Program Verification: Lecture 24

José Meseguer

University of Illinois at Urbana-Champaign

1/15

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$,

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, vars $(u) = \vec{x}$,

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, $vars(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ -equalities.

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, $vars(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $_{-\mathbb{C}_{\mathcal{R}}}$ has the form: $_{-\mathbb{C}_{\mathcal{R}}} : (u|\varphi) \mapsto [\![u \mid \varphi]\!]$,

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, $vars(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $_{-\mathbb{C}_{\mathcal{R}}}$ has the form: $_{-\mathbb{C}_{\mathcal{R}}} : (u|\varphi) \mapsto [\![u \mid \varphi]\!]$, with $[\![u \mid \varphi]\!]$ the computable subset:

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, $vars(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $_{-\mathbb{C}_{\mathcal{R}}}$ has the form: $_{-\mathbb{C}_{\mathcal{R}}} : (u|\varphi) \mapsto [\![u \mid \varphi]\!]$, with $[\![u \mid \varphi]\!]$ the computable subset:

$$\llbracket u \mid \varphi \rrbracket = \{ [v] \in C_{\Sigma/\vec{E},B,St} \mid \exists \rho \ s.t. \ v =_B u\rho \land E \cup B \vdash \varphi \rho \} \subseteq C_{\Sigma/\vec{E},B,St}$$

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, $vars(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $_{\mathbb{C}_{\mathcal{R}}}$ has the form: $_{\mathbb{C}_{\mathcal{R}}} : (u|\varphi) \mapsto [\![u \mid \varphi]\!]$, with $[\![u \mid \varphi]\!]$ the computable subset:

$$\llbracket u \mid \varphi \rrbracket = \{ [v] \in C_{\Sigma/\vec{E},B,St} \mid \exists \rho \ s.t. \ v =_B u\rho \land E \cup B \vdash \varphi \rho \} \subseteq C_{\Sigma/\vec{E},B,St}$$

For narrowing search we first focus on topmost rewrite theories of the form $\mathcal{R} = (\Omega, B, R)$ and choose as our Π the set of constructor patterns $u \in T_{\Omega}(X)_{St}$.

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, $vars(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $_{\mathbb{C}_{\mathcal{R}}}$ has the form: $_{\mathbb{C}_{\mathcal{R}}} : (u|\varphi) \mapsto [\![u \mid \varphi]\!]$, with $[\![u \mid \varphi]\!]$ the computable subset:

$$\llbracket u \mid \varphi \rrbracket = \{ [v] \in C_{\Sigma/\vec{E},B,St} \mid \exists \rho \ s.t. \ v =_B u\rho \land E \cup B \vdash \varphi \rho \} \subseteq C_{\Sigma/\vec{E},B,St}$$

For narrowing search we first focus on topmost rewrite theories of the form $\mathcal{R} = (\Omega, B, R)$ and choose as our Π the set of constructor patterns $u \in T_{\Omega}(X)_{St}$. A constructor pattern u coincides with the constrained constructor pattern $u|\top$.

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, $vars(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $_{-\mathbb{C}_{\mathcal{R}}}$ has the form: $_{-\mathbb{C}_{\mathcal{R}}} : (u|\varphi) \mapsto [\![u \mid \varphi]\!]$, with $[\![u \mid \varphi]\!]$ the computable subset:

$$\llbracket u \mid \varphi \rrbracket = \{ [v] \in C_{\Sigma/\vec{E},B,St} \mid \exists \rho \ s.t. \ v =_B u\rho \land E \cup B \vdash \varphi \rho \} \subseteq C_{\Sigma/\vec{E},B,St}$$

For narrowing search we first focus on topmost rewrite theories of the form $\mathcal{R} = (\Omega, B, R)$ and choose as our Π the set of constructor patterns $u \in T_{\Omega}(X)_{St}$. A constructor pattern u coincides with the constrained constructor pattern $u|\top$. The meaning function is:

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, $vars(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $_{\mathbb{C}_{\mathcal{R}}}$ has the form: $_{\mathbb{C}_{\mathcal{R}}} : (u|\varphi) \mapsto [\![u \mid \varphi]\!]$, with $[\![u \mid \varphi]\!]$ the computable subset:

$$\llbracket u \mid \varphi \rrbracket = \{ [v] \in C_{\Sigma/\vec{E},B,St} \mid \exists \rho \ s.t. \ v =_B u\rho \land E \cup B \vdash \varphi \rho \} \subseteq C_{\Sigma/\vec{E},B,St}$$

For narrowing search we first focus on topmost rewrite theories of the form $\mathcal{R} = (\Omega, B, R)$ and choose as our Π the set of constructor patterns $u \in T_{\Omega}(X)_{St}$. A constructor pattern u coincides with the constrained constructor pattern $u|\top$. The meaning function is:

$$-\mathbb{C}_{\mathcal{R}}: u \mapsto \llbracket u \rrbracket =_{def} \{ [v] \in T_{\Omega/B, St} \mid \exists \rho \ s.t. \ v =_B u\rho \} \subseteq T_{\Omega/B, St}.$$

