
Program Verification: Lecture 25

Program Verification: Lecture 25

José Meseguer

University of Illinois at Urbana-Champaign

1/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude

For R = (Ω,B,R) a topmost rewrite theory with state sort St,
u1 ∨ . . . ∨ un an inititial state, and Q ⊆ TΩ/B,St , folding narrowing
verification of an invariant (†) CR, Ju1 ∨ . . . ∨ unK |=S4 2Q is
supported by Maude in the following ways:

A. If Q = J¬v1 ∧ . . . ∧ ¬vmK, by Method 1 in Lecture 24, (†)
holds if the m commands {fold} vu-narrow u1 ∨ . . . ∨ un =>* vj ,
1 ≤ j ≤ m return: No solution.

W.L.O.G Maude assumes and requires that
vars(ui) ∩ vars(ui ′) = ∅, 1 ≤ i < i ′ ≤ n, and of course that
vars(ui) ∩ vars(vj) = ∅, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

As explained in Lecture 23, the more general the initial state, the
better, since this increases the chances that {fold} vu-narrow

commands will succeeed. Let us see an example.

2/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude

For R = (Ω,B,R) a topmost rewrite theory with state sort St,
u1 ∨ . . . ∨ un an inititial state, and Q ⊆ TΩ/B,St , folding narrowing
verification of an invariant (†) CR, Ju1 ∨ . . . ∨ unK |=S4 2Q is
supported by Maude in the following ways:

A. If Q = J¬v1 ∧ . . . ∧ ¬vmK, by Method 1 in Lecture 24, (†)
holds if the m commands {fold} vu-narrow u1 ∨ . . . ∨ un =>* vj ,
1 ≤ j ≤ m return: No solution.

W.L.O.G Maude assumes and requires that
vars(ui) ∩ vars(ui ′) = ∅, 1 ≤ i < i ′ ≤ n, and of course that
vars(ui) ∩ vars(vj) = ∅, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

As explained in Lecture 23, the more general the initial state, the
better, since this increases the chances that {fold} vu-narrow

commands will succeeed. Let us see an example.

2/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude

For R = (Ω,B,R) a topmost rewrite theory with state sort St,
u1 ∨ . . . ∨ un an inititial state, and Q ⊆ TΩ/B,St , folding narrowing
verification of an invariant (†) CR, Ju1 ∨ . . . ∨ unK |=S4 2Q is
supported by Maude in the following ways:

A. If Q = J¬v1 ∧ . . . ∧ ¬vmK, by Method 1 in Lecture 24, (†)
holds if the m commands {fold} vu-narrow u1 ∨ . . . ∨ un =>* vj ,
1 ≤ j ≤ m return: No solution.

W.L.O.G Maude assumes and requires that
vars(ui) ∩ vars(ui ′) = ∅, 1 ≤ i < i ′ ≤ n, and of course that
vars(ui) ∩ vars(vj) = ∅, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

As explained in Lecture 23, the more general the initial state, the
better, since this increases the chances that {fold} vu-narrow

commands will succeeed. Let us see an example.

2/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude

For R = (Ω,B,R) a topmost rewrite theory with state sort St,
u1 ∨ . . . ∨ un an inititial state, and Q ⊆ TΩ/B,St , folding narrowing
verification of an invariant (†) CR, Ju1 ∨ . . . ∨ unK |=S4 2Q is
supported by Maude in the following ways:

A. If Q = J¬v1 ∧ . . . ∧ ¬vmK, by Method 1 in Lecture 24, (†)
holds if the m commands {fold} vu-narrow u1 ∨ . . . ∨ un =>* vj ,
1 ≤ j ≤ m return: No solution.

W.L.O.G Maude assumes and requires that
vars(ui) ∩ vars(ui ′) = ∅, 1 ≤ i < i ′ ≤ n, and of course that
vars(ui) ∩ vars(vj) = ∅, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

As explained in Lecture 23, the more general the initial state, the
better, since this increases the chances that {fold} vu-narrow

commands will succeeed. Let us see an example.
2/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (II)

Recall the R&W module, where to enable folding narrowing rules
must be declared with the [narrowing] attribute.

mod R&W is

sorts Nat Config .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W N M I J : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

The {fold} vu-narrow command from initial state < 0, 0 > is
equivalent to the search command and will not terminate. We can
try the more general state < R, 0 > to verify mutual exclusion.

3/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (II)

Recall the R&W module, where to enable folding narrowing rules
must be declared with the [narrowing] attribute.

mod R&W is

sorts Nat Config .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W N M I J : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

The {fold} vu-narrow command from initial state < 0, 0 > is
equivalent to the search command and will not terminate. We can
try the more general state < R, 0 > to verify mutual exclusion.

3/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (II)

Recall the R&W module, where to enable folding narrowing rules
must be declared with the [narrowing] attribute.

mod R&W is

sorts Nat Config .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W N M I J : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

The {fold} vu-narrow command from initial state < 0, 0 > is
equivalent to the search command and will not terminate. We can
try the more general state < R, 0 > to verify mutual exclusion.

3/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (III)

Maude> {fold} vu-narrow < R,0 > =>* < s(N),s(M) > .

No solution.

This command terminated because the folding variant narrowing
algorithm computed a “fixpoint” Pd some depth d s.t. Fd+1 = ⊥.
We can ask Maude to display such a Pd with the command:

Maude> show most general states .

< #1:Nat, 0 > \/

< 0, s(0) >

Maude>

By Method 2 in Lecture 24, we can now verify any other invariant
Q = J¬v1 ∧ . . . ∧ ¬vmK from < R,0 > by checking that
Pd ∧ vj = ⊥, 1 ≤ j ≤ m, which (see Appendix 1 to Lecture 24) can
be computed by unification.

4/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (III)

Maude> {fold} vu-narrow < R,0 > =>* < s(N),s(M) > .

No solution.

This command terminated because the folding variant narrowing
algorithm computed a “fixpoint” Pd some depth d s.t. Fd+1 = ⊥.

We can ask Maude to display such a Pd with the command:

Maude> show most general states .

< #1:Nat, 0 > \/

< 0, s(0) >

Maude>

By Method 2 in Lecture 24, we can now verify any other invariant
Q = J¬v1 ∧ . . . ∧ ¬vmK from < R,0 > by checking that
Pd ∧ vj = ⊥, 1 ≤ j ≤ m, which (see Appendix 1 to Lecture 24) can
be computed by unification.

4/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (III)

Maude> {fold} vu-narrow < R,0 > =>* < s(N),s(M) > .

No solution.

This command terminated because the folding variant narrowing
algorithm computed a “fixpoint” Pd some depth d s.t. Fd+1 = ⊥.
We can ask Maude to display such a Pd with the command:

Maude> show most general states .

< #1:Nat, 0 > \/

< 0, s(0) >

Maude>

By Method 2 in Lecture 24, we can now verify any other invariant
Q = J¬v1 ∧ . . . ∧ ¬vmK from < R,0 > by checking that
Pd ∧ vj = ⊥, 1 ≤ j ≤ m, which (see Appendix 1 to Lecture 24) can
be computed by unification.

4/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (III)

Maude> {fold} vu-narrow < R,0 > =>* < s(N),s(M) > .

No solution.

This command terminated because the folding variant narrowing
algorithm computed a “fixpoint” Pd some depth d s.t. Fd+1 = ⊥.
We can ask Maude to display such a Pd with the command:

Maude> show most general states .

