Program Verification: Lecture 25

Program Verification: Lecture 25

José Meseguer

University of lllinois at Urbana-Champaign

1/17

Program Verification: Lecture 25

2/17

Folding Narrowing Verification in Maude

For R = (Q, B, R) a topmost rewrite theory with state sort St,

u1 V...V u, an inititial state, and Q C TQ/BVSt, folding narrowing
verification of an invariant (1) Cgr,[u1 V...V up] FEss OQ is
supported by Maude in the following ways:

Program Verification: Lecture 25

2/17

Folding Narrowing Verification in Maude

For R = (Q, B, R) a topmost rewrite theory with state sort St,

u1 V...V u, an inititial state, and Q C TQ/BVSt, folding narrowing
verification of an invariant (1) Cgr,[u1 V...V up] FEss OQ is
supported by Maude in the following ways:

A If Q=[-vi A...A=Vy], by Method 1 in Lecture 24, (1)
holds if the m commands {fold} vu-narrow ui V...V up, =>%* v,
1 <j < mreturn: No solution.

Program Verification: Lecture 25

2/17

Folding Narrowing Verification in Maude

For R = (Q, B, R) a topmost rewrite theory with state sort St,

u1 V...V u, an inititial state, and Q C TQ/BVSt, folding narrowing
verification of an invariant (1) Cgr,[u1 V...V up] FEss OQ is
supported by Maude in the following ways:

A If Q=[-vi A...A=Vy], by Method 1 in Lecture 24, (1)
holds if the m commands {fold} vu-narrow ui V...V up, =>%* v,
1 <j < mreturn: No solution.

W.L.0.G Maude assumes and requires that
vars(u;) Nvars(up) =0, 1 < i< i < n, and of course that
vars(uj) Nvars(vj)) =0,1<i<n 1<j<m

Program Verification: Lecture 25

Folding Narrowing Verification in Maude

2/17

For R = (Q, B, R) a topmost rewrite theory with state sort St,

u1 V...V u, an inititial state, and Q C TQ/BVSt, folding narrowing
verification of an invariant (1) Cgr,[u1 V...V up] FEss OQ is
supported by Maude in the following ways:

A If Q=[-vi A...A=Vy], by Method 1 in Lecture 24, (1)
holds if the m commands {fold} vu-narrow ui V...V up, =>%* v,
1 <j < mreturn: No solution.

W.L.0.G Maude assumes and requires that
vars(u;) Nvars(up) =0, 1 < i< i < n, and of course that
vars(uj) Nvars(vj)) =0,1<i<n 1<j<m

As explained in Lecture 23, the more general the initial state, the
better, since this increases the chances that {fold} vu-narrow
commands will succeeed. Let us see an example.

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (I1)

Recall the R&W module, where to enable folding narrowing rules
must be declared with the [narrowing] attribute.

3/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (I1)

Recall the R&W module, where to enable folding narrowing rules
must be declared with the [narrowing] attribute.

mod R&W is
sorts Nat Config .
op 0 : —> Nat [ctor]
op s : Nat -> Nat [ctor]
op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars RWNMTIJ : Nat .

rl <0, 0> =><0, s(0) > [narrowing]

rl < R, s(W) > => < R, W > [narrowing]

rl <R, 0 > =>< s(R), 0 > [narrowing]

rl < s(R), W> => <R, W > [narrowing]
endm

3/17

Program Verification: Lecture 25

3/17

Folding Narrowing Verification in Maude (I1)

Recall the R&W module, where to enable folding narrowing rules
must be declared with the [narrowing] attribute.

mod R&W is
sorts Nat Config .
op 0 : —> Nat [ctor]
op s : Nat -> Nat [ctor]
op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars RWNMTIJ : Nat .

rl <0, 0> =><0, s(0) > [narrowing]
rl < R, s(W) > => < R, W > [narrowing]
rl <R, 0 > =>< s(R), 0 > [narrowing]
rl < s(R), W> => <R, W > [narrowing]
endm

The {fold} vu-narrow command from initial state < 0, 0 > is
equivalent to the search command and will not terminate. We can
try the more general state < R, 0 > to verify mutual exclusion.

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (I11)

Maude> {fold} vu-narrow < R,0 > =>% < s(N),s(M) > .

No solution.

4/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (I11)

Maude> {fold} vu-narrow < R,0 > =>% < s(N),s(M) > .

No solution.

This command terminated because the folding variant narrowing
algorithm computed a “fixpoint” Py some depth d s.t. Fg41 = L.