A D A A B A A B A A B A B A

Positive constructor pattern formulas *PCPattF* have the grammar:

$$u \mid p \lor p' \mid p \land p' \mid \bot$$

Positive constructor pattern formulas *PCPattF* have the grammar:

$$u \mid p \lor p' \mid p \land p' \mid \bot$$

イロト 不得 トイヨト イヨト ニヨー

where $u \in T_{\Omega}(X)_{St}$ and $p, p' \in PCPattF$.

3/15

Positive constructor pattern formulas *PCPattF* have the grammar:

$$u \mid p \lor p' \mid p \land p' \mid \bot$$

where $u \in T_{\Omega}(X)_{St}$ and $p, p' \in PCPattF$. I.e., PCPattF is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$.

Positive constructor pattern formulas *PCPattF* have the grammar:

$$u \mid p \lor p' \mid p \land p' \mid \bot$$

where $u \in T_{\Omega}(X)_{St}$ and $p, p' \in PCPattF$. I.e., PCPattF is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$. \lor and \land are assumed associative-commutative (AC), because \cup and \cap are AC and (recall from Lecture 18), $[p \lor p'] = [p] \cup [p']$,

Positive constructor pattern formulas *PCPattF* have the grammar:

$$u \mid p \lor p' \mid p \land p' \mid \bot$$

where $u \in T_{\Omega}(X)_{St}$ and $p, p' \in PCPattF$. I.e., PCPattF is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$. \vee and \wedge are assumed associative-commutative (AC), because \cup and \cap are AC and (recall from Lecture 18), $[\![p \lor p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![p \land p']\!] = [\![p]\!] \cap [\![p']\!]$.

Positive constructor pattern formulas *PCPattF* have the grammar:

$$u \mid p \lor p' \mid p \land p' \mid \bot$$

where $u \in T_{\Omega}(X)_{St}$ and $p, p' \in PCPattF$. I.e., PCPattF is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$. \vee and \wedge are assumed associative-commutative (AC), because \cup and \cap are AC and (recall from Lecture 18), $[\![p \vee p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![p \wedge p']\!] = [\![p]\!] \cap [\![p']\!]$. Of course, $[\![\bot]\!] = \emptyset$,

Positive constructor pattern formulas *PCPattF* have the grammar:

$$u \mid p \lor p' \mid p \land p' \mid \bot$$

where $u \in T_{\Omega}(X)_{St}$ and $p, p' \in PCPattF$. I.e., PCPattF is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$. \vee and \wedge are assumed associative-commutative (AC), because \cup and \cap are AC and (recall from Lecture 18), $[p \vee p'] = [p] \cup [p']$, and $[p \wedge p'] = [p] \cap [p']$. Of course, $[\![\bot]\!] = \emptyset$, and $[\![x:St]\!] = T_{\Omega/B,St}$.

◆□ → ◆□ → ◆ □ → ◆ □ → □ □

Positive constructor pattern formulas *PCPattF* have the grammar:

$$u \mid p \lor p' \mid p \land p' \mid \bot$$

where $u \in T_{\Omega}(X)_{St}$ and $p, p' \in PCPattF$. I.e., PCPattF is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$. \vee and \wedge are assumed associative-commutative (AC), because \cup and \cap are AC and (recall from Lecture 18), $[p \vee p'] = [p] \cup [p']$, and $[p \wedge p'] = [p] \cap [p']$. Of course, $[[\bot]] = \emptyset$, and $[x:St] = T_{\Omega/B,St}$. The proof of the following theorem can be found in Appendix 1:

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Positive constructor pattern formulas *PCPattF* have the grammar:

$$u \mid p \lor p' \mid p \land p' \mid \bot$$

where $u \in T_{\Omega}(X)_{St}$ and $p, p' \in PCPattF$. I.e., PCPattF is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$. \vee and \wedge are assumed associative-commutative (AC), because \cup and \cap are AC and (recall from Lecture 18), $[p \vee p'] = [p] \cup [p']$, and $[p \wedge p'] = [p] \cap [p']$. Of course, $[\bot] = \emptyset$, and $[x:St] = T_{\Omega/B,St}$. The proof of the following theorem can be found in Appendix 1:

DNF Theorem. Any $p \in PCPattF$ has a disjunctive normal form, dnf(p), which is either \bot or has the form $u_1 \lor \ldots \lor u_n$, with $u_i \in T_{\Omega}(X)_{St}$, $1 \le i \le n$, $n \ge 1$, and is such that $[\![p]\!] = [\![dnf(p)]\!]$.