< #1:Nat, 0 > \/

< 0, s(0) >

Maude>

By Method 2 in Lecture 24, we can now verify any other invariant
Q = J¬v1 ∧ . . . ∧ ¬vmK from < R,0 > by checking that
Pd ∧ vj = ⊥, 1 ≤ j ≤ m, which (see Appendix 1 to Lecture 24) can
be computed by unification.

4/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (III)

Maude> {fold} vu-narrow < R,0 > =>* < s(N),s(M) > .

No solution.

This command terminated because the folding variant narrowing
algorithm computed a “fixpoint” Pd some depth d s.t. Fd+1 = ⊥.
We can ask Maude to display such a Pd with the command:

Maude> show most general states .

< #1:Nat, 0 > \/

< 0, s(0) >

Maude>

By Method 2 in Lecture 24, we can now verify any other invariant
Q = J¬v1 ∧ . . . ∧ ¬vmK from < R,0 > by checking that
Pd ∧ vj = ⊥, 1 ≤ j ≤ m, which (see Appendix 1 to Lecture 24) can
be computed by unification.

4/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (IV)

For example, we can verify the One-writer invariant by the
unification commands:

Maude> unify < R,0 > =? < N,s(s(M)) > .

No unifier.

Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.

That is, once we have found the fixpoint < R,0 > < 0, s(0) >

there is no need to use the {fold} vu-narrow command to verify
any other invariant from < R,0 >, since unification suffices. Of
course, One-writer could also be verified with the {fold}
vu-narrow command:

Maude> {fold} vu-narrow < R,0 > =>* < N,s(s(M)) > .

No solution.

5/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (IV)

For example, we can verify the One-writer invariant by the
unification commands:

Maude> unify < R,0 > =? < N,s(s(M)) > .

No unifier.

Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.

That is, once we have found the fixpoint < R,0 > < 0, s(0) >

there is no need to use the {fold} vu-narrow command to verify
any other invariant from < R,0 >, since unification suffices. Of
course, One-writer could also be verified with the {fold}
vu-narrow command:

Maude> {fold} vu-narrow < R,0 > =>* < N,s(s(M)) > .

No solution.

5/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (IV)

For example, we can verify the One-writer invariant by the
unification commands:

Maude> unify < R,0 > =? < N,s(s(M)) > .

No unifier.

Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.

That is, once we have found the fixpoint < R,0 > < 0, s(0) >

there is no need to use the {fold} vu-narrow command to verify
any other invariant from < R,0 >, since unification suffices.

Of
course, One-writer could also be verified with the {fold}
vu-narrow command:

Maude> {fold} vu-narrow < R,0 > =>* < N,s(s(M)) > .

No solution.

5/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (IV)

For example, we can verify the One-writer invariant by the
unification commands:

Maude> unify < R,0 > =? < N,s(s(M)) > .

No unifier.

Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.

That is, once we have found the fixpoint < R,0 > < 0, s(0) >

there is no need to use the {fold} vu-narrow command to verify
any other invariant from < R,0 >, since unification suffices. Of
course, One-writer could also be verified with the {fold}
vu-narrow command:

Maude> {fold} vu-narrow < R,0 > =>* < N,s(s(M)) > .

No solution.

5/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (IV)

For example, we can verify the One-writer invariant by the
unification commands:

Maude> unify < R,0 > =? < N,s(s(M)) > .

No unifier.

Maude> unify < 0, s(0) > =? < N,s(s(M)) > .

No unifier.

That is, once we have found the fixpoint < R,0 > < 0, s(0) >

there is no need to use the {fold} vu-narrow command to verify
any other invariant from < R,0 >, since unification suffices. Of
course, One-writer could also be verified with the {fold}
vu-narrow command:

Maude> {fold} vu-narrow < R,0 > =>* < N,s(s(M)) > .

No solution.

5/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = Jv1 ∨ . . . ∨ vmK. By Method 3 in
Lecture 24, If we have found a Pd (resp. positive formula p) s.t.
JPdK = R∗Ju1 ∨ . . . ∨ unK (resp. JpK ⊇ R∗Ju1 ∨ . . . ∨ unK), then
invariant (†) holds for any such Q iff Pd ⊆B v1 ∨ . . . ∨ vm (resp. if
p ⊆B v1 ∨ . . . ∨ vm).

A decidable sufficient condition is
Pd ⊑B v1 ∨ . . . ∨ vm (resp. p ⊑B v1 ∨ . . . ∨ vm).

This method can be quite useful to prove, for example, that R&W is
deadlock-free. That is, that the disjunction of lefthand sides < 0,

0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > is an
invariant from < R,0 >. All we need to show is that < R,0 > ∨ <

0, s(0) > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ <

s(R), W >. This holds trivially for < R,0 >. It also holds for < 0,

s(0) > because < 0, s(0) > ⊑ < R, s(W) >.

6/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = Jv1 ∨ . . . ∨ vmK. By Method 3 in
Lecture 24, If we have found a Pd (resp. positive formula p) s.t.
JPdK = R∗Ju1 ∨ . . . ∨ unK (resp. JpK ⊇ R∗Ju1 ∨ . . . ∨ unK), then
invariant (†) holds for any such Q iff Pd ⊆B v1 ∨ . . . ∨ vm (resp. if
p ⊆B v1 ∨ . . . ∨ vm). A decidable sufficient condition is
Pd ⊑B v1 ∨ . . . ∨ vm (resp. p ⊑B v1 ∨ . . . ∨ vm).

This method can be quite useful to prove, for example, that R&W is
deadlock-free. That is, that the disjunction of lefthand sides < 0,

0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > is an
invariant from < R,0 >. All we need to show is that < R,0 > ∨ <

0, s(0) > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ <

s(R), W >. This holds trivially for < R,0 >. It also holds for < 0,

s(0) > because < 0, s(0) > ⊑ < R, s(W) >.

6/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = Jv1 ∨ . . . ∨ vmK. By Method 3 in
Lecture 24, If we have found a Pd (resp. positive formula p) s.t.
JPdK = R∗Ju1 ∨ . . . ∨ unK (resp. JpK ⊇ R∗Ju1 ∨ . . . ∨ unK), then
invariant (†) holds for any such Q iff Pd ⊆B v1 ∨ . . . ∨ vm (resp. if
p ⊆B v1 ∨ . . . ∨ vm). A decidable sufficient condition is
Pd ⊑B v1 ∨ . . . ∨ vm (resp. p ⊑B v1 ∨ . . . ∨ vm).

This method can be quite useful to prove, for example, that R&W is
deadlock-free. That is, that the disjunction of lefthand sides < 0,

0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > is an
invariant from < R,0 >.

All we need to show is that < R,0 > ∨ <

0, s(0) > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ <

s(R), W >. This holds trivially for < R,0 >. It also holds for < 0,

s(0) > because < 0, s(0) > ⊑ < R, s(W) >.

6/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = Jv1 ∨ . . . ∨ vmK. By Method 3 in
Lecture 24, If we have found a Pd (resp. positive formula p) s.t.
JPdK = R∗Ju1 ∨ . . . ∨ unK (resp. JpK ⊇ R∗Ju1 ∨ . . . ∨ unK), then
invariant (†) holds for any such Q iff Pd ⊆B v1 ∨ . . . ∨ vm (resp. if
p ⊆B v1 ∨ . . . ∨ vm). A decidable sufficient condition is
Pd ⊑B v1 ∨ . . . ∨ vm (resp. p ⊑B v1 ∨ . . . ∨ vm).