4/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (I11)

Maude> {fold} vu-narrow < R,0 > =>% < s(N),s(M) > .

No solution.

This command terminated because the folding variant narrowing
algorithm computed a “fixpoint” Py some depth d s.t. Fg41 = L.
We can ask Maude to display such a Py with the command:

4/17

Program Verification: Lecture 25

4/17

Folding Narrowing Verification in Maude (I11)

Maude> {fold} vu-narrow < R,0 > =>% < s(N),s(M) > .

No solution.

This command terminated because the folding variant narrowing
algorithm computed a “fixpoint” Py some depth d s.t. Fg41 = L.
We can ask Maude to display such a Py with the command:
Maude> show most general states .

< #1:Nat, 0 > \/

< 0, s(0) >
Maude>

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (I11)

4/17

Maude> {fold} vu-narrow < R,0 > =>% < s(N),s(M) > .

No solution.

This command terminated because the folding variant narrowing
algorithm computed a “fixpoint” Py some depth d s.t. Fg41 = L.
We can ask Maude to display such a Py with the command:
Maude> show most general states .

< #1:Nat, 0 > \/

< 0, s(0) >
Maude>

By Method 2 in Lecture 24, we can now verify any other invariant
Q =[-vi A... A=wvy] from < R,0 > by checking that
PgAvi=1,1<j<m, which (see Appendix 1 to Lecture 24) can
be computed by unification.

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (1V)

For example, we can verify the One-writer invariant by the
unification commands:

5/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (1V)

For example, we can verify the One-writer invariant by the
unification commands:

Maude> unify < R,0 > =7 < N,s(s(M)) > .

No unifier.
Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.

5/17

Program Verification: Lecture 25

5/17

Folding Narrowing Verification in Maude (1V)

For example, we can verify the One-writer invariant by the
unification commands:

Maude> unify < R,0 > =7 < N,s(s(M)) > .

No unifier.
Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.

That is, once we have found the fixpoint < R,0 > < 0, s(0) >
there is no need to use the {fold} vu-narrow command to verify
any other invariant from < R,0 >, since unification suffices.

Program Verification: Lecture 25

5/17

Folding Narrowing Verification in Maude (1V)

For example, we can verify the One-writer invariant by the
unification commands:

Maude> unify < R,0 > =7 < N,s(s(M)) > .

No unifier.
Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.

That is, once we have found the fixpoint < R,0 > < 0, s(0) >
there is no need to use the {fold} vu-narrow command to verify
any other invariant from < R,0 >, since unification suffices. Of
course, One-writer could also be verified with the {fold}
vu-narrow command:

Program Verification: Lecture 25

5/17

Folding Narrowing Verification in Maude (1V)

For example, we can verify the One-writer invariant by the
unification commands:

Maude> unify < R,0 > =7 < N,s(s(M)) > .

No unifier.
Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.

That is, once we have found the fixpoint < R,0 > < 0, s(0) >
there is no need to use the {fold} vu-narrow command to verify
any other invariant from < R,0 >, since unification suffices. Of

course, One-writer could also be verified with the {fold}
vu-narrow command:

Maude> {fold} vu-narrow < R,0 > =>% < N,s(s(M)) > .

No solution.

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = vy V...V vp]. By Method 3 in
Lecture 24, If we have found a P4 (resp. positive formula p) s.t.
[Pal = R*[u1 V ...V up] (resp. [p] 2 R*[u1 V...V up]), then
invariant () holds for any such Q iff Py Cg vi V...V vy (resp. if
pCgviV...VVpy).

6/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = vy V...V vp]. By Method 3 in
Lecture 24, If we have found a P4 (resp. positive formula p) s.t.
[Pal = R*[u1 V ...V up] (resp. [p] 2 R*[u1 V...V up]), then
invariant () holds for any such Q iff Py Cg vi V...V vy (resp. if
pCp vi V...V vy). A decidable sufficient condition is
PiCgviV...V vy (resp. pCgvi V...V vp).

6/17

Program Verification: Lecture 25

6/17

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = vy V...V vp]. By Method 3 in
Lecture 24, If we have found a P4 (resp. positive formula p) s.t.
[Pal = R*[u1 V ...V up] (resp. [p] 2 R*[u1 V...V up]), then
invariant () holds for any such Q iff Py Cg vi V...V vy (resp. if
pCp vi V...V vy). A decidable sufficient condition is
PiCgviV...V vy (resp. pCgvi V...V vp).