Negative constructor pattern formulas *NCPattF* have the grammar:

$$\neg u \mid n \lor n' \mid n \land n' \mid \top$$

Negative constructor pattern formulas *NCPattF* have the grammar:

$$\neg u \mid n \lor n' \mid n \land n' \mid \top$$

where $u \in T_{\Omega}(X)_{St}$ and $n, n' \in PCPattF$.

Negative constructor pattern formulas *NCPattF* have the grammar:

$$\neg u \mid n \lor n' \mid n \land n' \mid \top$$

where $u \in T_{\Omega}(X)_{St}$ and $n, n' \in PCPattF$. I.e., NCPattF is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$.

Negative constructor pattern formulas *NCPattF* have the grammar:

$$\neg u \mid n \lor n' \mid n \land n' \mid \top$$

(日)

where $u \in T_{\Omega}(X)_{St}$ and $n, n' \in PCPattF$. I.e., NCPattF is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \lor and \land are assumed associative-commutative (AC), because \cup and \cap are AC.

Negative constructor pattern formulas NCPattF have the grammar:

$$\neg u \mid n \lor n' \mid n \land n' \mid \top$$

where $u \in T_{\Omega}(X)_{St}$ and $n, n' \in PCPattF$. I.e., NCPattF is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \lor and \land are assumed associative-commutative (AC), because \cup and \cap are AC. Recall form Lecture 18 that $[\![\neg u]\!] = T_{\Omega/B,St} \setminus [\![u]\!]$.

Negative constructor pattern formulas *NCPattF* have the grammar:

$$\neg u \mid n \lor n' \mid n \land n' \mid \top$$

where $u \in T_{\Omega}(X)_{St}$ and $n, n' \in PCPattF$. I.e., NCPattF is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \lor and \land are assumed associative-commutative (AC), because \cup and \cap are AC. Recall form Lecture 18 that $[\![\neg u]\!] = T_{\Omega/B,St} \setminus [\![u]\!]$. Also, $[\![\top]\!] = T_{\Omega/B,St}$.

Negative constructor pattern formulas *NCPattF* have the grammar:

$$\neg u \mid n \lor n' \mid n \land n' \mid \top$$

where $u \in T_{\Omega}(X)_{St}$ and $n, n' \in PCPattF$. I.e., NCPattF is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \lor and \land are assumed associative-commutative (AC), because \cup and \cap are AC. Recall form Lecture 18 that $\llbracket \neg u \rrbracket = T_{\Omega/B,St} \setminus \llbracket u \rrbracket$. Also, $\llbracket \top \rrbracket = T_{\Omega/B,St}$. The proof of the following theorem can be found in Appendix 1:

・ロト ・ 四ト ・ 日ト ・ 日下

Negative constructor pattern formulas *NCPattF* have the grammar:

$$\neg u \mid n \lor n' \mid n \land n' \mid \top$$

where $u \in T_{\Omega}(X)_{St}$ and $n, n' \in PCPattF$. I.e., NCPattF is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \lor and \land are assumed associative-commutative (AC), because \cup and \cap are AC. Recall form Lecture 18 that $[\![\neg u]\!] = T_{\Omega/B,St} \setminus [\![u]\!]$. Also, $[\![\top]\!] = T_{\Omega/B,St}$. The proof of the following theorem can be found in Appendix 1:

NCNF Theorem. Any $n \in NCPattF$ has a negative conjunctive normal form, ncnf(n), with ncnf(n) either \top or of the form $\neg u_1 \land \ldots \land \neg u_n$, $u_i \in T_{\Omega}(X)_{St}$, $1 \le i \le n$, $n \ge 1$, and s.t. $[\![n]\!] = [\![ncnf(n)]\!]$.

Negative constructor pattern formulas *NCPattF* have the grammar:

$$\neg u \mid n \lor n' \mid n \land n' \mid \top$$

where $u \in T_{\Omega}(X)_{St}$ and $n, n' \in PCPattF$. I.e., NCPattF is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \lor and \land are assumed associative-commutative (AC), because \cup and \cap are AC. Recall form Lecture 18 that $[\![\neg u]\!] = T_{\Omega/B,St} \setminus [\![u]\!]$. Also, $[\![\top]\!] = T_{\Omega/B,St}$. The proof of the following theorem can be found in Appendix 1:

NCNF Theorem. Any $n \in NCPattF$ has a negative conjunctive normal form, ncnf(n), with ncnf(n) either \top or of the form $\neg u_1 \land \ldots \land \neg u_n$, $u_i \in T_{\Omega}(X)_{St}$, $1 \le i \le n$, $n \ge 1$, and s.t. $\llbracket n \rrbracket = \llbracket ncnf(n) \rrbracket$. Note that $\llbracket \neg u_1 \land \ldots \land \neg u_n \rrbracket = T_{\Omega/B,St} \backslash \llbracket u_1 \lor \ldots \lor u_n \rrbracket$.

