowing in a forwards direction: one had to narrow backwards. But we can symbolicallt verify both invariants by forwards narrowing in an equational abstraction of R&W from $< \theta$, $\theta >$. Can you guess the *G*?

```
mod R&W is
  sorts Nat Config .
  op \langle \_ , \_ \rangle : Nat Nat \rightarrow Config [ctor].
  op 0 : -\geq Nat [ctor].
  op s : Nat -> Nat [ctor] .
  vars R W : Nat .
  r1 < 0, 0 > \Rightarrow < 0, s(0) > [narrowing].
  r! < R, s(W) > \Rightarrow < R, W > [narrowing].
  r1 \le R, 0 \ge \Rightarrow \le S(R), 0 \ge [narrowing].
  r1 < s(R), W > \Rightarrow < R, W > [narrowing].
endm
```
Recall that it was impossible to verify the mutual exclusion and one-writer invariants for BAKERY from $\langle 0, 0 \rangle$ by narrowing in a forwards direction: one had to narrow backwards. But we can symbolicallt verify both invariants by forwards narrowing in an equational abstraction of R&W from $<$ 0, 0 $>$. Can you guess the G ?

```
mod R&W is
  sorts Nat Config .
  op \langle \_ , \_ \rangle : Nat Nat \rightarrow Config [ctor].
  op 0 : -\geq Nat [ctor].
  op s : Nat -> Nat [ctor] .
  vars R W : Nat .
  r1 < 0, 0 > \Rightarrow < 0, s(0) > [narrowing].
  r! < R, s(W) > \Rightarrow < R, W > [narrowing].
  r1 \le R, 0 \ge \Rightarrow \le S(R), 0 \ge [narrowing].
  r1 < s(R), W > \Rightarrow R, W > [narrowing].
endm
```
The equation $\langle s(s(N)), 0 \rangle = \langle s(0), 0 \rangle$ is confluent, terminating and FVP and provides the desired abstraction:

```
mod R&W-ABS is
    including R&W .
    vars N M R W : Nat .
    eq \langle s(s(N)), 0 \rangle = \langle s(0), 0 \rangle [variant].
endm
```
Maude> {fold} vu-narrow < 0, 0 > =>* < s(N:Nat), s(M:Nat) > .

No solution.

Maude> {fold} vu-narrow $\langle 0, 0 \rangle = \rangle^* \langle 0 \rangle$. Nat, s(s(M:Nat)) > . fvu-narrow in R&W-ABS : $\langle 0.0 \rangle$ =>* \langle N.s(s(M)) \rangle .

No solution.

```
mod R&W-ABS is
    including R&W .
    vars N M R W : Nat .
    eq < s(s(N)), 0 > = < s(0), 0 > [variant].
endm
```

```
Maude> {fold} vu-narrow < 0, 0 > =>* < s(N:Nat), s(M:Nat) > .
```
No solution.

```
Maude> {fold} vu-narrow \langle 0, 0 \rangle = \rangle^* \langle 0 \rangle . Nat, s(s(M:Nat)) > .
fvu-narrow in R&W-ABS : \langle 0.0 \rangle =>* \langle N.s(s(M)) \rangle.
```
No solution.

Of course, in this example the equational abstraction was not needed: we could symbolically verify these properties from the more general pattern $<$ R, 0 $>$.

```
mod R&W-ABS is
     including R&W .
     vars N M R W : Nat .
     eq \langle s(s(N)), 0 \rangle = \langle s(0), 0 \rangle [variant].
endm
```

```
Maude> {fold} vu-narrow < 0, 0 > =>* < s(N:Nat), s(M:Nat) > .
```
No solution.

```
Maude> {fold} vu-narrow \langle 0, 0 \rangle = \rangle^* \langle 0 \rangle . Nat, s(s(M:Nat)) > .
fvu-narrow in R&W-ABS : \langle 0.0 \rangle =>* \langle N.s(s(M)) \rangle.
```
No solution.

Of course, in this example the equational abstraction was not needed: we could symbolically verify these properties from the more general pattern $\langle R, \mathbf{0} \rangle$. However, folding variant narrowing may loop in other examples, yet may reach a fixpoint using an equational abstraction; sometimes (like above) even from a ground initial state.

Bakery Protocol: Transition System

Token to give ; Token serving ; Set of Processes Nat Nat $\{$ idle, wait(Nat), crit(Nat) $\}$]

rl N ; M ; [idle] PS \Rightarrow (s N) ; M ; [wait(N)] PS. rl N ; M ; [wait(M)] $PS \Rightarrow N$; M ; [crit(M)] PS . rl N ; M ; [crit(M)] PS \Rightarrow N ; (sM) ; [idle] PS.

Bakery Protocol: Transition System

Token to give ; Token serving ; Set of Processes Nat Nat $\{$ idle, wait(Nat), crit(Nat) $\}$]

$$
\begin{array}{ccc}\nr| N \, ; \, M \, ; \, \text{[idle]} PS & \Rightarrow (s \, N) \, ; \quad M \quad ; \, \text{[wait(N)] PS}.\n\end{array}
$$
\n
$$
\begin{array}{ccc}\nr| N \, ; \, M \, ; \, \text{[wait(M)] PS} \Rightarrow N \quad ; \quad M \quad ; \, \text{[crit(M)] PS}.\n\end{array}
$$
\n
$$
\begin{array}{ccc}\nr| N \, ; \, M \, ; \, \text{[crit(M)] PS} \Rightarrow N \quad ; \, (s \, M) \, ; \, \text{[idle]} PS \end{array}
$$

Bakery Protocol: Symbolic Transition System

(Transition System: one initial state - infinite state space)

Bakery Protocol: Symbolic Transition System

(Transition System: one initial state - infinite state space)

(Symbolic Transition System: infinite initial state set - infinite state space)

Bakery Protocol: Folding the Symbolic Transition System

(Folding Symbolic Transition System : infinite initial state set - finite state space)

Bakery Protocol: Folding the Symbolic Transition System

However, folding variant narrowing loops if we start with a more general symbolic initial state of the form: N ; N IS, where IS is a variable of sort IdleProcesses.