This method can be quite useful to prove, for example, that R&W is
deadlock-free. That is, that the disjunction of lefthand sides < 0,

0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > is an
invariant from < R,0 >. All we need to show is that < R,0 > ∨ <

0, s(0) > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ <

s(R), W >.

This holds trivially for < R,0 >. It also holds for < 0,

s(0) > because < 0, s(0) > ⊑ < R, s(W) >.

6/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = Jv1 ∨ . . . ∨ vmK. By Method 3 in
Lecture 24, If we have found a Pd (resp. positive formula p) s.t.
JPdK = R∗Ju1 ∨ . . . ∨ unK (resp. JpK ⊇ R∗Ju1 ∨ . . . ∨ unK), then
invariant (†) holds for any such Q iff Pd ⊆B v1 ∨ . . . ∨ vm (resp. if
p ⊆B v1 ∨ . . . ∨ vm). A decidable sufficient condition is
Pd ⊑B v1 ∨ . . . ∨ vm (resp. p ⊑B v1 ∨ . . . ∨ vm).

This method can be quite useful to prove, for example, that R&W is
deadlock-free. That is, that the disjunction of lefthand sides < 0,

0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > is an
invariant from < R,0 >. All we need to show is that < R,0 > ∨ <

0, s(0) > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ <

s(R), W >. This holds trivially for < R,0 >.

It also holds for < 0,

s(0) > because < 0, s(0) > ⊑ < R, s(W) >.

6/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (V)

B. Let Q be specifiable as Q = Jv1 ∨ . . . ∨ vmK. By Method 3 in
Lecture 24, If we have found a Pd (resp. positive formula p) s.t.
JPdK = R∗Ju1 ∨ . . . ∨ unK (resp. JpK ⊇ R∗Ju1 ∨ . . . ∨ unK), then
invariant (†) holds for any such Q iff Pd ⊆B v1 ∨ . . . ∨ vm (resp. if
p ⊆B v1 ∨ . . . ∨ vm). A decidable sufficient condition is
Pd ⊑B v1 ∨ . . . ∨ vm (resp. p ⊑B v1 ∨ . . . ∨ vm).

This method can be quite useful to prove, for example, that R&W is
deadlock-free. That is, that the disjunction of lefthand sides < 0,

0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > is an
invariant from < R,0 >. All we need to show is that < R,0 > ∨ <

0, s(0) > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < R, 0 > ∨ <

s(R), W >. This holds trivially for < R,0 >. It also holds for < 0,

s(0) > because < 0, s(0) > ⊑ < R, s(W) >.

6/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > ∨ < 0, s(0) > ⊑ < 0, 0 >

∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > for R&W is trivial.

In general, for Pd = w1 ∨ . . . ∨ wk we need k checks of the form
(♯j) wj ⊑B v1 ∨ . . . ∨ vm, 1 ≤ j ≤ k , where the vi , 1 ≤ i ≤ m, are
the lefthand sides of the rules in R. In the worse case this may
require k ×m checks of the form wj ⊑B vi . This can be automated
by k ×m Maude matching commands: match [1] vi <=? wj .

But since the vi are the rule’s lefthand sides, each (♯j) holds if the
search command: search [1] wj =>1 S :St has a solution. E.g.,

Maude> search [1] < R, 0 > =>1 C:Config .

Solution 1 (state 1) C:Config --> < s(R), 0 >

Maude> search [1] < 0, s(0) > =>1 C:Config .

Solution 1 (state 1) C:Config --> < 0, 0 >

7/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > ∨ < 0, s(0) > ⊑ < 0, 0 >

∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > for R&W is trivial.
In general, for Pd = w1 ∨ . . . ∨ wk we need k checks of the form
(♯j) wj ⊑B v1 ∨ . . . ∨ vm, 1 ≤ j ≤ k ,

where the vi , 1 ≤ i ≤ m, are
the lefthand sides of the rules in R. In the worse case this may
require k ×m checks of the form wj ⊑B vi . This can be automated
by k ×m Maude matching commands: match [1] vi <=? wj .

But since the vi are the rule’s lefthand sides, each (♯j) holds if the
search command: search [1] wj =>1 S :St has a solution. E.g.,

Maude> search [1] < R, 0 > =>1 C:Config .

Solution 1 (state 1) C:Config --> < s(R), 0 >

Maude> search [1] < 0, s(0) > =>1 C:Config .

Solution 1 (state 1) C:Config --> < 0, 0 >

7/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > ∨ < 0, s(0) > ⊑ < 0, 0 >

∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > for R&W is trivial.
In general, for Pd = w1 ∨ . . . ∨ wk we need k checks of the form
(♯j) wj ⊑B v1 ∨ . . . ∨ vm, 1 ≤ j ≤ k , where the vi , 1 ≤ i ≤ m, are
the lefthand sides of the rules in R.

In the worse case this may
require k ×m checks of the form wj ⊑B vi . This can be automated
by k ×m Maude matching commands: match [1] vi <=? wj .

But since the vi are the rule’s lefthand sides, each (♯j) holds if the
search command: search [1] wj =>1 S :St has a solution. E.g.,

Maude> search [1] < R, 0 > =>1 C:Config .

Solution 1 (state 1) C:Config --> < s(R), 0 >

Maude> search [1] < 0, s(0) > =>1 C:Config .

Solution 1 (state 1) C:Config --> < 0, 0 >

7/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > ∨ < 0, s(0) > ⊑ < 0, 0 >

∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > for R&W is trivial.
In general, for Pd = w1 ∨ . . . ∨ wk we need k checks of the form
(♯j) wj ⊑B v1 ∨ . . . ∨ vm, 1 ≤ j ≤ k , where the vi , 1 ≤ i ≤ m, are
the lefthand sides of the rules in R. In the worse case this may
require k ×m checks of the form wj ⊑B vi .

This can be automated
by k ×m Maude matching commands: match [1] vi <=? wj .

But since the vi are the rule’s lefthand sides, each (♯j) holds if the
search command: search [1] wj =>1 S :St has a solution. E.g.,

Maude> search [1] < R, 0 > =>1 C:Config .

Solution 1 (state 1) C:Config --> < s(R), 0 >

Maude> search [1] < 0, s(0) > =>1 C:Config .

Solution 1 (state 1) C:Config --> < 0, 0 >

7/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > ∨ < 0, s(0) > ⊑ < 0, 0 >

∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > for R&W is trivial.
In general, for Pd = w1 ∨ . . . ∨ wk we need k checks of the form
(♯j) wj ⊑B v1 ∨ . . . ∨ vm, 1 ≤ j ≤ k , where the vi , 1 ≤ i ≤ m, are
the lefthand sides of the rules in R. In the worse case this may
require k ×m checks of the form wj ⊑B vi . This can be automated
by k ×m Maude matching commands: match [1] vi <=? wj .

But since the vi are the rule’s lefthand sides, each (♯j) holds if the
search command: search [1] wj =>1 S :St has a solution. E.g.,

Maude> search [1] < R, 0 > =>1 C:Config .

Solution 1 (state 1) C:Config --> < s(R), 0 >

Maude> search [1] < 0, s(0) > =>1 C:Config .