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms *B*, we say that *u* is *B*-subsumed by *v*

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v),

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$,

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$.

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command).

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $[\![u]\!] \subseteq [\![v]\!]$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ●

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $[\![u]\!] \subseteq [\![v]\!]$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \sqsubseteq_B u_1 \vee \ldots \vee u_n$, and

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ●

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $[\![u]\!] \subseteq [\![v]\!]$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \sqsubseteq_B u_1 \vee \ldots \vee u_n$, and (ii) $u_1 \vee \ldots \vee u_n$ is *B*-subsumed by $v_1 \vee \ldots \vee v_m$,

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $[\![u]\!] \subseteq [\![v]\!]$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \sqsubseteq_B u_1 \vee \ldots \vee u_n$, and (ii) $u_1 \vee \ldots \vee u_n$ is *B*-subsumed by $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$,

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $[\![u]\!] \subseteq [\![v]\!]$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \sqsubseteq_B u_1 \vee \ldots \vee u_n$, and (ii) $u_1 \vee \ldots \vee u_n$ is *B*-subsumed by $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$, iff

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \sqsubseteq_B u_1 \vee \ldots \vee u_n$, and (ii) $u_1 \vee \ldots \vee u_n$ is *B*-subsumed by $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$, iff $\forall i, 1 \le i \le n, \exists j, 1 \le j \le n$, s.t., $u_i \sqsubseteq_B v_j$.

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \sqsubseteq_B u_1 \vee \ldots \vee u_n$, and (ii) $u_1 \vee \ldots \vee u_n$ is *B*-subsumed by $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$, iff $\forall i, 1 \le i \le n, \exists j, 1 \le j \le n$, s.t., $u_i \sqsubseteq_B v_j$. Obviously, for *B* any combination of *A* and/or *C* and/or *U* axioms, the relation $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ is decidable.

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \sqsubseteq_B u_1 \vee \ldots \vee u_n$, and (ii) $u_1 \vee \ldots \vee u_n$ is *B*-subsumed by $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$, iff $\forall i, 1 \le i \le n, \exists j, 1 \le j \le n, \text{ s.t.}, u_i \sqsubseteq_B v_j$. Obviously, for *B* any combination of *A* and/or *C* and/or *U* axioms, the relation $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ is decidable. Likewise, $u_1 \vee \ldots \vee u_n$ is *B*-contained in $v_1 \vee \ldots \vee v_m$,

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $[\![u]\!] \subseteq [\![v]\!]$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \sqsubseteq_B u_1 \vee \ldots \vee u_n$, and (ii) $u_1 \vee \ldots \vee u_n$ is *B*-subsumed by $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$, iff $\forall i, 1 \le i \le n, \exists j, 1 \le j \le n, \text{ s.t.}$, $u_i \sqsubseteq_B v_j$. Obviously, for *B* any combination of *A* and/or *C* and/or *U* axioms, the relation $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ is decidable. Likewise, $u_1 \vee \ldots \vee u_n$ is *B*-contained in $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$,

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $[\![u]\!] \subseteq [\![v]\!]$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \sqsubseteq_B u_1 \vee \ldots \vee u_n$, and (ii) $u_1 \vee \ldots \vee u_n$ is *B*-subsumed by $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$, iff $\forall i, 1 \le i \le n, \exists j, 1 \le j \le n, \text{ s.t.}, u_i \sqsubseteq_B v_j$. Obviously, for *B* any combination of *A* and/or *C* and/or *U* axioms, the relation $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ is decidable. Likewise, $u_1 \vee \ldots \vee u_n$ is *B*-contained in $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$, iff $[[u_1 \vee \ldots \vee u_n]] \subseteq [[v_1 \vee \ldots \vee v_m]]$.

Ex.24.2. Prove that:

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m \Rightarrow u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$.

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m \Rightarrow u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. (3) Give an example of constructor paterns u, v, w such that $u \nvDash_B v \lor w$, but $u \subseteq_B v \lor w$.

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m \Rightarrow u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. (3) Give an example of constructor paterns u, v, w such that $u \nvDash_B v \lor w$, but $u \subseteq_B v \lor w$.

The relations $u \sqsubseteq_B v$ and $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m$ give us a decidable sufficient condition to prove the corresponding *B*-containments,

・ロト ・ 四ト ・ 日ト ・ 日下

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m \Rightarrow u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. (3) Give an example of constructor paterns u, v, w such that $u \nvDash_B v \lor w$, but $u \subseteq_B v \lor w$.

The relations $u \sqsubseteq_B v$ and $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m$ give us a decidable sufficient condition to prove the corresponding *B*-containments, $u \subseteq_B v$ and $u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m \Rightarrow u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. (3) Give an example of constructor paterns u, v, w such that $u \nvDash_B v \lor w$, but $u \subseteq_B v \lor w$.

