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Simulations and Bisimulations

Simulation and Bisimulation Maps of Transition Systems

Given two transition systems A = (A,→A) and B = (B,→B), a
simulation map f from A to B, denoted f : A → B, is a function
f : A → B that is “transition preserving” in the sense that any transition
a →A a′ in A is mapped by f to a corresponding transition
f (a) →B f (a′) in B.

A simulation map f : A → B is called a bisimulation iff, in addition, for
any state of the form f (a) ∈ B and any transition f (a) →B b there exists
and a′ ∈ A and transition a →A a′ such that f (a′) = b.

Given a transition system A = (A,→A) and subsets U, V ⊆ A, we are
interested in the reachability property:

∃x ∈ U, ∃y ∈ V, x →∗
A y

which we abbreviate to ∃U →∗ V. If this property holds for specific
U, V ⊆ A we write: A |= ∃U →∗ V. Note that A ̸|= ∃U →∗ V iff
∀x ∈ U, ∀y ∈ V, x ̸→∗

A y holds in A, abbreviated A |= ∀U ̸→∗ V.
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Simulations and Bisimulations

Preservation of Reachability Properties by (Bi)Simulations

The proofs of these two theorems are given in the Appendix.

Theorem

Let f : A → B be a simulation map, then for any U, V ⊆ A,
A |= ∃U →∗ V implies B |= ∃f (U) →∗ f (V). Equivalently,
B |= ∀f (U) ̸→∗ f (V) implies A |= ∀U ̸→∗ V.

Theorem

Let f : A → B be a bisimulation map, then for any U, V ⊆ A,
A |= ∃U →∗ V iff B |= ∃f (U) →∗ f (V). Equivalently, A |= ∀U ̸→∗ V
iff B |= ∀f (U) ̸→∗ f (V).

Note the for U, I ⊆ A, I is an invariant from U iff A |= ∀U ̸→∗ A \ I.
Thus, we can verify the invariant by proving B |= ∀f (U) ̸→∗ f (A \ I).
But we could have B |= ∃f (U) →∗ f (A \ I), while A |= ∀U ̸→∗ A \ I
(spurious counterexample). However, if f is a bisimulation no spurious
counterexamples can exist.
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Equational Abstractions

Equational Abstractions

Simulation and bisimulation maps can be very useful to verify properties
of concurrent systems specified as (not necessarily topmost) rewrite
theories R = (Σ, E ∪ B, R), not by reasoning directly on R, but by
shifting our ground and reasoning on a quotient of R.

Specifically, we
can add more equations, say G = E′ ∪ B′ to R to identify more states.
We then call the resulting rewrite theory (Σ, E ∪ B ∪ G, R) an equational
abstraction of R, denoted R/G.

The following theorem follows trivially from the fact that if t →R/E∪B t′,
then, a fortiori, t →R/E∪B∪G t′.

Theorem

Given a rewrite theory R = (Σ, E ∪ B, R), Σ-equations G = E′ ∪ B′, and
a top sort State, the unique surjective Σ-homomorphism
[ ]E∪B∪G : TΣ/E∪B → TΣ/E∪B∪G induces a simulation map
[ ]E∪B∪G : (TΣ/E∪B,State,→R/E∪B) → (TΣ/E∪B∪G,State,→R/E∪B∪G).
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Equational Abstractions

Equational Abstractions (II)
Equational abstractions can make the set of reachable states from an
initial state init finite. In this way, invariants and, more generally, LTL
properties that cannot be verified by explicit-state model checking can be
verified using an equational abstraction R/G.

I refer to §12.4 and §13.4 of All About Maude for further details on the
use of equational abstraction for explicit-state model checking of
(respectively) invariants and LTL properties.

In what follows I shall focus on the use of equational abstractions for
symbolic model checking. Therefore, I will assume a topmost rewrite
theory R = (Σ, E ∪ B, R) such that E ∪ B is FVP. We shall then be
interested in equational abstractions of the form R/G, where
G = E′ ∪ B′ is such that E ∪ E′ ∪ B ∪ B′ is also FVP modulo B ∪ B′.