Solution 1 (state 1) C:Config --> < 0, 0 >

7/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > ∨ < 0, s(0) > ⊑ < 0, 0 >

∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > for R&W is trivial.
In general, for Pd = w1 ∨ . . . ∨ wk we need k checks of the form
(♯j) wj ⊑B v1 ∨ . . . ∨ vm, 1 ≤ j ≤ k , where the vi , 1 ≤ i ≤ m, are
the lefthand sides of the rules in R. In the worse case this may
require k ×m checks of the form wj ⊑B vi . This can be automated
by k ×m Maude matching commands: match [1] vi <=? wj .

But since the vi are the rule’s lefthand sides, each (♯j) holds if the
search command: search [1] wj =>1 S :St has a solution.

E.g.,

Maude> search [1] < R, 0 > =>1 C:Config .

Solution 1 (state 1) C:Config --> < s(R), 0 >

Maude> search [1] < 0, s(0) > =>1 C:Config .

Solution 1 (state 1) C:Config --> < 0, 0 >

7/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > ∨ < 0, s(0) > ⊑ < 0, 0 >

∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > for R&W is trivial.
In general, for Pd = w1 ∨ . . . ∨ wk we need k checks of the form
(♯j) wj ⊑B v1 ∨ . . . ∨ vm, 1 ≤ j ≤ k , where the vi , 1 ≤ i ≤ m, are
the lefthand sides of the rules in R. In the worse case this may
require k ×m checks of the form wj ⊑B vi . This can be automated
by k ×m Maude matching commands: match [1] vi <=? wj .

But since the vi are the rule’s lefthand sides, each (♯j) holds if the
search command: search [1] wj =>1 S :St has a solution. E.g.,

Maude> search [1] < R, 0 > =>1 C:Config .

Solution 1 (state 1) C:Config --> < s(R), 0 >

Maude> search [1] < 0, s(0) > =>1 C:Config .

Solution 1 (state 1) C:Config --> < 0, 0 >

7/17

Program Verification: Lecture 25

A Shortcut for Proving Deadlock Freedom

The subsumption check < R,0 > ∨ < 0, s(0) > ⊑ < 0, 0 >

∨ < R, s(W) > ∨ < R, 0 > ∨ < s(R), W > for R&W is trivial.
In general, for Pd = w1 ∨ . . . ∨ wk we need k checks of the form
(♯j) wj ⊑B v1 ∨ . . . ∨ vm, 1 ≤ j ≤ k , where the vi , 1 ≤ i ≤ m, are
the lefthand sides of the rules in R. In the worse case this may
require k ×m checks of the form wj ⊑B vi . This can be automated
by k ×m Maude matching commands: match [1] vi <=? wj .

But since the vi are the rule’s lefthand sides, each (♯j) holds if the
search command: search [1] wj =>1 S :St has a solution. E.g.,

Maude> search [1] < R, 0 > =>1 C:Config .

Solution 1 (state 1) C:Config --> < s(R), 0 >

Maude> search [1] < 0, s(0) > =>1 C:Config .

Solution 1 (state 1) C:Config --> < 0, 0 >

7/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, (†) holds for Q = Jv1 ∨ . . . ∨ vmK if:

(1)
u1 ∨ . . . ∨ un ⊂B v1 ∨ . . . ∨ vm; a decidable sufficient condition is
u1 ∨ . . . ∨ un <B v1 ∨ . . . ∨ vm. (2) Q is transitition-closed; this
holds iff a {fold} vu-narrow v1 ∨ . . . ∨ vm =>1 $. command,
where $ is a fresh, unreachable constant added to R, generates an
F1(v1 ∨ . . . ∨ vm) s.t. F1(v1 ∨ . . . ∨ vm) ⊂B v1 ∨ . . . ∨ vm; a
decidable sufficient condition is F1(v1 ∨ . . . ∨ vm) = ⊥.

This method provides, for example, an alternative way of proving
that R&W is deadlock-free from < R,0 >. The module adding the
unreachable fresh constant $ to the kind [Config] is:

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, (†) holds for Q = Jv1 ∨ . . . ∨ vmK if: (1)
u1 ∨ . . . ∨ un ⊂B v1 ∨ . . . ∨ vm; a decidable sufficient condition is
u1 ∨ . . . ∨ un <B v1 ∨ . . . ∨ vm.

(2) Q is transitition-closed; this
holds iff a {fold} vu-narrow v1 ∨ . . . ∨ vm =>1 $. command,
where $ is a fresh, unreachable constant added to R, generates an
F1(v1 ∨ . . . ∨ vm) s.t. F1(v1 ∨ . . . ∨ vm) ⊂B v1 ∨ . . . ∨ vm; a
decidable sufficient condition is F1(v1 ∨ . . . ∨ vm) = ⊥.

This method provides, for example, an alternative way of proving
that R&W is deadlock-free from < R,0 >. The module adding the
unreachable fresh constant $ to the kind [Config] is:

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, (†) holds for Q = Jv1 ∨ . . . ∨ vmK if: (1)
u1 ∨ . . . ∨ un ⊂B v1 ∨ . . . ∨ vm; a decidable sufficient condition is
u1 ∨ . . . ∨ un <B v1 ∨ . . . ∨ vm. (2) Q is transitition-closed;

this
holds iff a {fold} vu-narrow v1 ∨ . . . ∨ vm =>1 $. command,
where $ is a fresh, unreachable constant added to R, generates an
F1(v1 ∨ . . . ∨ vm) s.t. F1(v1 ∨ . . . ∨ vm) ⊂B v1 ∨ . . . ∨ vm; a
decidable sufficient condition is F1(v1 ∨ . . . ∨ vm) = ⊥.

This method provides, for example, an alternative way of proving
that R&W is deadlock-free from < R,0 >. The module adding the
unreachable fresh constant $ to the kind [Config] is:

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, (†) holds for Q = Jv1 ∨ . . . ∨ vmK if: (1)
u1 ∨ . . . ∨ un ⊂B v1 ∨ . . . ∨ vm; a decidable sufficient condition is
u1 ∨ . . . ∨ un <B v1 ∨ . . . ∨ vm. (2) Q is transitition-closed; this
holds iff a {fold} vu-narrow v1 ∨ . . . ∨ vm =>1 $. command,
where $ is a fresh, unreachable constant added to R, generates an
F1(v1 ∨ . . . ∨ vm) s.t. F1(v1 ∨ . . . ∨ vm) ⊂B v1 ∨ . . . ∨ vm;

a
decidable sufficient condition is F1(v1 ∨ . . . ∨ vm) = ⊥.

This method provides, for example, an alternative way of proving
that R&W is deadlock-free from < R,0 >. The module adding the
unreachable fresh constant $ to the kind [Config] is:

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, (†) holds for Q = Jv1 ∨ . . . ∨ vmK if: (1)
u1 ∨ . . . ∨ un ⊂B v1 ∨ . . . ∨ vm; a decidable sufficient condition is
u1 ∨ . . . ∨ un <B v1 ∨ . . . ∨ vm. (2) Q is transitition-closed; this
holds iff a {fold} vu-narrow v1 ∨ . . . ∨ vm =>1 $. command,
where $ is a fresh, unreachable constant added to R, generates an
F1(v1 ∨ . . . ∨ vm) s.t. F1(v1 ∨ . . . ∨ vm) ⊂B v1 ∨ . . . ∨ vm; a
decidable sufficient condition is F1(v1 ∨ . . . ∨ vm) = ⊥.