This method can be quite useful to prove, for example, that R&W is
deadlock-free. That is, that the disjunction of lefthand sides < 0,
0>V <R, s(W)>V<R, 0>V <s(R), W>isan
invariant from < R,0 >.

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = vy V...V vp]. By Method 3 in
Lecture 24, If we have found a P4 (resp. positive formula p) s.t.
[Pal = R*[u1 V ...V up] (resp. [p] 2 R*[u1 V...V up]), then
invariant () holds for any such Q iff Py Cg vi V...V vy (resp. if
pCp vi V...V vy). A decidable sufficient condition is
PiCgviV...V vy (resp. pCgvi V...V vp).

This method can be quite useful to prove, for example, that R&W is
deadlock-free. That is, that the disjunction of lefthand sides < 0,
0>V <R, s(W) >V <R, 0>V <s(R), W>isan
invariant from < R,0 >. All we need to show is that < R,0 > V <
0, s(0) >C<0, 0>V <R, s(W >V <R, 0>VK
s(R), W >.

6/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = vy V...V vp]. By Method 3 in
Lecture 24, If we have found a P4 (resp. positive formula p) s.t.
[Pal = R*[u1 V ...V up] (resp. [p] 2 R*[u1 V...V up]), then
invariant () holds for any such Q iff Py Cg vi V...V vy (resp. if
pCp vi V...V vy). A decidable sufficient condition is
PiCgviV...V vy (resp. pCgvi V...V vp).

This method can be quite useful to prove, for example, that R&W is
deadlock-free. That is, that the disjunction of lefthand sides < 0,
0>V <R, s(W)>V<R, 0>V <s(R), W>isan
invariant from < R,0 >. All we need to show is that < R,0 > V <
0, s(0) >E<0, 0>V <R, s(W >V <R, 0>VK
s(R), W >. This holds trivially for < R,0 >.

6/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = vy V...V vp]. By Method 3 in
Lecture 24, If we have found a P4 (resp. positive formula p) s.t.
[Pal = R*[u1 V ...V up] (resp. [p] 2 R*[u1 V...V up]), then
invariant () holds for any such Q iff Py Cg vi V...V vy (resp. if
pCp vi V...V vy). A decidable sufficient condition is
PiCgviV...V vy (resp. pCgvi V...V vp).

This method can be quite useful to prove, for example, that R&W is
deadlock-free. That is, that the disjunction of lefthand sides < 0,
0>V <R, s(W)>V<R, 0>V <s(R), W>isan
invariant from < R,0 >. All we need to show is that < R,0 > V <
0, s(0) >E<0, 0>V <R, s(W >V <R, 0>VK
s(R), W >. This holds trivially for < R,0 >. It also holds for < 0,
s(0) > because < 0, s(0) >C < R, s(W) >.

6/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > V < 0, s(0) >C < 0, 0 >
V <R, s(W) >V <R, 0>V < s(R), W>forR&W is trivial.

7/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > V < 0, s(0) >C < 0, 0 >
V <R, s(W) >V <R, 0>V < s(R), W>forR&W is trivial.

In general, for Py = wy V...V wy we need k checks of the form
(#) W, EgviV...Vvm 1<) <Kk,

7/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > V < 0, s(0) >C < 0, 0 >
V <R, s(W) >V <R, 0>V < s(R), W>forR&W is trivial.
In general, for Py = wy V...V wy we need k checks of the form

(#/)) wjEgviV...Vvp 1<) <k wherethe v, 1 <i<m,are
the lefthand sides of the rules in ‘R.

7/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > V < 0, s(0) >C < 0, 0 >
V <R, s(W) >V <R, 0>V < s(R), W>for R&W is trivial.
In general, for Py = wy V...V wy we need k checks of the form
(#/)) wjEgviV...Vvp 1<) <k wherethe v, 1 <i<m,are
the lefthand sides of the rules in R. In the worse case this may
require k x m checks of the form w; Epg v;.

7/17

Program Verification: Lecture 25

7/17

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > V < 0, s(0) >C < 0, 0 >
V <R, s(W) >V <R, 0>V < s(R), W>for R&W is trivial.
In general, for Py = wy V...V wy we need k checks of the form
(#/)) wjEgviV...Vvp 1<) <k wherethe v, 1 <i<m,are
the lefthand sides of the rules in R. In the worse case this may
require k x m checks of the form w; Eg v;. This can be automated
by k x m Maude matching commands: match [1] v; <=7 w;.