The relations $u \sqsubseteq_B v$ and $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m$ give us a decidable sufficient condition to prove the corresponding *B*-containments, $u \subseteq_B v$ and $u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. However, by **Ex.24.2**-(3), this is not always a necessary condition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m \Rightarrow u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. (3) Give an example of constructor paterns u, v, w such that $u \nvDash_B v \lor w$, but $u \subseteq_B v \lor w$.

The relations $u \sqsubseteq_B v$ and $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m$ give us a decidable sufficient condition to prove the corresponding *B*-containments, $u \subseteq_B v$ and $u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. However, by **Ex.24.2**-(3), this is not always a necessary condition. The following lemma (the proof is left to the reader), can help us prove a containment $u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$ by means of \sqsubseteq_B .

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m \Rightarrow u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. (3) Give an example of constructor paterns u, v, w such that $u \nvDash_B v \lor w$, but $u \subseteq_B v \lor w$.

The relations $u \sqsubseteq_B v$ and $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m$ give us a decidable sufficient condition to prove the corresponding *B*-containments, $u \subseteq_B v$ and $u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. However, by **Ex.24.2**-(3), this is not always a necessary condition. The following lemma (the proof is left to the reader), can help us prove a containment $u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$ by means of \sqsubseteq_B .

Pattern Decompostion Lemma. For $u \in T_{\Omega/B}(X)_{St}$, $x:s \in vars(u)$, and $\{v_1, \ldots, v_m\}$ a generator set for sort *s*,

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m \Rightarrow u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. (3) Give an example of constructor paterns u, v, w such that $u \nvDash_B v \lor w$, but $u \subseteq_B v \lor w$.

The relations $u \sqsubseteq_B v$ and $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m$ give us a decidable sufficient condition to prove the corresponding *B*-containments, $u \subseteq_B v$ and $u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. However, by **Ex.24.2**-(3), this is not always a necessary condition. The following lemma (the proof is left to the reader), can help us prove a containment $u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$ by means of \sqsubseteq_B .

Pattern Decomposition Lemma. For $u \in T_{\Omega/B}(X)_{St}$, $x: s \in vars(u)$, and $\{v_1, \ldots, v_m\}$ a generator set for sort s, we have the set equality:

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m \Rightarrow u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. (3) Give an example of constructor paterns u, v, w such that $u \nvDash_B v \lor w$, but $u \subseteq_B v \lor w$.

The relations $u \sqsubseteq_B v$ and $u_1 \lor \ldots \lor u_n \sqsubseteq_B v_1 \lor \ldots \lor v_m$ give us a decidable sufficient condition to prove the corresponding *B*-containments, $u \subseteq_B v$ and $u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$. However, by **Ex.24.2**-(3), this is not always a necessary condition. The following lemma (the proof is left to the reader), can help us prove a containment $u_1 \lor \ldots \lor u_n \subseteq_B v_1 \lor \ldots \lor v_m$ by means of \sqsubseteq_B .

Pattern Decomposition Lemma. For $u \in T_{\Omega/B}(X)_{St}$, $x:s \in vars(u)$, and $\{v_1, \ldots, v_m\}$ a generator set for sort *s*, we have the set equality: $\llbracket u \rrbracket = \llbracket u \{x:s \mapsto v_1\} \rrbracket \cup \ldots \cup \llbracket u \{x:s \mapsto v_m\} \rrbracket$. \Box

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall *STACS*).

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall *STACS*). That is,

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow_{R/B}^*[I]$ (recall *STACS*). That is, $\mathcal{R}^*[I] = \{[v] \in T_{\Omega/B,St} \mid \exists [u] \in I \ s.t. \ [u] \rightarrow_{R/B}^*[v]\}.$

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall *STACS*). That is, $\mathcal{R}^*[I] = \{[v] \in T_{\Omega/B,St} \mid \exists [u] \in I \ s.t. \ [u] \rightarrow^*_{R/B} [v]\}$. Likewise, by definition,

(日)

7/15

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall *STACS*). That is, $\mathcal{R}^*[I] = \{[v] \in T_{\Omega/B,St} \mid \exists [u] \in I \ s.t. \ [u] \rightarrow^*_{R/B} [v]\}$. Likewise, by definition, $\mathcal{R}[I] =_{def} \rightarrow_{R/B}[I]$,

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow_{R/B}^*[I]$ (recall *STACS*). That is, $\mathcal{R}^*[I] = \{[v] \in T_{\Omega/B,St} \mid \exists [u] \in I \text{ s.t. } [u] \rightarrow_{R/B}^*[v]\}$. Likewise, by definition, $\mathcal{R}[I] =_{def} \rightarrow_{R/B}[I], \mathcal{R}^n[I] =_{def} \rightarrow_{R/B}^n[I],$