This method provides, for example, an alternative way of proving
that R&W is deadlock-free from < R,0 >. The module adding the
unreachable fresh constant $ to the kind [Config] is:

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, (†) holds for Q = Jv1 ∨ . . . ∨ vmK if: (1)
u1 ∨ . . . ∨ un ⊂B v1 ∨ . . . ∨ vm; a decidable sufficient condition is
u1 ∨ . . . ∨ un <B v1 ∨ . . . ∨ vm. (2) Q is transitition-closed; this
holds iff a {fold} vu-narrow v1 ∨ . . . ∨ vm =>1 $. command,
where $ is a fresh, unreachable constant added to R, generates an
F1(v1 ∨ . . . ∨ vm) s.t. F1(v1 ∨ . . . ∨ vm) ⊂B v1 ∨ . . . ∨ vm; a
decidable sufficient condition is F1(v1 ∨ . . . ∨ vm) = ⊥.

This method provides, for example, an alternative way of proving
that R&W is deadlock-free from < R,0 >.

The module adding the
unreachable fresh constant $ to the kind [Config] is:

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VI)

By Method 4, (†) holds for Q = Jv1 ∨ . . . ∨ vmK if: (1)
u1 ∨ . . . ∨ un ⊂B v1 ∨ . . . ∨ vm; a decidable sufficient condition is
u1 ∨ . . . ∨ un <B v1 ∨ . . . ∨ vm. (2) Q is transitition-closed; this
holds iff a {fold} vu-narrow v1 ∨ . . . ∨ vm =>1 $. command,
where $ is a fresh, unreachable constant added to R, generates an
F1(v1 ∨ . . . ∨ vm) s.t. F1(v1 ∨ . . . ∨ vm) ⊂B v1 ∨ . . . ∨ vm; a
decidable sufficient condition is F1(v1 ∨ . . . ∨ vm) = ⊥.

This method provides, for example, an alternative way of proving
that R&W is deadlock-free from < R,0 >. The module adding the
unreachable fresh constant $ to the kind [Config] is:

8/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VII)

mod R&W is

sorts Nat Config .

op <_,_> : Nat Nat -> Config [ctor] .

op $: -> [Config] . *** unreachable state

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

vars R W N M I J : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

{fold} vu-narrow in R&W : < 0, 0 > \/ < R, s(W) > \/ < N, 0 > \/ < s(M), I >

=>1 $.

No solution.

Maude> show frontier states .

< @1:Nat, @2:Nat >

We just need to check conditions (1)–(2).

9/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VII)

mod R&W is

sorts Nat Config .

op <_,_> : Nat Nat -> Config [ctor] .

op $: -> [Config] . *** unreachable state

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

vars R W N M I J : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

{fold} vu-narrow in R&W : < 0, 0 > \/ < R, s(W) > \/ < N, 0 > \/ < s(M), I >

=>1 $.

No solution.

Maude> show frontier states .

< @1:Nat, @2:Nat >

We just need to check conditions (1)–(2).

9/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VII)

mod R&W is

sorts Nat Config .

op <_,_> : Nat Nat -> Config [ctor] .

op $: -> [Config] . *** unreachable state

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

vars R W N M I J : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

{fold} vu-narrow in R&W : < 0, 0 > \/ < R, s(W) > \/ < N, 0 > \/ < s(M), I >

=>1 $.

No solution.

Maude> show frontier states .

< @1:Nat, @2:Nat >

We just need to check conditions (1)–(2).
9/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VIII)

Condition (1) is: < R,0 > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < N,

0 > ∨ < s(M), I >, which holds trivially.

Condition (2) is: < I,J > ⊆ < 0, 0 > ∨ < R, s(W) > ∨ < N,

0 > ∨ < s(M), I >. This holds because by the Pattern
Decomposition Lemma in pg. 6 of Lecture 24, using the
generator set {0, s(K)} for sort Nat, this follows from < I,0 > ∨
< I,s(K) > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < N, 0 > ∨ <

s(M), I >, which holds trivially.

10/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VIII)

Condition (1) is: < R,0 > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < N,

0 > ∨ < s(M), I >, which holds trivially.

Condition (2) is: < I,J > ⊆ < 0, 0 > ∨ < R, s(W) > ∨ < N,

0 > ∨ < s(M), I >.

This holds because by the Pattern
Decomposition Lemma in pg. 6 of Lecture 24, using the
generator set {0, s(K)} for sort Nat, this follows from < I,0 > ∨
< I,s(K) > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < N, 0 > ∨ <

s(M), I >, which holds trivially.

10/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VIII)

Condition (1) is: < R,0 > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < N,

0 > ∨ < s(M), I >, which holds trivially.

Condition (2) is: < I,J > ⊆ < 0, 0 > ∨ < R, s(W) > ∨ < N,

0 > ∨ < s(M), I >. This holds because by the Pattern
Decomposition Lemma in pg. 6 of Lecture 24, using the
generator set {0, s(K)} for sort Nat, this follows from < I,0 > ∨
< I,s(K) > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < N, 0 > ∨ <

s(M), I >,

which holds trivially.

10/17

Program Verification: Lecture 25

Folding Narrowing Verification in Maude (VIII)

Condition (1) is: < R,0 > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < N,

0 > ∨ < s(M), I >, which holds trivially.

Condition (2) is: < I,J > ⊆ < 0, 0 > ∨ < R, s(W) > ∨ < N,

0 > ∨ < s(M), I >. This holds because by the Pattern
Decomposition Lemma in pg. 6 of Lecture 24, using the
generator set {0, s(K)} for sort Nat, this follows from < I,0 > ∨
< I,s(K) > ⊑ < 0, 0 > ∨ < R, s(W) > ∨ < N, 0 > ∨ <

s(M), I >, which holds trivially.

10/17

Program Verification: Lecture 25

A Fair R&W Protocol

R&W is unfair. The infinite behavior below starves all readers:

< 0,0 > => < 0,s(0) > => < 0,0 > => < 0,s(0) > ...

This unfairness is resoved by the following R&W fair protocol:
mod R&W-FAIR is sorts NzNat Nat Conf . subsorts NzNat < Nat .

op 0 : -> Nat [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

op <_,_>[_|_] : Nat Nat Nat Nat -> Conf . *** state with "turnstile"

op $: -> [Conf] .

op init : NzNat -> Conf .

vars N N1 N2 N3 N4 M M1 M2 K K1 K2 I J : Nat . vars N’ N1’ N2’ N3’ M’ : NzNat .

eq init(N’) = < 0,0 >[0 | N’] .

rl [w-in] : < 0,0 >[0 | N] => < 0,1 >[0 | N] [narrowing] .

rl [w-out] : < 0,1 >[0 | N] => < 0,0 >[N | 0] [narrowing] .

rl [r-in] : < N,0 >[M + 1 | K] => < N + 1,0 >[M | K] [narrowing] .

rl [r-out] : < N + 1,0 >[M | K] => < N,0 >[M | K + 1] [narrowing] .

endm

11/17

Program Verification: Lecture 25

A Fair R&W Protocol

R&W is unfair. The infinite behavior below starves all readers:
< 0,0 > => < 0,s(0) > => < 0,0 > => < 0,s(0) > ...