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

7/17

The subsumption check < R,0 > V < 0, s(0) >C < 0, 0 >
V <R, s(W) >V <R, 0>V < s(R), W>for R&W is trivial.
In general, for Py = wy V...V wy we need k checks of the form
(#/)) wjEgviV...Vvp 1<) <k wherethe v, 1 <i<m,are
the lefthand sides of the rules in R. In the worse case this may
require k x m checks of the form w; Eg v;. This can be automated
by k x m Maude matching commands: match [1] v; <=7 w;.

But since the v; are the rule’s lefthand sides, each (f;) holds if the
search command: search [1] w; =>1 §:S5t has a solution.

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

7/17

The subsumption check < R,0 > V < 0, s(0) >C < 0, 0 >
V <R, s(W) >V <R, 0>V < s(R), W>for R&W is trivial.
In general, for Py = wy V...V wy we need k checks of the form
(#/)) wjEgviV...Vvp 1<) <k wherethe v, 1 <i<m,are
the lefthand sides of the rules in R. In the worse case this may
require k x m checks of the form w; Eg v;. This can be automated
by k x m Maude matching commands: match [1] v; <=7 w;.

But since the v; are the rule’s lefthand sides, each (f;) holds if the
search command: search [1] w; =>1 5:5t has a solution. E.g.,

Program Verification: Lecture 25

7/17

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > V < 0, s(0) >C < 0, 0 >
V <R, s(W) >V <R, 0>V < s(R), W>for R&W is trivial.
In general, for Py = wy V...V wy we need k checks of the form
(#/)) wjEgviV...Vvp 1<) <k wherethe v, 1 <i<m,are
the lefthand sides of the rules in R. In the worse case this may
require k x m checks of the form w; Eg v;. This can be automated
by k x m Maude matching commands: match [1] v; <=7 w;.

But since the v; are the rule’s lefthand sides, each (f;) holds if the
search command: search [1] w; =>1 5:5t has a solution. E.g.,

Maude> search [1] < R, 0 > =>1 C:Config .
Solution 1 (state 1) C:Config --> < s(R), 0 >
Maude> search [1] < 0, s(0) > =>1 C:Config .

Solution 1 (state 1) C:Config --> < 0, 0 >

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, (}) holds for Q = [vi V...V vp] if:

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, () holds for Q = vy V... V vp] if: (1)
nmV...Vu, Cgwvi V...V vy adecidable sufficient condition is
nV..Vu,CgwviV...VVvpy.

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, () holds for Q = vy V... V vp] if: (1)
nmV...Vu, Cgwvi V...V vy adecidable sufficient condition is
nV...Vu,Cgvi V...V vy (2) Qis transitition-closed;

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, () holds for Q = vy V... V vp] if: (1)
nmV...Vu, Cgwvi V...V vy adecidable sufficient condition is
nV...Vu, Cgvi V...V vy (2) Qis transitition-closed; this
holds iff a {fold} vu-narrow vi V...V vy, =>19% . command,
where $ is a fresh, unreachable constant added to R, generates an
Fi(uV...Vvp)st. FF(viV...Vvp) Cawvi V...V Vpy;

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, () holds for Q = vy V... V vp] if: (1)
nmV...Vu, Cgwvi V...V vy adecidable sufficient condition is
nV...Vu, Cgvi V...V vy (2) Qis transitition-closed; this
holds iff a {fold} vu-narrow vi V...V vy, =>19% . command,
where $ is a fresh, unreachable constant added to R, generates an
Fl(vl\/...\/vm) s.t. Fl(V1V...\/Vm) CgwviV...Vvy a
decidable sufficient condition is F1(v1 V...V vp) = L.

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, () holds for Q = vy V... V vp] if: (1)
nmV...Vu, Cgwvi V...V vy adecidable sufficient condition is
nV...Vu, Cgvi V...V vy (2) Qis transitition-closed; this
holds iff a {fold} vu-narrow vi V...V vy, =>19% . command,
where $ is a fresh, unreachable constant added to R, generates an
Fl(vl\/...\/vm) s.t. Fl(V1V...\/Vm) CgwviV...Vvy a
decidable sufficient condition is F1(v1 V...V vp) = L.

This method provides, for example, an alternative way of proving
that R&W is deadlock-free from < R,0 >.