Since for each pattern term with variables p, the quotient homomorphism
[ ]E∪B∪G : TΣ/E∪B(X) → TΣ/E∪B∪G(X) maps each [p]E∪B to [p]E∪B∪G,
p in R/G just describes the image under [ ]E∪B∪G of p in R as the
symbolic description of the set JpKR of all E ∪ B-equivalence classes of
ground instances of p, which is just JpKR/G.
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Equational Abstractions

Equational Abstractions (III)

In particular, if the complement of an invariant I in R is symbolically
described by a finite set of pattern terms p1, . . . , pk, in case the symbolic
state space to reach an instance of some pi from a symbolic initial state
u is infinite, we can use a topmost equational abstraction R/G whose
equations are FVP to try to make the symbolic search space finite.

Then, by the first Theorem in pg. 3 of this 3 of this lecture, we can use
symbolic model checking from a symbolic initial state u to show in R/G
that ∀u ̸→∗ pi, 1 ≤ i ≤ k. However, in some cases we might get some
spurious counterexample.

But by the second Theorem in page 3 of this lecture, no spurious
counterexamples will exist if the homomorphism
[ ]E∪B∪G : TΣ/E∪B → TΣ/E∪B∪G actually defines a bisimulation. I shall
focus on bisimulations in what follows.
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Equational Abstractions

An Equational Abstraction for R&W

Recall that it was impossible to verify the mutual exclusion and
one-writer invariants for BAKERY from < 0, 0 > by narrowing in a
forwards direction: one had to narrow backwards.

But we can
symbolicallt verify both invariants by forwards narrowing in an equational
abstraction of R&W from < 0, 0 >. Can you guess the G?

mod R&W is
sorts Nat Config .
op <_,_> : Nat Nat -> Config [ctor] .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .
rl < R, s(W) > => < R, W > [narrowing] .
rl < R, 0 > => < s(R), 0 > [narrowing] .
rl < s(R), W > => < R, W > [narrowing] .

endm

The equation < s(s(N)),0 > = < s(0),0 > is confluent, terminating
and FVP and provides the desired abstraction:
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Equational Abstractions

An Equational Abstraction for R&W (II)

mod R&W-ABS is
including R&W .
vars N M R W : Nat .
eq < s(s(N)),0 > = < s(0),0 > [variant] .

endm

Maude> {fold} vu-narrow < 0, 0 > =>* < s(N:Nat), s(M:Nat) > .

No solution.

Maude> {fold} vu-narrow < 0 , 0 > =>* < N:Nat , s(s(M:Nat)) > .
fvu-narrow in R&W-ABS : < 0,0 > =>* < N,s(s(M)) > .

No solution.

Of course, in this example the equational abstraction was not needed: we
could symbolically verify these properties from the more general pattern
< R,0 >. However, folding variant narrowing may loop in other
examples, yet may reach a fixpoint using an equational abstraction;
sometimes (like above) even from a ground initial state.
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Lamport’s Bakery Protocol (another version)

Bakery Protocol: Transition System

Token to give ; Token serving ; Set of Processes
Nat Nat [{ idle, wait(Nat), crit(Nat) }]

rl N ; M ; [idle] PS ⇒ (s N) ; M ; [wait(N)] PS .
rl N ; M ; [wait(M)] PS ⇒ N ; M ; [crit(M)] PS .
rl N ; M ; [crit(M)] PS ⇒ N ; (sM) ; [idle] PS .

0 ; 0 ; [idle]

��

s ; s ; [idle]

��

s s ; s s ; [idle]

��
s ; 0 ; [wait(0)]

��

s ; s ; [wait(s)]

��

s s s ; s s ; [wait(s s)]

��
s ; 0 ; [crit(s)]

88

s s ; s ; [crit(s)]

77

∞

(Transition System: one initial state - infinite space)
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Lamport’s Bakery Protocol (another version)

Bakery Protocol: Symbolic Transition System

0 ; 0 ; [idle]

��

s ; s ; [idle]

��

s s ; s s ; [idle]

��
s ; 0 ; [wait(0)]

��

s ; s ; [wait(s)]

��

s s s ; s s ; [wait(s s)]

��
s ; 0 ; [crit(s)]

88

s s ; s ; [crit(s)]

77

∞

(Transition System: one initial state - infinite state space)
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s s N ; s N ; [wait(s N)]

��
s s s N ; s s N ; [wait(s s N)]

��
s N ; N ; [crit(N)]

