
Program Verification: Lecture 26

Program Verification: Lecture 26

José Meseguer

University of Illinois at Urbana-Champaign

1/17

Program Verification: Lecture 26

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Ω,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/17

Program Verification: Lecture 26

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Ω,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).

But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/17

Program Verification: Lecture 26

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Ω,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B.

Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/17

Program Verification: Lecture 26

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Ω,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/17

Program Verification: Lecture 26

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Ω,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question:

Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/17

Program Verification: Lecture 26

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Ω,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/17

Program Verification: Lecture 26

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Ω,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/17

Program Verification: Lecture 26

The Need for E ∪ B-Unification

Symbolic model checking of a topmost rewrite theory
R = (Ω,B,R) is based on the modulo B narrowing relation ;R,B .

To extend this kind of symbolic model checking to admissible
topmost rewrite theories of the form R = (Σ,E ∪B,R) we need to
perform narrowing modulo E ∪ B with a relation ;R,E∪B . The
definition of narrowing modulo in Lecture 23 remains the same,
just by generalizing B to E ∪ B:

Given a rewrite theory R = (Σ,E ∪ B,R), and a term t ∈ TΣ(X),

an R-narrowing step modulo E ∪ B, denoted t
θ

;R,E∪B v holds iff
there exists a non-variable position p in t, a rule l → r in R, and a
E ∪ B-unifier θ ∈ Unif E∪B(t|p = l) such that v = t[r]pθ.

But the million-dolar question is: How do we compute a complete
set Unif E∪B(t|p = l) of E ∪ B-unifiers?

3/17

Program Verification: Lecture 26

The Need for E ∪ B-Unification

Symbolic model checking of a topmost rewrite theory
R = (Ω,B,R) is based on the modulo B narrowing relation ;R,B .

To extend this kind of symbolic model checking to admissible
topmost rewrite theories of the form R = (Σ,E ∪B,R) we need to
perform narrowing modulo E ∪ B with a relation ;R,E∪B .

The
definition of narrowing modulo in Lecture 23 remains the same,
just by generalizing B to E ∪ B:

Given a rewrite theory R = (Σ,E ∪ B,R), and a term t ∈ TΣ(X),

an R-narrowing step modulo E ∪ B, denoted t
θ

;R,E∪B v holds iff
there exists a non-variable position p in t, a rule l → r in R, and a
E ∪ B-unifier θ ∈ Unif E∪B(t|p = l) such that v = t[r]pθ.

But the million-dolar question is: How do we compute a complete
set Unif E∪B(t|p = l) of E ∪ B-unifiers?

3/17

Program Verification: Lecture 26

The Need for E ∪ B-Unification

Symbolic model checking of a topmost rewrite theory
R = (Ω,B,R) is based on the modulo B narrowing relation ;R,B .

To extend this kind of symbolic model checking to admissible
topmost rewrite theories of the form R = (Σ,E ∪B,R) we need to
perform narrowing modulo E ∪ B with a relation ;R,E∪B . The
definition of narrowing modulo in Lecture 23 remains the same,
just by generalizing B to E ∪ B:

Given a rewrite theory R = (Σ,E ∪ B,R), and a term t ∈ TΣ(X),

an R-narrowing step modulo E ∪ B, denoted t
θ

;R,E∪B v holds iff
there exists a non-variable position p in t, a rule l → r in R, and a
E ∪ B-unifier θ ∈ Unif E∪B(t|p = l) such that v = t[r]pθ.

But the million-dolar question is: How do we compute a complete
set Unif E∪B(t|p = l) of E ∪ B-unifiers?

3/17

Program Verification: Lecture 26

The Need for E ∪ B-Unification

Symbolic model checking of a topmost rewrite theory
R = (Ω,B,R) is based on the modulo B narrowing relation ;R,B .

To extend this kind of symbolic model checking to admissible
topmost rewrite theories of the form R = (Σ,E ∪B,R) we need to
perform narrowing modulo E ∪ B with a relation ;R,E∪B . The
definition of narrowing modulo in Lecture 23 remains the same,
just by generalizing B to E ∪ B:

Given a rewrite theory R = (Σ,E ∪ B,R), and a term t ∈ TΣ(X),

an R-narrowing step modulo E ∪ B, denoted t
θ

;R,E∪B v holds iff
there exists a non-variable position p in t, a rule l → r in R, and a
E ∪ B-unifier θ ∈ Unif E∪B(t|p = l) such that v = t[r]pθ.

But the million-dolar question is: How do we compute a complete
set Unif E∪B(t|p = l) of E ∪ B-unifiers?

3/17

Program Verification: Lecture 26

The Need for E ∪ B-Unification

Symbolic model checking of a topmost rewrite theory
R = (Ω,B,R) is based on the modulo B narrowing relation ;R,B .

To extend this kind of symbolic model checking to admissible
topmost rewrite theories of the form R = (Σ,E ∪B,R) we need to
perform narrowing modulo E ∪ B with a relation ;R,E∪B . The
definition of narrowing modulo in Lecture 23 remains the same,
just by generalizing B to E ∪ B:

Given a rewrite theory R = (Σ,E ∪ B,R), and a term t ∈ TΣ(X),

an R-narrowing step modulo E ∪ B, denoted t
θ

;R,E∪B v holds iff
there exists a non-variable position p in t, a rule l → r in R, and a
E ∪ B-unifier θ ∈ Unif E∪B(t|p = l) such that v = t[r]pθ.

But the million-dolar question is: How do we compute a complete
set Unif E∪B(t|p = l) of E ∪ B-unifiers?

3/17

Program Verification: Lecture 26

E ∪ B-Unification

The notion of a E ∪ B-unifier of a Σ-equation u = v is as
expected: it is a substitution θ such that uθ =E∪B vθ.