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, () holds for Q = vy V... V vp] if: (1)
nmV...Vu, Cgwvi V...V vy adecidable sufficient condition is
nV...Vu, Cgvi V...V vy (2) Qis transitition-closed; this
holds iff a {fold} vu-narrow vi V...V vy, =>19% . command,
where $ is a fresh, unreachable constant added to R, generates an
Fl(vl\/...\/vm) s.t. Fl(V1V...\/Vm) CgwviV...Vvy a
decidable sufficient condition is F1(v1 V...V vp) = L.

This method provides, for example, an alternative way of proving
that R&W is deadlock-free from < R,0 >. The module adding the
unreachable fresh constant $ to the kind [Config] is:

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VII)

mod R&W is
sorts Nat Config .
op <_,_> : Nat Nat -> Config [ctor]
op $: > [Config] . *x** unreachable state
op 0 : -> Nat [ctor]
op s : Nat -> Nat [ctor]
vars RWNMIJ: Nat .

rl < 0, 0> =>< 0, s(0) > [narrowing]

rl < R, s(W) > => < R, W > [narrowing]

rl <R, 0 > => < s(R), 0 > [narrowing]

rl < s(R), W> => < R, W > [narrowing]
endm

9/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VII)

mod R&W is
sorts Nat Config .
op <_,_> : Nat Nat -> Config [ctor]
op $: > [Config] . *x** unreachable state
op 0 : -> Nat [ctor]
op s : Nat -> Nat [ctor]
vars RWNMIJ: Nat .

rl < 0, 0> =>< 0, s(0) > [narrowing]

rl < R, s(W) > => < R, W > [narrowing]

rl <R, 0 > => < s(R), 0 > [narrowing]

rl < s(R), W> => < R, W > [narrowing]
endm

{fold} vu-narrow in R&W : < 0, 0 > \/ <R, s(W) >\/ <N, 0>\/ <sM), I>
=18 .

No solution.

Maude> show frontier states .
< @1:Nat, @2:Nat >

9/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VII)

mod R&W is
sorts Nat Config .
op <_,_> : Nat Nat -> Config [ctor]
op $: > [Config] . *x** unreachable state
op 0 : -> Nat [ctor]
op s : Nat -> Nat [ctor]
vars RWNMIJ: Nat .

rl < 0, 0> =>< 0, s(0) > [narrowing]

rl < R, s(W) > => < R, W > [narrowing]

rl <R, 0 > => < s(R), 0 > [narrowing]

rl < s(R), W> => < R, W > [narrowing]
endm

{fold} vu-narrow in R&W : < 0, 0 > \/ <R, s(W) >\/ <N, 0>\/ <sM), I>
=18 .

No solution.
Maude> show frontier states .
< @1:Nat, @2:Nat >

We just need to check conditions (1)—(2).

9/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VIII)

Condition (1) is: < R,0 >C < 0, 0 > V <R, s(W) >V <N,
0>V <sM), I > which holds trivially.

10/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VIII)

Condition (1) is: < R,0 >C < 0, 0 > V <R, s(W) >V <N,
0>V <sM), I > which holds trivially.

Condition (2) is: < I,J >C< 0, 0>V <R, s(W >V <N,
0>V <sM), I>

10/17

Program Verification: Lecture 25

10/17

Folding Narrowing Verification in Maude (VIII)

Condition (1) is: < R,0 >C < 0, 0 > V <R, s(W) >V <N,
0>V <sM), I > which holds trivially.

Condition (2) is: < I,J >C< 0, 0>V <R, s(W >V <N,
0 >V < s(M), I > This holds because by the Pattern
Decomposition Lemma in pg. 6 of Lecture 24, using the
generator set {0, s(K)} for sort Nat, this follows from < I,0 > V
<I,s(K) >C<0, 0>V <R, s(W>V<N, 0>Vc«K<
s(M), I >,

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VIII)

Condition (1) is: < R,0 >C < 0, 0 > V <R, s(W) >V <N,
0>V <sM), I > which holds trivially.

Condition (2) is: < I,J >C< 0, 0>V <R, s(W >V <N,
0 >V < s(M), I > This holds because by the Pattern
Decomposition Lemma in pg. 6 of Lecture 24, using the
generator set {0, s(K)} for sort Nat, this follows from < I,0 > V
<I,s(K) >C<0,0>V<R, s(W)>V<KN, 0>Vc<
s(M), I >, which holds trivially.

10/17

Program Verification: Lecture 25

A Fair R&W Protocol

R&W is unfair. The infinite behavior below starves all readers:

11/17

Program Verification: Lecture 25

A Fair R&W Protocol

R&W is unfair. The infinite behavior below starves all readers:

< 0,0 >=><0,s(0) >=><0,0>=><0,s(0) > ...