This unfairness is resoved by the following R&W fair protocol:
mod R&W-FAIR is sorts NzNat Nat Conf . subsorts NzNat < Nat .

op 0 : -> Nat [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

op <_,_>[_|_] : Nat Nat Nat Nat -> Conf . *** state with "turnstile"

op $: -> [Conf] .

op init : NzNat -> Conf .

vars N N1 N2 N3 N4 M M1 M2 K K1 K2 I J : Nat . vars N’ N1’ N2’ N3’ M’ : NzNat .

eq init(N’) = < 0,0 >[0 | N’] .

rl [w-in] : < 0,0 >[0 | N] => < 0,1 >[0 | N] [narrowing] .

rl [w-out] : < 0,1 >[0 | N] => < 0,0 >[N | 0] [narrowing] .

rl [r-in] : < N,0 >[M + 1 | K] => < N + 1,0 >[M | K] [narrowing] .

rl [r-out] : < N + 1,0 >[M | K] => < N,0 >[M | K + 1] [narrowing] .

endm

11/17

Program Verification: Lecture 25

A Fair R&W Protocol

R&W is unfair. The infinite behavior below starves all readers:
< 0,0 > => < 0,s(0) > => < 0,0 > => < 0,s(0) > ...

This unfairness is resoved by the following R&W fair protocol:

mod R&W-FAIR is sorts NzNat Nat Conf . subsorts NzNat < Nat .

op 0 : -> Nat [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

op <_,_>[_|_] : Nat Nat Nat Nat -> Conf . *** state with "turnstile"

op $: -> [Conf] .

op init : NzNat -> Conf .

vars N N1 N2 N3 N4 M M1 M2 K K1 K2 I J : Nat . vars N’ N1’ N2’ N3’ M’ : NzNat .

eq init(N’) = < 0,0 >[0 | N’] .

rl [w-in] : < 0,0 >[0 | N] => < 0,1 >[0 | N] [narrowing] .

rl [w-out] : < 0,1 >[0 | N] => < 0,0 >[N | 0] [narrowing] .

rl [r-in] : < N,0 >[M + 1 | K] => < N + 1,0 >[M | K] [narrowing] .

rl [r-out] : < N + 1,0 >[M | K] => < N,0 >[M | K + 1] [narrowing] .

endm

11/17

Program Verification: Lecture 25

A Fair R&W Protocol

R&W is unfair. The infinite behavior below starves all readers:
< 0,0 > => < 0,s(0) > => < 0,0 > => < 0,s(0) > ...

This unfairness is resoved by the following R&W fair protocol:
mod R&W-FAIR is sorts NzNat Nat Conf . subsorts NzNat < Nat .

op 0 : -> Nat [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

op <_,_>[_|_] : Nat Nat Nat Nat -> Conf . *** state with "turnstile"

op $: -> [Conf] .

op init : NzNat -> Conf .

vars N N1 N2 N3 N4 M M1 M2 K K1 K2 I J : Nat . vars N’ N1’ N2’ N3’ M’ : NzNat .

eq init(N’) = < 0,0 >[0 | N’] .

rl [w-in] : < 0,0 >[0 | N] => < 0,1 >[0 | N] [narrowing] .

rl [w-out] : < 0,1 >[0 | N] => < 0,0 >[N | 0] [narrowing] .

rl [r-in] : < N,0 >[M + 1 | K] => < N + 1,0 >[M | K] [narrowing] .

rl [r-out] : < N + 1,0 >[M | K] => < N,0 >[M | K + 1] [narrowing] .

endm

11/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK

A possitive pattern formula p specifying the set of all reachable
states R∗Ju1 ∨ . . . ∨ unK can be obtained by terminating with no
solution a folding narrowing search from u1 ∨ . . . ∨ un.

A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R∗Ju1 ∨ . . . ∨ unK from some initial states
u1 ∨ . . . ∨ un. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 ∨ . . . ∨ un ⊆B p, and (ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p =>1 $.
Even if R∗Ju1 ∨ . . . ∨ unK ⊂ JpK, that is, p over-approximates
R∗Ju1 ∨ . . . ∨ unK, p can be very useful for Methods 3–4.

Let us do this for R&W-FAIR with initial state < 0,0 >[0 | N’].

12/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK

A possitive pattern formula p specifying the set of all reachable
states R∗Ju1 ∨ . . . ∨ unK can be obtained by terminating with no
solution a folding narrowing search from u1 ∨ . . . ∨ un. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R∗Ju1 ∨ . . . ∨ unK from some initial states
u1 ∨ . . . ∨ un. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 ∨ . . . ∨ un ⊆B p, and (ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p =>1 $.
Even if R∗Ju1 ∨ . . . ∨ unK ⊂ JpK, that is, p over-approximates
R∗Ju1 ∨ . . . ∨ unK, p can be very useful for Methods 3–4.

Let us do this for R&W-FAIR with initial state < 0,0 >[0 | N’].

12/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK

A possitive pattern formula p specifying the set of all reachable
states R∗Ju1 ∨ . . . ∨ unK can be obtained by terminating with no
solution a folding narrowing search from u1 ∨ . . . ∨ un. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R∗Ju1 ∨ . . . ∨ unK from some initial states
u1 ∨ . . . ∨ un. As Methods 3–4 show, such p can be very useful.

How can we guess p?

By reflecting on the rules in R to guess a p
such that: (i) u1 ∨ . . . ∨ un ⊆B p, and (ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p =>1 $.
Even if R∗Ju1 ∨ . . . ∨ unK ⊂ JpK, that is, p over-approximates
R∗Ju1 ∨ . . . ∨ unK, p can be very useful for Methods 3–4.

Let us do this for R&W-FAIR with initial state < 0,0 >[0 | N’].

12/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK

A possitive pattern formula p specifying the set of all reachable
states R∗Ju1 ∨ . . . ∨ unK can be obtained by terminating with no
solution a folding narrowing search from u1 ∨ . . . ∨ un. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R∗Ju1 ∨ . . . ∨ unK from some initial states
u1 ∨ . . . ∨ un. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that:

(i) u1 ∨ . . . ∨ un ⊆B p, and (ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p =>1 $.
Even if R∗Ju1 ∨ . . . ∨ unK ⊂ JpK, that is, p over-approximates
R∗Ju1 ∨ . . . ∨ unK, p can be very useful for Methods 3–4.

Let us do this for R&W-FAIR with initial state < 0,0 >[0 | N’].

12/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK

A possitive pattern formula p specifying the set of all reachable
states R∗Ju1 ∨ . . . ∨ unK can be obtained by terminating with no
solution a folding narrowing search from u1 ∨ . . . ∨ un. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R∗Ju1 ∨ . . . ∨ unK from some initial states
u1 ∨ . . . ∨ un. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 ∨ . . . ∨ un ⊆B p, and

(ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p =>1 $.
Even if R∗Ju1 ∨ . . . ∨ unK ⊂ JpK, that is, p over-approximates
R∗Ju1 ∨ . . . ∨ unK, p can be very useful for Methods 3–4.

Let us do this for R&W-FAIR with initial state < 0,0 >[0 | N’].

