Appendix to Lecture 27

J. Meseguer

Theorem. Let $f : \mathcal{A} \to \mathcal{B}$ be a simulation map, then for any $U, V \subseteq \mathcal{A}, \mathcal{A} \models \exists U \to^* V$ implies $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{B} \models \forall f(U) \twoheadrightarrow^* f(V)$ implies $\mathcal{A} \models \forall U \twoheadrightarrow^* V$.

Proof: $\mathcal{A} \models \exists U \rightarrow^* V$ just means that $\exists a \in U, \exists a' \in V, a \rightarrow^*_{\mathcal{A}} a'$. But, since f is a simulation, this forces $f(a) \rightarrow^*_{\mathcal{B}} f(a')$, i.e., $\mathcal{B} \models \exists f(U) \rightarrow^* f(V)$. \Box

Theorem. Let $f : \mathcal{A} \to \mathcal{B}$ be a *bisimulation* map, then for any $U, V \subseteq \mathcal{A}, \mathcal{A} \models \exists U \to^* V$ iff $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{A} \models \forall U \to^* V$ iff $\mathcal{B} \models \forall f(U) \to^* f(V)$.

Proof: Taking into account the previous theorem, we just need to prove that $\mathcal{B} \models \exists f(U) \rightarrow^* f(V)$ implies $\mathcal{A} \models \exists U \rightarrow^* V$. But $\mathcal{B} \models \exists f(U) \rightarrow^* f(V)$ means that $\exists a \in U, \exists a' \in V, f(a) \rightarrow^*_{\mathcal{B}} f(a')$, and f being a bisimulation then forces $a \rightarrow^*_{\mathcal{A}} a'$, giving us $\mathcal{A} \models \exists U \rightarrow^* V$, as desired. \Box

Theorem. Let $\mathcal{R} = (\Sigma, E \cup B, R)$ be a topmost rewrite theory such that $G = E \cup B$ is FVP, and $G' = E' \cup B'$ is such that $E \cup E' \cup B \cup B'$ is FVP modulo $B \cup B'$. \mathcal{R}/G' defines a bisimilar equational abstraction of \mathcal{R} if for each $(u_0^i = u_1^i) \in G', 1 \leq i \leq p$, and $(t_0^j \to t_1^j) \in R$, $1 \leq j \leq q$, and each $\sigma \in Unif_G(t_{b'}^j = u_b^i), 0 \leq b \leq 1, 0 \leq b' \leq 1$, there exists a θ such that $u_{b'\oplus 1}^i \sigma =_G t_{b\oplus 1}^j \theta \wedge t_{b\oplus 1}^j \theta =_G t_{b\oplus 1}^j \sigma$, where \oplus denotes exclusive or.

Proof: It will be enough to show that for all $j, 1 \leq j \leq q$, and for any $R/G \cup G'$ rewrite of the form $w =_{G \cup G'} t_0^j \rho \to t_1^j \rho =_{G \cup G'} w'$ there is a R/G rewrite of the form $w =_G t_0^j \rho' \to t_1^j \rho' =_G w'$. The proof is by contradiction. Suppose not. Then, we can choose a specific $k, 1 \leq k \leq q$, and an $R/G \cup G'$ rewrite $w =_{G \cup G'} t_0^k \rho \to t_1^k \rho =_{G \cup G'} w'$ for which no R/G rewrite of the form $w =_G t_0^k \rho' \to t_k^i \rho' =_G w'$ exists and, furthermore, if n_l are the G' equality steps in $w =_{G \cup G'} t_0^k \rho$ and n_r are the G' equality steps in $t_1^k \rho =_{G \cup G'} w'$, then $n_l + n_r$ is smallest possible so that no R/G rewrite of the form $w =_G t_0^k \rho' \to t_k^k \gamma =_G t_0^k \rho' \to vars(R) = \emptyset$ and that $n_l > 0$ (the case $n_r > 0$ is entirely analogous). Therefore, the proof $w =_{G \cup G'} t_0^k$ can be decomposed as a proof of the form $w =_{G \cup G'} u_{b\oplus 1}^{k'} \tau = u_b^{k'} \tau =_G t_0^k \rho$ for some $k', 1 \leq k' \leq p$, and τ , with $w =_{G \cup G'} u_{b\oplus 1}^{k'} \tau$ involving $n_l - 1$ G' equality steps. But then $\tau \uplus \rho$ is a G-unifier of the equation $u_b^{k'} = t_0^k$. Therefore, there exists a $\sigma \in Unif_G(t_0^k = u_b^{k'})$ and a γ such that $\sigma \gamma =_G (\tau \uplus \rho)$, and by the theorem's assumptions there exist a θ such that $u_{b' \oplus 1}^{k'} \sigma =_G t_0^k \theta \land t_1^k \theta =_G t_1^k \sigma$. But this gives as a $R/G \cup G'$ rewrite of the form:

$$w =_{G \cup G'} u_{b \oplus 1}^{k'} \tau =_G u_{b \oplus 1}^{k'} \sigma \gamma =_G t_0^k \theta \gamma \to t_1^k \theta \gamma =_G t_1^k \sigma \gamma =_G t_1^k \rho =_{G \cup G'} w'$$

with $(n_l + n_r) - 1$ G' equality steps, contradicting the minimality of $n_l + n_r$ for which no R/G rewrite of the form $w =_G t_0^k \rho' \to t_1^k \rho' =_G w'$ exists. \Box