11/17

Program Verification: Lecture 25

A Fair R&W Protocol

R&W is unfair. The infinite behavior below starves all readers:

< 0,0 >=><0,s(0) >=><0,0>=><0,s(0) > ...

This unfairness is resoved by the following R&W fair protocol:

11/17

Program Verification: Lecture 25

A Fair R&W Protocol

R&W is unfair. The infinite behavior below starves all readers:
< 0,0 >=><0,s(0) >=><0,0>=><0,s(0) > ...

This unfairness is resoved by the following R&W fair protocol:

mod R&W-FAIR is sorts NzNat Nat Conf . subsorts NzNat < Nat .
op 0 : -> Nat [ctor]
op 1 : -> NzNat [ctor]

op _+_ : Nat Nat -> Nat [ctor assoc comm id: O]
op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: O]
op <_,_>[_I_] : Nat Nat Nat Nat -> Conf . *¥* state with "turnstile"

<
op $: -> [Conf]
op init : NzNat -> Conf .

vars N N1 N2 N3 N4 M M1 M2 K K1 K2 T J : Nat . vars N’ N1’ N2’ N3’ M’ : NzNat

eq init(N’) = < 0,0 >[0 | N’] .
rl [w-in] : < 0,0 >[0 | N] => < 0,1 >[0 | N] [narrowing]
rl [w-out] : < 0,1 >[0 | N] => < 0,0 >[N | 0] [narrowing]
rl [r-in] : < N,0 >[M + 1 | K] => <N + 1,0 >[M | K] [narrowing]
rl [r-out] : < N+ 1,0 >[M | K] => < N,0 >[M | K + 1] [narrowing]
endm
11/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V uy]

A possitive pattern formula p specifying the set of all reachable
states R*[u1 V...V u,] can be obtained by terminating with no
solution a folding narrowing search from w1 V...V u,.

12/17

Program Verification: Lecture 25

12/17

Guessing a Pattern Formula for R*[u; V...V uy]

A possitive pattern formula p specifying the set of all reachable
states R*[u1 V...V u,] can be obtained by terminating with no
solution a folding narrowing search from w1 V...V u,. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R*[uy V ...V u,] from some initial states

up V...V u,. As Methods 3-4 show, such p can be very useful.

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V uy]

12/17

A possitive pattern formula p specifying the set of all reachable
states R*[u1 V...V u,] can be obtained by terminating with no
solution a folding narrowing search from w1 V...V u,. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R*[uy V ...V u,] from some initial states

up V...V u,. As Methods 3-4 show, such p can be very useful.

How can we guess p?

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V uy]

12/17

A possitive pattern formula p specifying the set of all reachable
states R*[u1 V...V u,] can be obtained by terminating with no
solution a folding narrowing search from w1 V...V u,. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R*[uy V ...V u,] from some initial states

up V...V u,. As Methods 3-4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that:

Program Verification: Lecture 25

12/17

Guessing a Pattern Formula for R*[u; V...V uy]

A possitive pattern formula p specifying the set of all reachable
states R*[u1 V...V u,] can be obtained by terminating with no
solution a folding narrowing search from w1 V...V u,. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R*[uy V ...V u,] from some initial states

up V...V u,. As Methods 3-4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 V...V u, Cg p, and

Program Verification: Lecture 25

12/17

Guessing a Pattern Formula for R*[u; V...V uy]

A possitive pattern formula p specifying the set of all reachable
states R*[u1 V...V u,] can be obtained by terminating with no
solution a folding narrowing search from w1 V...V u,. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R*[uy V ...V u,] from some initial states

up V...V u,. As Methods 3-4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 V...V u, Cg p, and (ii) p is transition-closed.

Program Verification: Lecture 25

12/17

Guessing a Pattern Formula for R*[u; V...V uy]

A possitive pattern formula p specifying the set of all reachable
states R*[u1 V...V u,] can be obtained by terminating with no
solution a folding narrowing search from w1 V...V u,. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R*[uy V ...V u,] from some initial states

up V...V u,. As Methods 3-4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 V...V u, Cg p, and (ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p=>1%.

Program Verification: Lecture 25

12/17

Guessing a Pattern Formula for R*[u; V...V uy]

A possitive pattern formula p specifying the set of all reachable
states R*[u1 V...V u,] can be obtained by terminating with no
solution a folding narrowing search from w1 V...V u,. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R*[uy V ...V u,] from some initial states

up V...V u,. As Methods 3-4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 V...V u, Cg p, and (ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p=>1%.
Even if R*[u1 V...V u,] C [p], that is, p over-approximates
R*[ur V...V up], p can be very useful for Methods 3-4.