The notion of a complete set Unif E∪B(u = v) of E ∪ B-unifiers is
also as expected: Unif E∪B(u = v) is a set of E ∪ B-unifiers of
u = v such that for any E ∪ B-unifier α of u = v there exists a
unifier γ ∈ Unif E∪B(u = v) of which α is an “instance modulo
E ∪ B.” That is, there is a substitution δ such that α =E∪B γδ,
where, by definition, given substitutions µ, ν
µ =E∪B ν ⇔def (∀x ∈ dom(µ) ∪ dom(ν)) µ(x) =E∪B ν(x).

For E ∪ B an arbitrary set of equations E ∪ B, computing such a
set Unif E∪B(u = v) is a very complex matter. But for our
purposes we may assume that the oriented equations E⃗ are
convergent modulo B, which makes the task much easier.

4/17

Program Verification: Lecture 26

E ∪ B-Unification

The notion of a E ∪ B-unifier of a Σ-equation u = v is as
expected: it is a substitution θ such that uθ =E∪B vθ.

The notion of a complete set Unif E∪B(u = v) of E ∪ B-unifiers is
also as expected: Unif E∪B(u = v) is a set of E ∪ B-unifiers of
u = v such that for any E ∪ B-unifier α of u = v there exists a
unifier γ ∈ Unif E∪B(u = v) of which α is an “instance modulo
E ∪ B.”

That is, there is a substitution δ such that α =E∪B γδ,
where, by definition, given substitutions µ, ν
µ =E∪B ν ⇔def (∀x ∈ dom(µ) ∪ dom(ν)) µ(x) =E∪B ν(x).

For E ∪ B an arbitrary set of equations E ∪ B, computing such a
set Unif E∪B(u = v) is a very complex matter. But for our
purposes we may assume that the oriented equations E⃗ are
convergent modulo B, which makes the task much easier.

4/17

Program Verification: Lecture 26

E ∪ B-Unification

The notion of a E ∪ B-unifier of a Σ-equation u = v is as
expected: it is a substitution θ such that uθ =E∪B vθ.

The notion of a complete set Unif E∪B(u = v) of E ∪ B-unifiers is
also as expected: Unif E∪B(u = v) is a set of E ∪ B-unifiers of
u = v such that for any E ∪ B-unifier α of u = v there exists a
unifier γ ∈ Unif E∪B(u = v) of which α is an “instance modulo
E ∪ B.” That is, there is a substitution δ such that α =E∪B γδ,
where, by definition, given substitutions µ, ν
µ =E∪B ν ⇔def (∀x ∈ dom(µ) ∪ dom(ν)) µ(x) =E∪B ν(x).

For E ∪ B an arbitrary set of equations E ∪ B, computing such a
set Unif E∪B(u = v) is a very complex matter. But for our
purposes we may assume that the oriented equations E⃗ are
convergent modulo B, which makes the task much easier.

4/17

Program Verification: Lecture 26

E ∪ B-Unification

The notion of a E ∪ B-unifier of a Σ-equation u = v is as
expected: it is a substitution θ such that uθ =E∪B vθ.

The notion of a complete set Unif E∪B(u = v) of E ∪ B-unifiers is
also as expected: Unif E∪B(u = v) is a set of E ∪ B-unifiers of
u = v such that for any E ∪ B-unifier α of u = v there exists a
unifier γ ∈ Unif E∪B(u = v) of which α is an “instance modulo
E ∪ B.” That is, there is a substitution δ such that α =E∪B γδ,
where, by definition, given substitutions µ, ν
µ =E∪B ν ⇔def (∀x ∈ dom(µ) ∪ dom(ν)) µ(x) =E∪B ν(x).

For E ∪ B an arbitrary set of equations E ∪ B, computing such a
set Unif E∪B(u = v) is a very complex matter.

But for our
purposes we may assume that the oriented equations E⃗ are
convergent modulo B, which makes the task much easier.

4/17

Program Verification: Lecture 26

E ∪ B-Unification

The notion of a E ∪ B-unifier of a Σ-equation u = v is as
expected: it is a substitution θ such that uθ =E∪B vθ.

The notion of a complete set Unif E∪B(u = v) of E ∪ B-unifiers is
also as expected: Unif E∪B(u = v) is a set of E ∪ B-unifiers of
u = v such that for any E ∪ B-unifier α of u = v there exists a
unifier γ ∈ Unif E∪B(u = v) of which α is an “instance modulo
E ∪ B.” That is, there is a substitution δ such that α =E∪B γδ,
where, by definition, given substitutions µ, ν
µ =E∪B ν ⇔def (∀x ∈ dom(µ) ∪ dom(ν)) µ(x) =E∪B ν(x).

For E ∪ B an arbitrary set of equations E ∪ B, computing such a
set Unif E∪B(u = v) is a very complex matter. But for our
purposes we may assume that the oriented equations E⃗ are
convergent modulo B, which makes the task much easier.

4/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B

For E⃗ convergent modulo B, by the Church-Rosser Theorem, for
any Σ-equation u = v and substitution θ we have the equivalence:

(†) uθ =E∪B vθ ⇔ (uθ)!
E⃗/B

=B (vθ)!
E⃗/B

This suggest the idea of computing E ∪ B-unifiers by narrowing!
using a theory transformation (Σ,E ∪ B) 7→ (Σ≡,E≡ ∪ B), where:

1. Σ≡ extends Σ by adding: (a) for each connected component [s]
in Σ not having a top sort ⊤[s], such a new top sort ⊤[s]; (b) a
new sort Pred with a constant tt; and (c) for each connected
component [s] in Σ a binary equality predicate
≡ : ⊤[s] ⊤[s] → Pred .