66

s s N ; s N ; [crit(s N)]

55

· · ·

(Symbolic Transition System: infinite initial state set - infinite state space)
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Lamport’s Bakery Protocol (another version)

Bakery Protocol: Folding the Symbolic Transition System

N ; N ; [idle] [idle]

�� ,,
s N ; N ; [wait(N)] [idle]

��

��

s N ; N ; [idle] [wait(N)]

��

ww

s N ; N ; [crit(N)] [idle]

≼E
:: ::

s N ; N ; [idle] [crit(N)]

≼E

gggg

s(s N) ; N ; [wait(N)] [wait(s N)] // s(s N) ; N ; [crit(N)] [wait(s N)]

≼E

AA AA

s(s N) ; N ; [wait(s N)] [crit(N)]

≼E
77 77

s(s N) ; N ; [wait(s N)] [wait(N)]oo

(Folding Symbolic Transition System : infinite initial state set - finite state space)

However, folding variant narrowing loops if we start with a more general
symbolic initial state of the form: N ; N IS, where IS is a variable of
sort IdleProcesses. Let us explore the notion of bisimilar equational
abstractions.
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Bisimilar Equational Abstractions

Bisimilar Equational Abstractions
We say that an equational abstraction R/G defines an bisimilar
equational abstraction of R iff the simulation map

[ ]E∪B∪G : (TΣ/E∪B,State,→R/E∪B) → (TΣ/E∪B∪G,State,→R/E∪B∪G)

is actually a bisimulation.

We are interested in finding checkable
conditions ensuring that G defines a bisimilar equational abstraction. See
the Appendix for a proof of the following theorem:

Theorem

Let R = (Σ, E ∪ B, R) be a topmost rewrite theory such that G = E ∪ B
is FVP, and G′ = E′ ∪ B′ is such that E ∪ E′ ∪ B ∪ B′ is FVP modulo
B ∪ B′. R/G′ defines a bisimilar equational abstraction of R if for each

(ui
0 = ui

1) ∈ G′, 1 ≤ i ≤ p, and (tj
0 → tj

1) ∈ R, 1 ≤ j ≤ q, and each

σ ∈ Unif G(t
j
b′ = ui

b), 0 ≤ b ≤ 1, 0 ≤ b′ ≤ 1, there exists a θ such that

ui
b′⊕1σ =G tj

bθ ∧ tj
b⊕1θ =G tj

b⊕1σ, where ⊕ denotes exclusive or.
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Bisimilar Equational Abstractions

Bakery Protocol: Infinite-State for some Initial States

N ; N ; IS

IS/IS1 [idle]

��

s s N ; N ; IS2 [wait(N)]
[wait(s N)]

IS2/IS3 [idle]

��

s s s s N ; N ; IS4 [wait(N)] [wait(s N]
[wait(s s N)] [wait(s s s N)]

IS4/IS5 [idle]

��
s N ; N ; IS1
[wait(N)]

IS1/IS2 [idle]

>>

s s s N ; N ; IS3 [wait(N)]
[wait(s N] [wait(s s N)]

IS3/IS4 [idle]

77

· · ·

(Infinite Folding Logical Transition System : infinite initial state - infinite state space)

• Many verification problems for infinite-state systems are due to
unbounded number of processes

• All approaches use a symbolic finite representation of an infinite
number of processes

• Bisimulation proofs written by hand or hard to reuse
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Bisimilar Equational Abstractions

An Equational Abstraction for the Bakery Protocol

• For our bakery protocol we can obtain a bisimilar equational
abstraction by restricting the abstraction only to the following
equation G′, which intuitively collapses extra waiting processes that
do not introduce any new behaviors:

• G′:
eq (s s s L M) ; M ; PS0 [wait(s L M)] [wait(s s L M)]

= (s s L M) ; M ; PS0 [wait(s L M)] .

N ; N ; IS
IS/IS1 [idle]

// s N; N ; IS1 [wait(N)]

IS1/IS2 [idle]

��

// s N; N ; IS1 [crit(N)]
ss

s s N; N ; IS2 [wait(N)] [wait(s N)]IS2/IS3 [idle]
%% // s s N; N ; IS2 [crit(N)] [wait(s N)]

jj

(Abstract Bisimilar Folding Logical Transition System)
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