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow_{R/B}^*[I]$ (recall *STACS*). That is, $\mathcal{R}^*[I] = \{[v] \in T_{\Omega/B,St} \mid \exists [u] \in I \text{ s.t. } [u] \rightarrow_{R/B}^*[v]\}$. Likewise, by definition, $\mathcal{R}[I] =_{def} \rightarrow_{R/B}[I], \mathcal{R}^n[I] =_{def} \rightarrow_{R/B}^n[I]$, and $\mathcal{R}^{\leq n}[I] =_{def} I \cup \mathcal{R}[I] \cup \ldots \cup \mathcal{R}^n[I], n \in \mathbb{N}$.

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow_{R/B}^*[I]$ (recall *STACS*). That is, $\mathcal{R}^*[I] = \{[v] \in T_{\Omega/B,St} \mid \exists [u] \in I \text{ s.t. } [u] \rightarrow_{R/B}^*[v]\}$. Likewise, by definition, $\mathcal{R}[I] =_{def} \rightarrow_{R/B}[I], \mathcal{R}^n[I] =_{def} \rightarrow_{R/B}^n[I]$, and $\mathcal{R}^{\leq n}[I] =_{def} I \cup \mathcal{R}[I] \cup \ldots \cup \mathcal{R}^n[I], n \in \mathbb{N}$.

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, a set $Q \subseteq T_{\Omega/B,St}$ is called \mathcal{R} -transition-closed iff $\mathcal{R}[Q] \subseteq Q$.

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow_{R/B}^*[I]$ (recall *STACS*). That is, $\mathcal{R}^*[I] = \{[v] \in T_{\Omega/B,St} \mid \exists [u] \in I \text{ s.t. } [u] \rightarrow_{R/B}^*[v]\}$. Likewise, by definition, $\mathcal{R}[I] =_{def} \rightarrow_{R/B}[I], \mathcal{R}^n[I] =_{def} \rightarrow_{R/B}^n[I]$, and $\mathcal{R}^{\leq n}[I] =_{def} I \cup \mathcal{R}[I] \cup \ldots \cup \mathcal{R}^n[I], n \in \mathbb{N}$.

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, a set $Q \subseteq T_{\Omega/B,St}$ is called \mathcal{R} -transition-closed iff $\mathcal{R}[Q] \subseteq Q$. Also, $Q \subseteq T_{\Omega/B,St}$ is called an inductive invariant from initial states $I \subseteq T_{\Omega/B,St}$ iff

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow_{R/B}^*[I]$ (recall *STACS*). That is, $\mathcal{R}^*[I] = \{[v] \in T_{\Omega/B,St} \mid \exists [u] \in I \text{ s.t. } [u] \rightarrow_{R/B}^*[v]\}$. Likewise, by definition, $\mathcal{R}[I] =_{def} \rightarrow_{R/B}[I], \mathcal{R}^n[I] =_{def} \rightarrow_{R/B}^n[I]$, and $\mathcal{R}^{\leq n}[I] =_{def} I \cup \mathcal{R}[I] \cup \ldots \cup \mathcal{R}^n[I], n \in \mathbb{N}$.

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, a set $Q \subseteq T_{\Omega/B,St}$ is called \mathcal{R} -transition-closed iff $\mathcal{R}[Q] \subseteq Q$. Also, $Q \subseteq T_{\Omega/B,St}$ is called an inductive invariant from initial states $I \subseteq T_{\Omega/B,St}$ iff (i) Q is an invariant from I, i.e., $\mathcal{R}^*[I] \subseteq Q$, and

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow_{R/B}^*[I]$ (recall *STACS*). That is, $\mathcal{R}^*[I] = \{[v] \in T_{\Omega/B,St} \mid \exists [u] \in I \text{ s.t. } [u] \rightarrow_{R/B}^*[v]\}$. Likewise, by definition, $\mathcal{R}[I] =_{def} \rightarrow_{R/B}[I], \mathcal{R}^n[I] =_{def} \rightarrow_{R/B}^n[I]$, and $\mathcal{R}^{\leq n}[I] =_{def} I \cup \mathcal{R}[I] \cup \ldots \cup \mathcal{R}^n[I], n \in \mathbb{N}$.

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, a set $Q \subseteq T_{\Omega/B,St}$ is called \mathcal{R} -transition-closed iff $\mathcal{R}[Q] \subseteq Q$. Also, $Q \subseteq T_{\Omega/B,St}$ is called an inductive invariant from initial states $I \subseteq T_{\Omega/B,St}$ iff (i) Q is an invariant from I, i.e., $\mathcal{R}^*[I] \subseteq Q$, and (ii) Q is \mathcal{R} -transition-closed.