2. E≡ extends E by adding for each connected component [s] in Σ
an equation x :⊤[s] ≡ x :⊤[s] = tt.

5/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B

For E⃗ convergent modulo B, by the Church-Rosser Theorem, for
any Σ-equation u = v and substitution θ we have the equivalence:

(†) uθ =E∪B vθ ⇔ (uθ)!
E⃗/B

=B (vθ)!
E⃗/B

This suggest the idea of computing E ∪ B-unifiers by narrowing!
using a theory transformation (Σ,E ∪ B) 7→ (Σ≡,E≡ ∪ B), where:

1. Σ≡ extends Σ by adding: (a) for each connected component [s]
in Σ not having a top sort ⊤[s], such a new top sort ⊤[s]; (b) a
new sort Pred with a constant tt; and (c) for each connected
component [s] in Σ a binary equality predicate
≡ : ⊤[s] ⊤[s] → Pred .

2. E≡ extends E by adding for each connected component [s] in Σ
an equation x :⊤[s] ≡ x :⊤[s] = tt.

5/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B

For E⃗ convergent modulo B, by the Church-Rosser Theorem, for
any Σ-equation u = v and substitution θ we have the equivalence:

(†) uθ =E∪B vθ ⇔ (uθ)!
E⃗/B

=B (vθ)!
E⃗/B

This suggest the idea of computing E ∪ B-unifiers by narrowing!
using a theory transformation (Σ,E ∪ B) 7→ (Σ≡,E≡ ∪ B), where:

1. Σ≡ extends Σ by adding: (a) for each connected component [s]
in Σ not having a top sort ⊤[s], such a new top sort ⊤[s]; (b) a
new sort Pred with a constant tt; and (c) for each connected
component [s] in Σ a binary equality predicate
≡ : ⊤[s] ⊤[s] → Pred .

2. E≡ extends E by adding for each connected component [s] in Σ
an equation x :⊤[s] ≡ x :⊤[s] = tt.

5/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B

For E⃗ convergent modulo B, by the Church-Rosser Theorem, for
any Σ-equation u = v and substitution θ we have the equivalence:

(†) uθ =E∪B vθ ⇔ (uθ)!
E⃗/B

=B (vθ)!
E⃗/B

This suggest the idea of computing E ∪ B-unifiers by narrowing!
using a theory transformation (Σ,E ∪ B) 7→ (Σ≡,E≡ ∪ B), where:

1. Σ≡ extends Σ by adding: (a) for each connected component [s]
in Σ not having a top sort ⊤[s], such a new top sort ⊤[s]; (b) a
new sort Pred with a constant tt; and (c) for each connected
component [s] in Σ a binary equality predicate
≡ : ⊤[s] ⊤[s] → Pred .

2. E≡ extends E by adding for each connected component [s] in Σ
an equation x :⊤[s] ≡ x :⊤[s] = tt.

5/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B

For E⃗ convergent modulo B, by the Church-Rosser Theorem, for
any Σ-equation u = v and substitution θ we have the equivalence:

(†) uθ =E∪B vθ ⇔ (uθ)!
E⃗/B

=B (vθ)!
E⃗/B

This suggest the idea of computing E ∪ B-unifiers by narrowing!
using a theory transformation (Σ,E ∪ B) 7→ (Σ≡,E≡ ∪ B), where:

1. Σ≡ extends Σ by adding: (a) for each connected component [s]
in Σ not having a top sort ⊤[s], such a new top sort ⊤[s]; (b) a
new sort Pred with a constant tt; and (c) for each connected
component [s] in Σ a binary equality predicate
≡ : ⊤[s] ⊤[s] → Pred .

2. E≡ extends E by adding for each connected component [s] in Σ
an equation x :⊤[s] ≡ x :⊤[s] = tt.

5/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
.

Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (III)

This gives us our desired E ∪ B-unification semi-algorithm, whose
proof of correctness follows easily (exercise!) by repeated
application of the Lifting Lemma for the rewrite theory
(Σ≡,B, E⃗≡), just by observing that θ is a E ∪ B-unifier of u = v
iff its E⃗/B-normalized form θ!

E⃗/B
is so.

Theorem. For E⃗ convergent modulo B and applied with
B-extensions (see pg. 7 of Lecture 23), the set

Unif E∪B(u = v) =def {γ | (u ≡ v)
γ

;∗
E⃗≡,B

tt}

is a complete set of E ∪ B-unifiers of the equation u = v .

For narrowing-based model checking, we obtain as an immediate
corollary the following vast generalization of the Completeness of
Narrowing Search Theorem in Lecture 23 for topmost theories:

7/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (III)

This gives us our desired E ∪ B-unification semi-algorithm, whose
proof of correctness follows easily (exercise!) by repeated
application of the Lifting Lemma for the rewrite theory
(Σ≡,B, E⃗≡), just by observing that θ is a E ∪ B-unifier of u = v
iff its E⃗/B-normalized form θ!

E⃗/B
is so.

Theorem. For E⃗ convergent modulo B and applied with
B-extensions (see pg. 7 of Lecture 23), the set

Unif E∪B(u = v) =def {γ | (u ≡ v)
γ

;∗
E⃗≡,B

tt}

is a complete set of E ∪ B-unifiers of the equation u = v .

For narrowing-based model checking, we obtain as an immediate
corollary the following vast generalization of the Completeness of
Narrowing Search Theorem in Lecture 23 for topmost theories:

7/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (III)

This gives us our desired E ∪ B-unification semi-algorithm, whose
proof of correctness follows easily (exercise!) by repeated
application of the Lifting Lemma for the rewrite theory
(Σ≡,B, E⃗≡), just by observing that θ is a E ∪ B-unifier of u = v
iff its E⃗/B-normalized form θ!

E⃗/B
is so.

Theorem. For E⃗ convergent modulo B and applied with
B-extensions (see pg. 7 of Lecture 23), the set

Unif E∪B(u = v) =def {γ | (u ≡ v)
γ

;∗
E⃗≡,B

tt}

is a complete set of E ∪ B-unifiers of the equation u = v .