Program Verification: Lecture 25

12/17

Guessing a Pattern Formula for R*[u; V...V uy]

A possitive pattern formula p specifying the set of all reachable
states R*[u1 V...V u,] can be obtained by terminating with no
solution a folding narrowing search from w1 V...V u,. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R*[uy V ...V u,] from some initial states

up V...V u,. As Methods 3-4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 V...V u, Cg p, and (ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p=>1%.
Even if R*[u1 V...V u,] C [p], that is, p over-approximates
R*[ur V...V up], p can be very useful for Methods 3-4.

Let us do this for R&kW-FAIR with initial state < 0,0 >[0 | N’].

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V u,] (1)

Sincein < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process.

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V u,] (1)

Sincein < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_I1_] as places where the “pea” 1 could be hidden.

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V u,] (1)

Sincein < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_I_] as places where the “pea” 1 could be hidden. Can we

guess where it can be, looking at the rules (or executing them with
a single reader)?

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V u,] (1)

Sincein < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_I_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V u,] (1)

Sincein < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_I_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:

<0,0>[0| N+1]1\/ <0, 1>[0]N3+1]\/ <MO0>[NL+ 1] K] \/
< N2 + 1,0 >[M1 | K11 \/ < N4,0 >[M2 | K2 + 1]

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V u,] (1)

Sincein < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_I_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:

<0,0>[L 0| N+11\/ <0, 1>0]N3+1]1\/ <M0>[N1+1]Kl\/
< N2 + 1,0 >[M1 | K11 \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because:

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V u,] (1)

Sincein < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_I_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:

<0,0>[L 0| N+11\/ <0, 1>0]N3+1]1\/ <M0>[N1+1]Kl\/
< N2 + 1,0 >[M1 | K11 \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n+ 1}
for N’; and

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R*[u; V...V u,] (1)

Sincein < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_I_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:

<0,0>[L 0| N+11\/ <0, 1>0]N3+1]1\/ <M0>[N1+1]Kl\/
< N2 + 1,0 >[M1 | K11 \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n+ 1}
for N’; and (ii) it is transition closed:

13/17

Program Verification: Lecture 25

13/17

Guessing a Pattern Formula for R*[u; V...V u,] (1)

Sincein < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_I_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:

<0,0>[L 0| N+11\/ <0, 1>0]N3+1]1\/ <M0>[N1+1]Kl\/
< N2 + 1,0 >[M1 | K11 \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n+ 1}
for N’; and (ii) it is transition closed:

Maude> {fold} vu-narrow < 0,0 >[O | N + 1] \/ <0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 +1 | K] \/ <N2+ 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 § .

Maude> show frontier states .
*** frontier is empty **x*

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form

14/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form —=v; = = < 1 + m:Nat
, 1 + i:Nat >[j:Nat | k:Nat] and

14/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form —=v; = = < 1 + m:Nat

, 1 + i:Nat >[j:Nat | k:Nat] and -vp = = < m:Nat , 1 +
1 + i:Nat >[j:Nat | k:Nat].

14/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form —=v; = = < 1 + m:Nat
, 1 + i:Nat >[j:Nat | k:Nat] and -vp = = < m:Nat , 1 +
1 + i:Nat >[j:Nat | k:Nat]. By Method 2 we just need to
check that p A v; = 1, and p A vo = L by unification.

14/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form —=v; = = < 1 + m:Nat
, 1 + i:Nat >[j:Nat | k:Nat] and -vp = = < m:Nat , 1 +
1 + i:Nat >[j:Nat | k:Nat]. By Method 2 we just need to
check that p A vi = 1, and p A vo = L by unification. But this
intersection check is actually automated by the commands:

14/17

Program Verification: Lecture 25

14/17

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form —=v; = = < 1 + m:Nat
, 1 + i:Nat >[j:Nat | k:Nat] and -vp = = < m:Nat , 1 +
1 + i:Nat >[j:Nat | k:Nat]. By Method 2 we just need to
check that p A vi = 1, and p A vo = L by unification. But this
intersection check is actually automated by the commands:

Maude> {fold} vu-narrow < 0,0 >[O | N + 1] \/ <0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | KI \/ < N2+ 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]
=>* < 1 + m:Nat , 1 + i:Nat >[j:Nat | k:Nat] .