12/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK

A possitive pattern formula p specifying the set of all reachable
states R∗Ju1 ∨ . . . ∨ unK can be obtained by terminating with no
solution a folding narrowing search from u1 ∨ . . . ∨ un. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R∗Ju1 ∨ . . . ∨ unK from some initial states
u1 ∨ . . . ∨ un. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 ∨ . . . ∨ un ⊆B p, and (ii) p is transition-closed.

this can be checked by command {fold} vu-narrow p =>1 $.
Even if R∗Ju1 ∨ . . . ∨ unK ⊂ JpK, that is, p over-approximates
R∗Ju1 ∨ . . . ∨ unK, p can be very useful for Methods 3–4.

Let us do this for R&W-FAIR with initial state < 0,0 >[0 | N’].

12/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK

A possitive pattern formula p specifying the set of all reachable
states R∗Ju1 ∨ . . . ∨ unK can be obtained by terminating with no
solution a folding narrowing search from u1 ∨ . . . ∨ un. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R∗Ju1 ∨ . . . ∨ unK from some initial states
u1 ∨ . . . ∨ un. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 ∨ . . . ∨ un ⊆B p, and (ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p =>1 $.

Even if R∗Ju1 ∨ . . . ∨ unK ⊂ JpK, that is, p over-approximates
R∗Ju1 ∨ . . . ∨ unK, p can be very useful for Methods 3–4.

Let us do this for R&W-FAIR with initial state < 0,0 >[0 | N’].

12/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK

A possitive pattern formula p specifying the set of all reachable
states R∗Ju1 ∨ . . . ∨ unK can be obtained by terminating with no
solution a folding narrowing search from u1 ∨ . . . ∨ un. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R∗Ju1 ∨ . . . ∨ unK from some initial states
u1 ∨ . . . ∨ un. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 ∨ . . . ∨ un ⊆B p, and (ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p =>1 $.
Even if R∗Ju1 ∨ . . . ∨ unK ⊂ JpK, that is, p over-approximates
R∗Ju1 ∨ . . . ∨ unK, p can be very useful for Methods 3–4.

Let us do this for R&W-FAIR with initial state < 0,0 >[0 | N’].

12/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK

A possitive pattern formula p specifying the set of all reachable
states R∗Ju1 ∨ . . . ∨ unK can be obtained by terminating with no
solution a folding narrowing search from u1 ∨ . . . ∨ un. A second
approach is to guess p by guessing the patterns that describe (or
over-approximate) R∗Ju1 ∨ . . . ∨ unK from some initial states
u1 ∨ . . . ∨ un. As Methods 3–4 show, such p can be very useful.

How can we guess p? By reflecting on the rules in R to guess a p
such that: (i) u1 ∨ . . . ∨ un ⊆B p, and (ii) p is transition-closed.
this can be checked by command {fold} vu-narrow p =>1 $.
Even if R∗Ju1 ∨ . . . ∨ unK ⊂ JpK, that is, p over-approximates
R∗Ju1 ∨ . . . ∨ unK, p can be very useful for Methods 3–4.

Let us do this for R&W-FAIR with initial state < 0,0 >[0 | N’].

12/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK (II)

Since in < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process.

To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_|_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:
< 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/

< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n + 1}
for N’; and (ii) it is transition closed:
Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 $.

Maude> show frontier states .

*** frontier is empty ***

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK (II)

Since in < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_|_] as places where the “pea” 1 could be hidden.

Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:
< 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/

< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n + 1}
for N’; and (ii) it is transition closed:
Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 $.

Maude> show frontier states .

*** frontier is empty ***

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK (II)

Since in < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_|_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)?

Here is a guess inspired by the “pea” idea, yet
fully general:
< 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/

< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n + 1}
for N’; and (ii) it is transition closed:
Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 $.

Maude> show frontier states .

*** frontier is empty ***

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK (II)

Since in < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_|_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:

< 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/

< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n + 1}
for N’; and (ii) it is transition closed:
Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 $.

Maude> show frontier states .

*** frontier is empty ***

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK (II)

Since in < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_|_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:
< 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/

< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n + 1}
for N’; and (ii) it is transition closed:
Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 $.

Maude> show frontier states .

*** frontier is empty ***

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK (II)

Since in < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_|_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:
< 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/

< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because:

(i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n + 1}
for N’; and (ii) it is transition closed:
Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 $.

Maude> show frontier states .

*** frontier is empty ***

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK (II)

Since in < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_|_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:
< 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/

< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n + 1}
for N’; and

(ii) it is transition closed:
Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 $.

Maude> show frontier states .

*** frontier is empty ***

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK (II)

Since in < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_|_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:
< 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/

< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n + 1}
for N’; and (ii) it is transition closed:

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 $.

Maude> show frontier states .

*** frontier is empty ***

13/17

Program Verification: Lecture 25

Guessing a Pattern Formula for R∗Ju1 ∨ . . . ∨ unK (II)

Since in < 0,0 >[0 | N’] variable N’ has sort NnNat, there is
at least one reading process. To guess the pattern, we can think
about the case N’ = 1, and of the different containers in
<_,_>[_|_] as places where the “pea” 1 could be hidden. Can we
guess where it can be, looking at the rules (or executing them with
a single reader)? Here is a guess inspired by the “pea” idea, yet
fully general:
< 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/ < M,0 >[N1 + 1 | K] \/

< N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

This guess is an invariant by Method 4 because: (i) it B-subsumes
< 0,0 >[0 | N’] when decomposed with generator set {n + 1}
for N’; and (ii) it is transition closed:
Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1] =>1 $.

Maude> show frontier states .

*** frontier is empty ***
13/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form

¬v1 = ¬ < 1 + m:Nat

, 1 + i:Nat >[j:Nat | k:Nat] and ¬v2 = ¬ < m:Nat , 1 +

1 + i:Nat >[j:Nat | k:Nat]. By Method 2 we just need to
check that p ∧ v1 = ⊥, and p ∧ v2 = ⊥ by unification. But this
intersection check is actually automated by the commands:

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < 1 + m:Nat , 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < m:Nat , 1 + 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

14/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form ¬v1 = ¬ < 1 + m:Nat

, 1 + i:Nat >[j:Nat | k:Nat] and

¬v2 = ¬ < m:Nat , 1 +

1 + i:Nat >[j:Nat | k:Nat]. By Method 2 we just need to
check that p ∧ v1 = ⊥, and p ∧ v2 = ⊥ by unification. But this
intersection check is actually automated by the commands:

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < 1 + m:Nat , 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < m:Nat , 1 + 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

14/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form ¬v1 = ¬ < 1 + m:Nat

, 1 + i:Nat >[j:Nat | k:Nat] and ¬v2 = ¬ < m:Nat , 1 +

1 + i:Nat >[j:Nat | k:Nat].

By Method 2 we just need to
check that p ∧ v1 = ⊥, and p ∧ v2 = ⊥ by unification. But this
intersection check is actually automated by the commands:

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < 1 + m:Nat , 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < m:Nat , 1 + 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

14/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form ¬v1 = ¬ < 1 + m:Nat

, 1 + i:Nat >[j:Nat | k:Nat] and ¬v2 = ¬ < m:Nat , 1 +

1 + i:Nat >[j:Nat | k:Nat]. By Method 2 we just need to
check that p ∧ v1 = ⊥, and p ∧ v2 = ⊥ by unification.