For narrowing-based model checking, we obtain as an immediate
corollary the following vast generalization of the Completeness of
Narrowing Search Theorem in Lecture 23 for topmost theories:

7/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (III)

This gives us our desired E ∪ B-unification semi-algorithm, whose
proof of correctness follows easily (exercise!) by repeated
application of the Lifting Lemma for the rewrite theory
(Σ≡,B, E⃗≡), just by observing that θ is a E ∪ B-unifier of u = v
iff its E⃗/B-normalized form θ!

E⃗/B
is so.

Theorem. For E⃗ convergent modulo B and applied with
B-extensions (see pg. 7 of Lecture 23), the set

Unif E∪B(u = v) =def {γ | (u ≡ v)
γ

;∗
E⃗≡,B

tt}

is a complete set of E ∪ B-unifiers of the equation u = v .

For narrowing-based model checking, we obtain as an immediate
corollary the following vast generalization of the Completeness of
Narrowing Search Theorem in Lecture 23 for topmost theories:

7/17

Program Verification: Lecture 26

E ∪ B-Unification for E⃗ Convergent Modulo B (III)

This gives us our desired E ∪ B-unification semi-algorithm, whose
proof of correctness follows easily (exercise!) by repeated
application of the Lifting Lemma for the rewrite theory
(Σ≡,B, E⃗≡), just by observing that θ is a E ∪ B-unifier of u = v
iff its E⃗/B-normalized form θ!

E⃗/B
is so.

Theorem. For E⃗ convergent modulo B and applied with
B-extensions (see pg. 7 of Lecture 23), the set

Unif E∪B(u = v) =def {γ | (u ≡ v)
γ

;∗
E⃗≡,B

tt}

is a complete set of E ∪ B-unifiers of the equation u = v .

For narrowing-based model checking, we obtain as an immediate
corollary the following vast generalization of the Completeness of
Narrowing Search Theorem in Lecture 23 for topmost theories:

7/17

Program Verification: Lecture 26

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and a narrowing sequence

ui
θ

;∗
R,(E∪B) w such that Unif E∪B(w = vj) ̸= ∅.

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 23 and is left as an exercise.

8/17

Program Verification: Lecture 26

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and a narrowing sequence

ui
θ

;∗
R,(E∪B) w such that Unif E∪B(w = vj) ̸= ∅.

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 23 and is left as an exercise.

8/17

Program Verification: Lecture 26

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and a narrowing sequence

ui
θ

;∗
R,(E∪B) w such that Unif E∪B(w = vj) ̸= ∅.

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 23 and is left as an exercise.

8/17

Program Verification: Lecture 26

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff

exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and a narrowing sequence

ui
θ

;∗
R,(E∪B) w such that Unif E∪B(w = vj) ̸= ∅.

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 23 and is left as an exercise.

8/17

Program Verification: Lecture 26

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and a narrowing sequence

ui
θ

;∗
R,(E∪B) w such that Unif E∪B(w = vj) ̸= ∅.

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 23 and is left as an exercise.

8/17

Program Verification: Lecture 26

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and a narrowing sequence

ui
θ

;∗
R,(E∪B) w such that Unif E∪B(w = vj) ̸= ∅.

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 23 and is left as an exercise.

8/17

Program Verification: Lecture 26

Performance Barriers for Symbolic Reachability

In the above, generalized Completeness of Narrowing Search
Theorem, narrowing happens at two levels: (i) with R modulo
E ∪ B, i.e., ;∗

R,(E∪B), for reachability analysis, and (ii) with E⃗≡

modulo B, i.e., ;∗
E⃗≡,B

, for computing E ∪ B-unifiers.

From a performance point of view this is very challenging, since
this gives us what we might describe as a “nested narrowing tree,”
wich can by infinite at both of the narrowing levels.

To overcome these performance barriers, the technique of folding
an infinite narrowing tree into a (hopefully finite) narrowing graph
can be applied at both levels. For the symbolic reachability level
with ;∗

R,B we have already seen this in Lecture 24. Likewise, for

E⃗ ,B-narrowing with E⃗ convergent modulo B (E⃗≡,B-narrowing is
just a special case), folding variant narrowing delivers the goods:

9/17

Program Verification: Lecture 26

Performance Barriers for Symbolic Reachability

In the above, generalized Completeness of Narrowing Search
Theorem, narrowing happens at two levels: (i) with R modulo
E ∪ B, i.e., ;∗

R,(E∪B), for reachability analysis, and (ii) with E⃗≡

modulo B, i.e., ;∗
E⃗≡,B

, for computing E ∪ B-unifiers.

From a performance point of view this is very challenging, since
this gives us what we might describe as a “nested narrowing tree,”
wich can by infinite at both of the narrowing levels.

To overcome these performance barriers, the technique of folding
an infinite narrowing tree into a (hopefully finite) narrowing graph
can be applied at both levels. For the symbolic reachability level
with ;∗

R,B we have already seen this in Lecture 24. Likewise, for

E⃗ ,B-narrowing with E⃗ convergent modulo B (E⃗≡,B-narrowing is
just a special case), folding variant narrowing delivers the goods:

9/17

Program Verification: Lecture 26

Performance Barriers for Symbolic Reachability

In the above, generalized Completeness of Narrowing Search
Theorem, narrowing happens at two levels: (i) with R modulo
E ∪ B, i.e., ;∗

R,(E∪B), for reachability analysis, and (ii) with E⃗≡

modulo B, i.e., ;∗
E⃗≡,B

, for computing E ∪ B-unifiers.

From a performance point of view this is very challenging, since
this gives us what we might describe as a “nested narrowing tree,”
wich can by infinite at both of the narrowing levels.

To overcome these performance barriers, the technique of folding
an infinite narrowing tree into a (hopefully finite) narrowing graph
can be applied at both levels.