No solution.
Maude> {fold} vu-narrow < 0,0 >[O | N+ 1] \/ <0, 1 >[0 | N3 + 1] \/
< M,0 >[N1 + 1 | KI \/ < N2 + 1,0 >[M1 | K11 \/ < N4,0 >[M2 | K2 + 1]

=>* < m:Nat , 1 + 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (II)

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[
0 | N’] by Method 3.

15/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (II)

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[
0 | N’] by Method 3. That is, by showing that p Cg < 0,0 >[
0|l NJ]v<o0,1>LO0] NV<N,0>@M+ 1] KIV<N+
1,0 >[M | K].

15/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (II)

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[
0 | N’] by Method 3. That is, by showing that p Cg < 0,0 >[
Ol NJ]VvV<O0,1 >LO| NJ]V<N,0>M+1]| K]V<NH+
1,0 >[M | K]. Furthermore, we can do so using the shortcut
suggested in pg. 7:

15/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (II)

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[
0 | N’] by Method 3. That is, by showing that p Cg < 0,0 >[
Ol NJ]VvV<O0,1 >LO| NJ]V<N,0>M+1]| K]V<NH+
1,0 >[M | K]. Furthermore, we can do so using the shortcut
suggested in pg. 7:

search [1] < 0,0 >[O | N + 1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < 0, 1 >[0 | 1 + N]

search [1] < 0, 1 >[0 | N3 + 1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < 0, 0 >[1 + N3 | 0]

15/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (lII)

search [1] < M,0 >[N1 + 1 | K] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> <1 + M, 0 >[N1 | K]

search [1] < N2 + 1,0 >[M1 | K1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < N2, 0 >[M1 | 1 + Ki]

search [1] < N4,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

16/17

Program Verification: Lecture 25

16/17

Verifying Some Properties of R&W-FAIR (lII)

search [1] < M,0 >[N1 + 1 | K] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> <1 + M, 0 >[N1 | K]

search [1] < N2 + 1,0 >[M1 | K1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < N2, 0 >[M1 | 1 + Ki]

search [1] < N4,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

The problem with pattern < N4,0 >[M2 | K2 + 1] is that is too
general to be rewritten by the rules of R&W-FAIR.

Program Verification: Lecture 25

16/17

Verifying Some Properties of R&W-FAIR (lII)

search [1] < M,0 >[N1 + 1 | K] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> <1 + M, 0 >[N1 | K]

search [1] < N2 + 1,0 >[M1 | K1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < N2, 0 >[M1 | 1 + Ki]

search [1] < N4,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

The problem with pattern < N4,0 >[M2 | K2 + 1] is that is too
general to be rewritten by the rules of R&W-FAIR. But we can use

the Pattern Decomposition Lemma of Lecture 24 to show that

it is semantically equivalent to a disjunction of patterns that can be
rewritten.

Program Verification: Lecture 25

16/17

Verifying Some Properties of R&W-FAIR (lII)

search [1] < M,0 >[N1 + 1 | K] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> <1 + M, 0 >[N1 | K]

search [1] < N2 + 1,0 >[M1 | K1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < N2, 0 >[M1 | 1 + Ki]

search [1] < N4,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

The problem with pattern < N4,0 >[M2 | K2 + 1] is that is too
general to be rewritten by the rules of R&W-FAIR. But we can use
the Pattern Decomposition Lemma of Lecture 24 to show that
it is semantically equivalent to a disjunction of patterns that can be
rewritten. We instantiate N4 with generator set {0, n:Nat + 1}.

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (IV)

search [1] < n:Nat + 1,0 >[M2 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < n:Nat, 0 >[M2 | 1 + 1 + K2]

search [1] < 0,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

17/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (IV)

search [1] < n:Nat + 1,0 >[M2 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < n:Nat, 0 >[M2 | 1 + 1 + K2]

search [1] < 0,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

Finally, we instantiate M2 with generator set {0, n:Nat + 1}.

17/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (IV)

search [1] < n:Nat + 1,0 >[M2 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < n:Nat, 0 >[M2 | 1 + 1 + K2]

search [1] < 0,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

Finally, we instantiate M2 with generator set {0, n:Nat + 1}.
search [1] < 0,0 >[0 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < 0, 1 >[0 | 1 + K2]

search [1] < 0,0 >[n:Nat + 1 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)
C:Conf --> < 1, 0 >[n:Nat | 1 + K2]

17/17