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^*[I]$ of \mathcal{R} -reachable states from a set $I \subseteq T_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow_{R/B}^*[I]$ (recall *STACS*). That is, $\mathcal{R}^*[I] = \{[v] \in T_{\Omega/B,St} \mid \exists [u] \in I \text{ s.t. } [u] \rightarrow_{R/B}^*[v]\}$. Likewise, by definition, $\mathcal{R}[I] =_{def} \rightarrow_{R/B}[I], \mathcal{R}^n[I] =_{def} \rightarrow_{R/B}^n[I]$, and $\mathcal{R}^{\leq n}[I] =_{def} I \cup \mathcal{R}[I] \cup \ldots \cup \mathcal{R}^n[I], n \in \mathbb{N}$.

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, a set $Q \subseteq T_{\Omega/B,St}$ is called \mathcal{R} -transition-closed iff $\mathcal{R}[Q] \subseteq Q$. Also, $Q \subseteq T_{\Omega/B,St}$ is called an inductive invariant from initial states $I \subseteq T_{\Omega/B,St}$ iff (i) Q is an invariant from I, i.e., $\mathcal{R}^*[I] \subseteq Q$, and (ii) Q is \mathcal{R} -transition-closed.

Ex.24.1: Prove that: (1) Q is \mathcal{R} -transition-closed iff $\mathcal{R}^*[Q] = Q$, and (2) the smallest invariant from a set of initial states $I \subseteq T_{\Omega/B,St}$, namely, $\mathcal{R}^*[I]$, is inductive.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures).

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost.

イロト 不得 トイヨト イヨト

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\sim_{R/B}$ to $\sim_{R/E \cup B}$.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\sim_{R/B}$ to $\sim_{R/E \cup B}$.

・ロト ・ 四ト ・ 日ト ・ 日下

The initial state is a possitive pattern formula of the form, $u_1 \vee \ldots \vee u_n$.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\sim_{R/B}$ to $\sim_{R/E \cup B}$.

(日)

The initial state is a possitive pattern formula of the form, $u_1 \vee \ldots \vee u_n$. The goal state is a pattern w.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\sim_{R/B}$ to $\sim_{R/E \cup B}$.

The initial state is a possitive pattern formula of the form, $u_1 \vee \ldots \vee u_n$. The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that

・ロト ・ 四ト ・ 日ト ・ 日下

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\sim_{R/B}$ to $\sim_{R/E \cup B}$.

The initial state is a possitive pattern formula of the form, $u_1 \vee \ldots \vee u_n$. The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that $\mathcal{R}^{\leq d} \llbracket u_1 \vee \ldots \vee u_n \rrbracket = \llbracket P_d \rrbracket$.

A D A A B A A B A A B A B A

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\sim_{R/B}$ to $\sim_{R/E \cup B}$.

The initial state is a possitive pattern formula of the form, $u_1 \vee \ldots \vee u_n$. The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that $\mathcal{R}^{\leq d}[\![u_1 \vee \ldots \vee u_n]\!] = [\![P_d]\!]$. The algorithm (searching for one solution) terminates if a smallest d is reached s.t. either:

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\sim_{R/B}$ to $\sim_{R/E \cup B}$.

The initial state is a possitive pattern formula of the form, $u_1 \vee \ldots \vee u_n$. The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that $\mathcal{R}^{\leq d}[\![u_1 \vee \ldots \vee u_n]\!] = [\![P_d]\!]$. The algorithm (searching for one solution) terminates if a smallest d is reached s.t. either: (i) $F_d \wedge w \neq \bot$ (a decidable property: see Appendix 1), i.e., a solution is found, or

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\sim_{R/B}$ to $\sim_{R/E \cup B}$.

The initial state is a possitive pattern formula of the form, $u_1 \vee \ldots \vee u_n$. The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that $\mathcal{R}^{\leq d}[\![u_1 \vee \ldots \vee u_n]\!] = [\![P_d]\!]$. The algorithm (searching for one solution) terminates if a smallest d is reached s.t. either: (i) $F_d \wedge w \neq \bot$ (a decidable property: see Appendix 1), i.e., a solution is found, or (ii) $F_d = \bot$, i.e., no solution exists, proving that $[\!\neg w]\!]$ is an invariant from $[\![u_1 \vee \ldots \vee u_n]\!]$.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\sim_{R/B}$ to $\sim_{R/E \cup B}$.

The initial state is a possitive pattern formula of the form, $u_1 \vee \ldots \vee u_n$. The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that $\mathcal{R}^{\leq d}\llbracket u_1 \vee \ldots \vee u_n \rrbracket = \llbracket P_d \rrbracket$. The algorithm (searching for one solution) terminates if a smallest d is reached s.t. either: (i) $F_d \wedge w \neq \bot$ (a decidable property: see Appendix 1), i.e., a solution is found, or (ii) $F_d = \bot$, i.e., no solution exists, proving that $\llbracket \neg w \rrbracket$ is an invariant from $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$. Otherwise, the search loops forever $\varphi \leftrightarrow \varphi \to \varphi$

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d .