For the symbolic reachability level
with ;∗

R,B we have already seen this in Lecture 24. Likewise, for

E⃗ ,B-narrowing with E⃗ convergent modulo B (E⃗≡,B-narrowing is
just a special case), folding variant narrowing delivers the goods:

9/17

Program Verification: Lecture 26

Performance Barriers for Symbolic Reachability

In the above, generalized Completeness of Narrowing Search
Theorem, narrowing happens at two levels: (i) with R modulo
E ∪ B, i.e., ;∗

R,(E∪B), for reachability analysis, and (ii) with E⃗≡

modulo B, i.e., ;∗
E⃗≡,B

, for computing E ∪ B-unifiers.

From a performance point of view this is very challenging, since
this gives us what we might describe as a “nested narrowing tree,”
wich can by infinite at both of the narrowing levels.

To overcome these performance barriers, the technique of folding
an infinite narrowing tree into a (hopefully finite) narrowing graph
can be applied at both levels. For the symbolic reachability level
with ;∗

R,B we have already seen this in Lecture 24.

Likewise, for

E⃗ ,B-narrowing with E⃗ convergent modulo B (E⃗≡,B-narrowing is
just a special case), folding variant narrowing delivers the goods:

9/17

Program Verification: Lecture 26

Performance Barriers for Symbolic Reachability

In the above, generalized Completeness of Narrowing Search
Theorem, narrowing happens at two levels: (i) with R modulo
E ∪ B, i.e., ;∗

R,(E∪B), for reachability analysis, and (ii) with E⃗≡

modulo B, i.e., ;∗
E⃗≡,B

, for computing E ∪ B-unifiers.

From a performance point of view this is very challenging, since
this gives us what we might describe as a “nested narrowing tree,”
wich can by infinite at both of the narrowing levels.

To overcome these performance barriers, the technique of folding
an infinite narrowing tree into a (hopefully finite) narrowing graph
can be applied at both levels. For the symbolic reachability level
with ;∗

R,B we have already seen this in Lecture 24. Likewise, for

E⃗ ,B-narrowing with E⃗ convergent modulo B (E⃗≡,B-narrowing is
just a special case), folding variant narrowing delivers the goods:

9/17

Program Verification: Lecture 26

Folding Variant Narrowing

Folding Variant Narrowing, proposed by S. Escobar, R. Sasse and
J. Meseguer1 for theories (Σ,E ∪ B) with E⃗ convergent modulo B,
folds the E⃗ ,B-narrowing tree of t into a graph in a breadth first
manner as follows:

1 It considers only paths t
θ

;n
E⃗ ,B

u in the narrowing tree such

that u and θ are E⃗ ,B-normalized.

2 For any such path t
θ

;n
E⃗ ,B

u, if there is another such different

path t
θ′

;m
E⃗ ,B

u′ with m ≤ n and a B-matching substitution γ

such that: (i) u =B u′γ, and (ii) θ =B θ′γ, then the node u is
folded into the more general node u′.

1“Folding variant narrowing and optimal variant termination”, J. Alg. &
Log. Prog., 81, 898–928, 2012.

10/17

Program Verification: Lecture 26

Folding Variant Narrowing

Folding Variant Narrowing, proposed by S. Escobar, R. Sasse and
J. Meseguer1 for theories (Σ,E ∪ B) with E⃗ convergent modulo B,
folds the E⃗ ,B-narrowing tree of t into a graph in a breadth first
manner as follows:

1 It considers only paths t
θ

;n
E⃗ ,B

u in the narrowing tree such

that u and θ are E⃗ ,B-normalized.

2 For any such path t
θ

;n
E⃗ ,B

u, if there is another such different

path t
θ′

;m
E⃗ ,B

u′ with m ≤ n and a B-matching substitution γ

such that: (i) u =B u′γ, and (ii) θ =B θ′γ, then the node u is
folded into the more general node u′.

1“Folding variant narrowing and optimal variant termination”, J. Alg. &
Log. Prog., 81, 898–928, 2012.

10/17

Program Verification: Lecture 26

Folding Variant Narrowing

Folding Variant Narrowing, proposed by S. Escobar, R. Sasse and
J. Meseguer1 for theories (Σ,E ∪ B) with E⃗ convergent modulo B,
folds the E⃗ ,B-narrowing tree of t into a graph in a breadth first
manner as follows:

1 It considers only paths t
θ

;n
E⃗ ,B

u in the narrowing tree such

that u and θ are E⃗ ,B-normalized.

2 For any such path t
θ

;n
E⃗ ,B

u, if there is another such different

path t
θ′

;m
E⃗ ,B

u′ with m ≤ n and a B-matching substitution γ

such that: (i) u =B u′γ, and (ii) θ =B θ′γ, then the node u is
folded into the more general node u′.

1“Folding variant narrowing and optimal variant termination”, J. Alg. &
Log. Prog., 81, 898–928, 2012.

10/17

Program Verification: Lecture 26

Folding Variant Narrowing (II)

The pairs (u, θ) associated to paths t
θ

;n
E⃗ ,B

u in such a graph are

called the E⃗ ,B-variants of t; and the graph thus obtained is called
the folding variant narrowing graph of t.

Maude supports the enumeration of all variants in the folding
variant narrowing graph of t by the get variants t . command
(§14.4, Maude Manual). It also supports variant-based
E ∪ B-unification when E⃗ is convergent modulo B with the
variant unify command (§14.9, Maude Manual).

(Σ,E ∪ B) enjoys the finite variant property (FVP) iff for any
Σ-term t its folding variant graph is finite. This property holds iff
for each f : s1 . . . sn → s in Σ the folding variant graph of
f (x1 :s1, . . . , xn :sn) is finite, which can be checked in Maude.

11/17

Program Verification: Lecture 26

Folding Variant Narrowing (II)

The pairs (u, θ) associated to paths t
θ

;n
E⃗ ,B

u in such a graph are

called the E⃗ ,B-variants of t; and the graph thus obtained is called
the folding variant narrowing graph of t.