But this
intersection check is actually automated by the commands:

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < 1 + m:Nat , 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < m:Nat , 1 + 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

14/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form ¬v1 = ¬ < 1 + m:Nat

, 1 + i:Nat >[j:Nat | k:Nat] and ¬v2 = ¬ < m:Nat , 1 +

1 + i:Nat >[j:Nat | k:Nat]. By Method 2 we just need to
check that p ∧ v1 = ⊥, and p ∧ v2 = ⊥ by unification. But this
intersection check is actually automated by the commands:

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < 1 + m:Nat , 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < m:Nat , 1 + 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

14/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR

The Mutual Exclusion and One-writer invariants can be
specified by negative patterns of the form ¬v1 = ¬ < 1 + m:Nat

, 1 + i:Nat >[j:Nat | k:Nat] and ¬v2 = ¬ < m:Nat , 1 +

1 + i:Nat >[j:Nat | k:Nat]. By Method 2 we just need to
check that p ∧ v1 = ⊥, and p ∧ v2 = ⊥ by unification. But this
intersection check is actually automated by the commands:

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < 1 + m:Nat , 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

Maude> {fold} vu-narrow < 0,0 >[0 | N + 1] \/ < 0, 1 >[0 | N3 + 1] \/

< M,0 >[N1 + 1 | K] \/ < N2 + 1,0 >[M1 | K1] \/ < N4,0 >[M2 | K2 + 1]

=>* < m:Nat , 1 + 1 + i:Nat >[j:Nat | k:Nat] .

No solution.

14/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (II)

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[

0 | N’] by Method 3.

That is, by showing that p ⊆B < 0,0 >[

0 | N] ∨ < 0,1 >[0 | N] ∨ < N,0 >[M + 1 | K] ∨ < N +

1,0 >[M | K]. Furthermore, we can do so using the shortcut
suggested in pg. 7:

search [1] < 0,0 >[0 | N + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 1 >[0 | 1 + N]

search [1] < 0, 1 >[0 | N3 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 0 >[1 + N3 | 0]

15/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (II)

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[

0 | N’] by Method 3. That is, by showing that p ⊆B < 0,0 >[

0 | N] ∨ < 0,1 >[0 | N] ∨ < N,0 >[M + 1 | K] ∨ < N +

1,0 >[M | K].

Furthermore, we can do so using the shortcut
suggested in pg. 7:

search [1] < 0,0 >[0 | N + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 1 >[0 | 1 + N]

search [1] < 0, 1 >[0 | N3 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 0 >[1 + N3 | 0]

15/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (II)

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[

0 | N’] by Method 3. That is, by showing that p ⊆B < 0,0 >[

0 | N] ∨ < 0,1 >[0 | N] ∨ < N,0 >[M + 1 | K] ∨ < N +

1,0 >[M | K]. Furthermore, we can do so using the shortcut
suggested in pg. 7:

search [1] < 0,0 >[0 | N + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 1 >[0 | 1 + N]

search [1] < 0, 1 >[0 | N3 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 0 >[1 + N3 | 0]

15/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (II)

We can now prove deadlock freedom of R&W-FAIR from < 0,0 >[

0 | N’] by Method 3. That is, by showing that p ⊆B < 0,0 >[

0 | N] ∨ < 0,1 >[0 | N] ∨ < N,0 >[M + 1 | K] ∨ < N +

1,0 >[M | K]. Furthermore, we can do so using the shortcut
suggested in pg. 7:

search [1] < 0,0 >[0 | N + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 1 >[0 | 1 + N]

search [1] < 0, 1 >[0 | N3 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 0 >[1 + N3 | 0]

15/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (III)

search [1] < M,0 >[N1 + 1 | K] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 1 + M, 0 >[N1 | K]

search [1] < N2 + 1,0 >[M1 | K1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < N2, 0 >[M1 | 1 + K1]

search [1] < N4,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

The problem with pattern < N4,0 >[M2 | K2 + 1] is that is too
general to be rewritten by the rules of R&W-FAIR. But we can use
the Pattern Decomposition Lemma of Lecture 24 to show that
it is semantically equivalent to a disjunction of patterns that can be
rewritten. We instantiate N4 with generator set {0, n:Nat + 1}.

16/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (III)

search [1] < M,0 >[N1 + 1 | K] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 1 + M, 0 >[N1 | K]

search [1] < N2 + 1,0 >[M1 | K1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < N2, 0 >[M1 | 1 + K1]

search [1] < N4,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

The problem with pattern < N4,0 >[M2 | K2 + 1] is that is too
general to be rewritten by the rules of R&W-FAIR.

But we can use
the Pattern Decomposition Lemma of Lecture 24 to show that
it is semantically equivalent to a disjunction of patterns that can be
rewritten. We instantiate N4 with generator set {0, n:Nat + 1}.

16/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (III)

search [1] < M,0 >[N1 + 1 | K] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 1 + M, 0 >[N1 | K]

search [1] < N2 + 1,0 >[M1 | K1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < N2, 0 >[M1 | 1 + K1]

search [1] < N4,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

The problem with pattern < N4,0 >[M2 | K2 + 1] is that is too
general to be rewritten by the rules of R&W-FAIR. But we can use
the Pattern Decomposition Lemma of Lecture 24 to show that
it is semantically equivalent to a disjunction of patterns that can be
rewritten.

We instantiate N4 with generator set {0, n:Nat + 1}.

16/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (III)

search [1] < M,0 >[N1 + 1 | K] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 1 + M, 0 >[N1 | K]

search [1] < N2 + 1,0 >[M1 | K1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < N2, 0 >[M1 | 1 + K1]

search [1] < N4,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

The problem with pattern < N4,0 >[M2 | K2 + 1] is that is too
general to be rewritten by the rules of R&W-FAIR. But we can use
the Pattern Decomposition Lemma of Lecture 24 to show that
it is semantically equivalent to a disjunction of patterns that can be
rewritten. We instantiate N4 with generator set {0, n:Nat + 1}.

16/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (IV)

search [1] < n:Nat + 1,0 >[M2 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < n:Nat, 0 >[M2 | 1 + 1 + K2]

search [1] < 0,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

Finally, we instantiate M2 with generator set {0, n:Nat + 1}.
search [1] < 0,0 >[0 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 1 >[0 | 1 + K2]

search [1] < 0,0 >[n:Nat + 1 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 1, 0 >[n:Nat | 1 + K2]

17/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (IV)

search [1] < n:Nat + 1,0 >[M2 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < n:Nat, 0 >[M2 | 1 + 1 + K2]

search [1] < 0,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

Finally, we instantiate M2 with generator set {0, n:Nat + 1}.

search [1] < 0,0 >[0 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 1 >[0 | 1 + K2]

search [1] < 0,0 >[n:Nat + 1 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 1, 0 >[n:Nat | 1 + K2]

17/17

Program Verification: Lecture 25

Verifying Some Properties of R&W-FAIR (IV)

search [1] < n:Nat + 1,0 >[M2 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < n:Nat, 0 >[M2 | 1 + 1 + K2]

search [1] < 0,0 >[M2 | K2 + 1] =>1 C:Conf .

No solution.

Finally, we instantiate M2 with generator set {0, n:Nat + 1}.
search [1] < 0,0 >[0 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 0, 1 >[0 | 1 + K2]

search [1] < 0,0 >[n:Nat + 1 | K2 + 1] =>1 C:Conf .

Solution 1 (state 1)

C:Conf --> < 1, 0 >[n:Nat | 1 + K2]

17/17