Bakery Protocol: Folding the Symbolic Transition System

(Folding Symbolic Transition System : infinite initial state set - finite state space)

However, folding variant narrowing loops if we start with a more general symbolic initial state of the form: N ; N IS, where IS is a variable of sort IdleProcesses. Let us explore the notion of bisimilar equational abstractions.

Bisimilar Equational Abstractions

We say that an equational abstraction R/*G* defines an bisimilar equational abstraction of R iff the simulation map

$$
[.]_{E\cup B\cup G}:(T_{\Sigma/E\cup B,State},\rightarrow_{R/E\cup B}) \rightarrow (T_{\Sigma/E\cup B\cup G,State},\rightarrow_{R/E\cup B\cup G})
$$

is actually a bisimulation.

Bisimilar Equational Abstractions

We say that an equational abstraction R/*G* defines an bisimilar equational abstraction of R iff the simulation map

$$
[.]_{E\cup B\cup G}:(T_{\Sigma/E\cup B,State},\rightarrow_{R/E\cup B}) \rightarrow (T_{\Sigma/E\cup B\cup G,State},\rightarrow_{R/E\cup B\cup G})
$$

is actually a bisimulation. We are interested in finding checkable conditions ensuring that *G* defines a bisimilar equational abstraction. See the Appendix for a proof of the following theorem:

Bisimilar Equational Abstractions

We say that an equational abstraction R/*G* defines an bisimilar equational abstraction of R iff the simulation map

$$
[.]_{E\cup B\cup G}:(T_{\Sigma/E\cup B,State},\rightarrow_{R/E\cup B}) \rightarrow (T_{\Sigma/E\cup B\cup G,State},\rightarrow_{R/E\cup B\cup G})
$$

is actually a bisimulation. We are interested in finding checkable conditions ensuring that *G* defines a bisimilar equational abstraction. See the Appendix for a proof of the following theorem:

Theorem

Let $\mathcal{R} = (\Sigma, E \cup B, R)$ be a topmost rewrite theory such that $G = E \cup B$ i s FVP, and $G' = E' \cup B'$ is such that $E \cup E' \cup B \cup B'$ is FVP modulo *B*∪*B'*. \mathcal{R}/G' defines a bisimilar equational abstraction of $\mathcal R$ if for each $(u_0^i = u_1^i) \in G'$, $1 \le i \le p$, and $(t_0^j \to t_1^j)$ $\binom{1}{1} \in R$, $1 \leq j \leq q$, and each $\sigma \in Unif_G(t^j_l)$ $\hat{b}^{\prime}_{b^{\prime}}=u_{b}^{i}),\,0\leq b\leq1,\,0\leq b^{\prime}\leq1,\,$ there exists a θ such that $u^i_{b'} \oplus 1$ $\sigma =_G t^j_b$ ϕ^j_{b} θ ∧ t^j_{l} $\phi_{b\oplus 1}^j \theta =_G t_l^j$ $\psi_{b\oplus 1}^{\prime}$ σ, where \oplus denotes exclusive or.

Bakery Protocol: Infinite-State for some Initial States

(Infinite Folding Logical Transition System : infinite initial state - infinite state space)

Bakery Protocol: Infinite-State for some Initial States

(Infinite Folding Logical Transition System : infinite initial state - infinite state space)

- Many verification problems for infinite-state systems are due to unbounded number of processes
- All approaches use a symbolic finite representation of an infinite number of processes
- Bisimulation proofs written by hand or hard to reuse

An Equational Abstraction for the Bakery Protocol

• For our bakery protocol we can obtain a bisimilar equational abstraction by restricting the abstraction only to the following equation G' , which intuitively collapses extra waiting processes that do not introduce any new behaviors:

An Equational Abstraction for the Bakery Protocol

• For our bakery protocol we can obtain a bisimilar equational abstraction by restricting the abstraction only to the following equation G' , which intuitively collapses extra waiting processes that do not introduce any new behaviors:

```
\bullet G':
```

```
eq (sssLM) ; M ; PS<sub>0</sub> [wait(sLM)] [wait(ssLM)]
= (s s L M) ; M ; PS<sub>0</sub> [wait(s L M)] .
```
An Equational Abstraction for the Bakery Protocol

• For our bakery protocol we can obtain a bisimilar equational abstraction by restricting the abstraction only to the following equation G' , which intuitively collapses extra waiting processes that do not introduce any new behaviors:

 \bullet G' : eq ($ssLM$) ; M ; $PS₀$ [wait(sLM)] [wait($ssLM$)] $=$ (s s L M) ; M ; PS₀ [wait(s L M)] . N ; N ; IS IS/IS¹ [idle] s N ; N ; IS₁ [wait(N)] IS_1/IS_2 [idle] \mathbf{t} $s N: N$; IS₁ [crit(N)] $\frac{1}{2}$ /IS₃ $[\text{idle}]$ $\left(\begin{array}{c} \texttt{ssN; N} \texttt{; IS}_{2} \texttt{[wait(N)]} \texttt{[wait(sN)]} \end{array} \right.$ \rightarrow s s N; N ; IS₂ [crit(N)] [wait(s N)] j (Abstract Bisimilar Folding Logical Transition System)