Maude supports the enumeration of all variants in the folding
variant narrowing graph of t by the get variants t . command
(§14.4, Maude Manual).

It also supports variant-based
E ∪ B-unification when E⃗ is convergent modulo B with the
variant unify command (§14.9, Maude Manual).

(Σ,E ∪ B) enjoys the finite variant property (FVP) iff for any
Σ-term t its folding variant graph is finite. This property holds iff
for each f : s1 . . . sn → s in Σ the folding variant graph of
f (x1 :s1, . . . , xn :sn) is finite, which can be checked in Maude.

11/17

Program Verification: Lecture 26

Folding Variant Narrowing (II)

The pairs (u, θ) associated to paths t
θ

;n
E⃗ ,B

u in such a graph are

called the E⃗ ,B-variants of t; and the graph thus obtained is called
the folding variant narrowing graph of t.

Maude supports the enumeration of all variants in the folding
variant narrowing graph of t by the get variants t . command
(§14.4, Maude Manual). It also supports variant-based
E ∪ B-unification when E⃗ is convergent modulo B with the
variant unify command (§14.9, Maude Manual).

(Σ,E ∪ B) enjoys the finite variant property (FVP) iff for any
Σ-term t its folding variant graph is finite. This property holds iff
for each f : s1 . . . sn → s in Σ the folding variant graph of
f (x1 :s1, . . . , xn :sn) is finite, which can be checked in Maude.

11/17

Program Verification: Lecture 26

Folding Variant Narrowing (II)

The pairs (u, θ) associated to paths t
θ

;n
E⃗ ,B

u in such a graph are

called the E⃗ ,B-variants of t; and the graph thus obtained is called
the folding variant narrowing graph of t.

Maude supports the enumeration of all variants in the folding
variant narrowing graph of t by the get variants t . command
(§14.4, Maude Manual). It also supports variant-based
E ∪ B-unification when E⃗ is convergent modulo B with the
variant unify command (§14.9, Maude Manual).

(Σ,E ∪ B) enjoys the finite variant property (FVP) iff for any
Σ-term t its folding variant graph is finite.

This property holds iff
for each f : s1 . . . sn → s in Σ the folding variant graph of
f (x1 :s1, . . . , xn :sn) is finite, which can be checked in Maude.

11/17

Program Verification: Lecture 26

Folding Variant Narrowing (II)

The pairs (u, θ) associated to paths t
θ

;n
E⃗ ,B

u in such a graph are

called the E⃗ ,B-variants of t; and the graph thus obtained is called
the folding variant narrowing graph of t.

Maude supports the enumeration of all variants in the folding
variant narrowing graph of t by the get variants t . command
(§14.4, Maude Manual). It also supports variant-based
E ∪ B-unification when E⃗ is convergent modulo B with the
variant unify command (§14.9, Maude Manual).

(Σ,E ∪ B) enjoys the finite variant property (FVP) iff for any
Σ-term t its folding variant graph is finite. This property holds iff
for each f : s1 . . . sn → s in Σ the folding variant graph of
f (x1 :s1, . . . , xn :sn) is finite, which can be checked in Maude.

11/17

Program Verification: Lecture 26

An FVP Example: SET

In the theory (Σ,E ∪ AC) SET below we can preform
AC -unification in Maude as follows:

fmod SET is

sort Set .

ops mt a b c d e f g : -> Set [ctor] .

op _U_ : Set Set -> Set [ctor assoc comm] . *** union

vars S S’ : Set .

eq S U mt = S [variant] . *** identity

eq S U S = S [variant] . *** idempotencu

eq S U S U S’ = S U S’ [variant] . *** idempotency extension

endfm

unify a U a U b U S =? a U c U S’ .

Unifier 1

S --> c U #1:Set

S’ --> a U b U #1:Set

Unifier 2

S --> c

S’ --> a U b

12/17

Program Verification: Lecture 26

An FVP Example: SET

In the theory (Σ,E ∪ AC) SET below we can preform
AC -unification in Maude as follows:

fmod SET is

sort Set .

ops mt a b c d e f g : -> Set [ctor] .

op _U_ : Set Set -> Set [ctor assoc comm] . *** union

vars S S’ : Set .

eq S U mt = S [variant] . *** identity

eq S U S = S [variant] . *** idempotencu

eq S U S U S’ = S U S’ [variant] . *** idempotency extension

endfm

unify a U a U b U S =? a U c U S’ .

Unifier 1

S --> c U #1:Set

S’ --> a U b U #1:Set

Unifier 2

S --> c

S’ --> a U b

12/17

Program Verification: Lecture 26

An FVP Example: SET (II)

SET is FVP because S U S’ has a finite number of variants:

get variants S U S’ .

Variant 1

Set: #1:Set U #2:Set

S --> #1:Set

S’ --> #2:Set

Variant 2

Set: %1:Set

S --> mt

S’ --> %1:Set

Variant 3

Set: %1:Set

S --> %1:Set

S’ --> mt

Variant 4

Set: %1:Set

S --> %1:Set

S’ --> %1:Set

13/17

Program Verification: Lecture 26

An FVP Example: SET (II)

SET is FVP because S U S’ has a finite number of variants:
get variants S U S’ .

Variant 1

Set: #1:Set U #2:Set

S --> #1:Set

S’ --> #2:Set

Variant 2

Set: %1:Set

S --> mt

S’ --> %1:Set

Variant 3

Set: %1:Set

S --> %1:Set

S’ --> mt

Variant 4

Set: %1:Set

S --> %1:Set

S’ --> %1:Set
13/17

Program Verification: Lecture 26

An FVP Example: SET (III)

Variant 5

Set: %1:Set U %2:Set U %3:Set

S --> %1:Set U %2:Set

S’ --> %1:Set U %3:Set

Variant 6

Set: %1:Set U %2:Set

S --> %1:Set U %2:Set

S’ --> %2:Set

Variant 7

Set: %1:Set U %2:Set

S --> %2:Set

S’ --> %1:Set U %2:Set

No more variants.

14/17

Program Verification: Lecture 26

Variant Unification for FVP Theories

It is easy to check (exercise!) that if (Σ,E ∪ B) is FVP, then
(Σ≡,E≡ ∪ B) is also FVP. This means that, when (Σ,E ∪ B) is
FVP, variant unification always provides a finite and complete set
of E ∪ B-unifiers. For example, since SET is FVP any
E ∪ AC -unification problem has a finite number of variant unifiers.

filtered variant unify a U a U b U S =? a U c U S’ .

Unifier 1

S --> c U %1:Set

S’ --> b U %1:Set

Unifier 2

S --> a U c U #1:Set

S’ --> b U #1:Set

Unifier 3

S --> c U #1:Set

S’ --> a U b U #1:Set

No more unifiers.

15/17

Program Verification: Lecture 26

Variant Unification for FVP Theories

It is easy to check (exercise!) that if (Σ,E ∪ B) is FVP, then
(Σ≡,E≡ ∪ B) is also FVP. This means that, when (Σ,E ∪ B) is
FVP, variant unification always provides a finite and complete set
of E ∪ B-unifiers. For example, since SET is FVP any
E ∪ AC -unification problem has a finite number of variant unifiers.
filtered variant unify a U a U b U S =? a U c U S’ .

Unifier 1

S --> c U %1:Set

S’ --> b U %1:Set

Unifier 2

S --> a U c U #1:Set

S’ --> b U #1:Set

Unifier 3

S --> c U #1:Set

S’ --> a U b U #1:Set

No more unifiers.
15/17

Program Verification: Lecture 26

Symbolic Model Checking for R = (Σ,E ∪ B ,R) when
E ∪ B is FVP

Thus, for (Σ,E ∪ B) FVP, the Completeness of Narrowing Search
Theorem for a rewrite theory R = (Σ,E ∪ B,R) of pg. 8 makes
symbolic model checking tractable. It is supported by the same
{fold} vu-narrow command already discussed in Lectures 23-24.

In summary, we have generalized the symbolic model checking
results from Lecture 24 to: (i) any topmost rewrite theory
R = (Σ,E ∪ B,R) with E⃗ convergent modulo B, and (ii) made it
tractable when E ∪ B is FVP. For symbolic model checking
examples when E ∪ B is FVP, see §15 of the The Maude Manual.
Further examples will be given in future Lectures.

16/17

Program Verification: Lecture 26

Symbolic Model Checking for R = (Σ,E ∪ B ,R) when
E ∪ B is FVP

Thus, for (Σ,E ∪ B) FVP, the Completeness of Narrowing Search
Theorem for a rewrite theory R = (Σ,E ∪ B,R) of pg. 8 makes
symbolic model checking tractable. It is supported by the same
{fold} vu-narrow command already discussed in Lectures 23-24.

In summary, we have generalized the symbolic model checking
results from Lecture 24 to:

(i) any topmost rewrite theory
R = (Σ,E ∪ B,R) with E⃗ convergent modulo B, and (ii) made it
tractable when E ∪ B is FVP. For symbolic model checking
examples when E ∪ B is FVP, see §15 of the The Maude Manual.
Further examples will be given in future Lectures.

16/17

Program Verification: Lecture 26

Symbolic Model Checking for R = (Σ,E ∪ B ,R) when
E ∪ B is FVP

Thus, for (Σ,E ∪ B) FVP, the Completeness of Narrowing Search
Theorem for a rewrite theory R = (Σ,E ∪ B,R) of pg. 8 makes
symbolic model checking tractable. It is supported by the same
{fold} vu-narrow command already discussed in Lectures 23-24.

In summary, we have generalized the symbolic model checking
results from Lecture 24 to: (i) any topmost rewrite theory
R = (Σ,E ∪ B,R) with E⃗ convergent modulo B, and

(ii) made it
tractable when E ∪ B is FVP. For symbolic model checking
examples when E ∪ B is FVP, see §15 of the The Maude Manual.
Further examples will be given in future Lectures.

16/17

Program Verification: Lecture 26

Symbolic Model Checking for R = (Σ,E ∪ B ,R) when
E ∪ B is FVP

Thus, for (Σ,E ∪ B) FVP, the Completeness of Narrowing Search
Theorem for a rewrite theory R = (Σ,E ∪ B,R) of pg. 8 makes
symbolic model checking tractable. It is supported by the same
{fold} vu-narrow command already discussed in Lectures 23-24.

In summary, we have generalized the symbolic model checking
results from Lecture 24 to: (i) any topmost rewrite theory
R = (Σ,E ∪ B,R) with E⃗ convergent modulo B, and (ii) made it
tractable when E ∪ B is FVP.

For symbolic model checking
examples when E ∪ B is FVP, see §15 of the The Maude Manual.
Further examples will be given in future Lectures.

16/17

Program Verification: Lecture 26

Symbolic Model Checking for R = (Σ,E ∪ B ,R) when
E ∪ B is FVP

Thus, for (Σ,E ∪ B) FVP, the Completeness of Narrowing Search
Theorem for a rewrite theory R = (Σ,E ∪ B,R) of pg. 8 makes
symbolic model checking tractable. It is supported by the same
{fold} vu-narrow command already discussed in Lectures 23-24.

In summary, we have generalized the symbolic model checking
results from Lecture 24 to: (i) any topmost rewrite theory
R = (Σ,E ∪ B,R) with E⃗ convergent modulo B, and (ii) made it
tractable when E ∪ B is FVP. For symbolic model checking
examples when E ∪ B is FVP, see §15 of the The Maude Manual.
Further examples will be given in future Lectures.

16/17

Program Verification: Lecture 26

Completeness of Folding Narrowing Search

Theorem (Completeness of Folding Narrowing Search). For a
topmost and admissible R = (Σ,E ∪ B,R) with E ∪ B FVP, and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff

there exists a d ∈ N and some j , 1 ≤ j ≤ m, such that
Pd ∧ vj ̸= ⊥, where Pd ∧ vj is computed by E ∪ B-unification.

Proof (Sketch): This follows from the Completeness of
Narrowing Search Theorem in pg. 8, and the Completeness
Theorem of Folding Narrowing in pg. 12 of Lecture 24, because,
since E ∪ B is FVP, Unif E∪B(u = v) is always a finite set for any
Σ-equation u = v . Therefore, the Σ-pattern disjunctions Pd and
Fd , d ∈ N, exist and can be effectively computed according to the
Folding Narrowing Search Algorithm in Lecture 24, by just
generalizing Ω to Σ and Unif B(u = v) to Unif E∪B(u = v). 2

17/17

Program Verification: Lecture 26

Completeness of Folding Narrowing Search

Theorem (Completeness of Folding Narrowing Search). For a
topmost and admissible R = (Σ,E ∪ B,R) with E ∪ B FVP, and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff there exists a d ∈ N and some j , 1 ≤ j ≤ m, such that
Pd ∧ vj ̸= ⊥,

where Pd ∧ vj is computed by E ∪ B-unification.

Proof (Sketch): This follows from the Completeness of
Narrowing Search Theorem in pg. 8, and the Completeness
Theorem of Folding Narrowing in pg. 12 of Lecture 24, because,
since E ∪ B is FVP, Unif E∪B(u = v) is always a finite set for any
Σ-equation u = v . Therefore, the Σ-pattern disjunctions Pd and
Fd , d ∈ N, exist and can be effectively computed according to the
Folding Narrowing Search Algorithm in Lecture 24, by just
generalizing Ω to Σ and Unif B(u = v) to Unif E∪B(u = v). 2

17/17

Program Verification: Lecture 26

Completeness of Folding Narrowing Search

Theorem (Completeness of Folding Narrowing Search). For a
topmost and admissible R = (Σ,E ∪ B,R) with E ∪ B FVP, and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff there exists a d ∈ N and some j , 1 ≤ j ≤ m, such that
Pd ∧ vj ̸= ⊥, where Pd ∧ vj is computed by E ∪ B-unification.

Proof (Sketch): This follows from the Completeness of
Narrowing Search Theorem in pg. 8, and the Completeness
Theorem of Folding Narrowing in pg. 12 of Lecture 24, because,
since E ∪ B is FVP, Unif E∪B(u = v) is always a finite set for any
Σ-equation u = v . Therefore, the Σ-pattern disjunctions Pd and
Fd , d ∈ N, exist and can be effectively computed according to the
Folding Narrowing Search Algorithm in Lecture 24, by just
generalizing Ω to Σ and Unif B(u = v) to Unif E∪B(u = v). 2

17/17

Program Verification: Lecture 26

Completeness of Folding Narrowing Search

Theorem (Completeness of Folding Narrowing Search). For a
topmost and admissible R = (Σ,E ∪ B,R) with E ∪ B FVP, and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff there exists a d ∈ N and some j , 1 ≤ j ≤ m, such that
Pd ∧ vj ̸= ⊥, where Pd ∧ vj is computed by E ∪ B-unification.

Proof (Sketch): This follows from the Completeness of
Narrowing Search Theorem in pg. 8, and the Completeness
Theorem of Folding Narrowing in pg. 12 of Lecture 24,

because,
since E ∪ B is FVP, Unif E∪B(u = v) is always a finite set for any
Σ-equation u = v . Therefore, the Σ-pattern disjunctions Pd and
Fd , d ∈ N, exist and can be effectively computed according to the
Folding Narrowing Search Algorithm in Lecture 24, by just
generalizing Ω to Σ and Unif B(u = v) to Unif E∪B(u = v). 2

17/17

Program Verification: Lecture 26

Completeness of Folding Narrowing Search

Theorem (Completeness of Folding Narrowing Search). For a
topmost and admissible R = (Σ,E ∪ B,R) with E ∪ B FVP, and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff there exists a d ∈ N and some j , 1 ≤ j ≤ m, such that
Pd ∧ vj ̸= ⊥, where Pd ∧ vj is computed by E ∪ B-unification.

Proof (Sketch): This follows from the Completeness of
Narrowing Search Theorem in pg. 8, and the Completeness
Theorem of Folding Narrowing in pg. 12 of Lecture 24, because,
since E ∪ B is FVP, Unif E∪B(u = v) is always a finite set for any
Σ-equation u = v .

Therefore, the Σ-pattern disjunctions Pd and
Fd , d ∈ N, exist and can be effectively computed according to the
Folding Narrowing Search Algorithm in Lecture 24, by just
generalizing Ω to Σ and Unif B(u = v) to Unif E∪B(u = v). 2

17/17

Program Verification: Lecture 26

Completeness of Folding Narrowing Search

Theorem (Completeness of Folding Narrowing Search). For a
topmost and admissible R = (Σ,E ∪ B,R) with E ∪ B FVP, and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm Σ-pattern disjunctions,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff there exists a d ∈ N and some j , 1 ≤ j ≤ m, such that
Pd ∧ vj ̸= ⊥, where Pd ∧ vj is computed by E ∪ B-unification.

Proof (Sketch): This follows from the Completeness of
Narrowing Search Theorem in pg. 8, and the Completeness
Theorem of Folding Narrowing in pg. 12 of Lecture 24, because,
since E ∪ B is FVP, Unif E∪B(u = v) is always a finite set for any
Σ-equation u = v . Therefore, the Σ-pattern disjunctions Pd and
Fd , d ∈ N, exist and can be effectively computed according to the
Folding Narrowing Search Algorithm in Lecture 24, by just
generalizing Ω to Σ and Unif B(u = v) to Unif E∪B(u = v). 2

17/17