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

(日)

9/15

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

(日)

•
$$P_0 = F_0 = u_1 \vee \ldots \vee u_n$$
.

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

•
$$P_0 = F_0 = u_1 \vee \ldots \vee u_n$$
.

•
$$P_{d+1} = P_d \vee F_{d+1}$$
, where

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

(日)

•
$$P_0 = F_0 = u_1 \vee \ldots \vee u_n$$
.

•
$$P_{d+1} = P_d \vee F_{d+1}$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

•
$$P_0 = F_0 = u_1 \vee \ldots \vee u_n$$
.

•
$$P_{d+1} = P_d \vee F_{d+1}$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \rightsquigarrow_{R/B} w \land w \not\sqsubseteq_B P_d \}.$$

(日)

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

•
$$P_0 = F_0 = u_1 \vee \ldots \vee u_n$$
.

•
$$P_{d+1} = P_d \vee F_{d+1}$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \rightsquigarrow_{R/B} w \land w \not\sqsubseteq_B P_d \}.$$

(日)

where the notation \bigvee generalizes the pattern disjunction operation \lor to any finite set of patterns,

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

•
$$P_0 = F_0 = u_1 \vee \ldots \vee u_n$$
.

•
$$P_{d+1} = P_d \vee F_{d+1}$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \rightsquigarrow_{R/B} w \land w \not\sqsubseteq_B P_d \}.$$

where the notation \bigvee generalizes the pattern disjunction operation \lor to any finite set of patterns, e.g., $\bigvee \{v_1, \ldots, v_m\} = v_1 \lor \ldots \lor v_m$.

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

•
$$P_0 = F_0 = u_1 \vee \ldots \vee u_n$$
.

•
$$P_{d+1} = P_d \vee F_{d+1}$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \rightsquigarrow_{R/B} w \land w \not\sqsubseteq_B P_d \}.$$

where the notation \bigvee generalizes the pattern disjunction operation \lor to any finite set of patterns, e.g., $\bigvee \{v_1, \ldots, v_m\} = v_1 \lor \ldots \lor v_m$. That is, F_{d+1} excludes all w such that $v_i \rightsquigarrow_{R/B} w$ and $w \sqsubseteq_B P_d$,

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

•
$$P_0 = F_0 = u_1 \vee \ldots \vee u_n$$
.

•
$$P_{d+1} = P_d \vee F_{d+1}$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \sim_{R/B} w \land w \not\sqsubseteq_B P_d \}.$$

where the notation \bigvee generalizes the pattern disjunction operation \lor to any finite set of patterns, e.g., $\bigvee \{v_1, \ldots, v_m\} = v_1 \lor \ldots \lor v_m$. That is, F_{d+1} excludes all w such that $v_i \rightsquigarrow_{R/B} w$ and $w \sqsubseteq_B P_d$, i.e., those w that "fold" into P_d .

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

•
$$P_0 = F_0 = u_1 \vee \ldots \vee u_n$$
.

•
$$P_{d+1} = P_d \vee F_{d+1}$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \rightsquigarrow_{R/B} w \land w \not\sqsubseteq_B P_d \}.$$

where the notation \bigvee generalizes the pattern disjunction operation \lor to any finite set of patterns, e.g., $\bigvee \{v_1, \ldots, v_m\} = v_1 \lor \ldots \lor v_m$. That is, F_{d+1} excludes all w such that $v_i \rightsquigarrow_{R/B} w$ and $w \sqsubseteq_B P_d$, i.e., those w that "fold" into P_d . Call F_d the frontier of P_d , $d \in \mathbb{N}$.

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $[\![u_1 \vee \ldots \vee u_n]\!]$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

•
$$P_0 = F_0 = u_1 \vee \ldots \vee u_n$$
.

•
$$P_{d+1} = P_d \vee F_{d+1}$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \sim_{R/B} w \land w \not\sqsubseteq_B P_d \}.$$

where the notation \bigvee generalizes the pattern disjunction operation \lor to any finite set of patterns, e.g., $\bigvee \{v_1, \ldots, v_m\} = v_1 \lor \ldots \lor v_m$. That is, F_{d+1} excludes all w such that $v_i \rightsquigarrow_{R/B} w$ and $w \sqsubseteq_B P_d$, i.e., those w that "fold" into P_d . Call F_d the frontier of P_d , $d \in \mathbb{N}$. The algorithm terminates for the smallest d (if any) s.t. either $F_d \land v \neq \bot$ for goal state v, or $F_d = \bot$.

The Set-Theoretic Meaning of Narrowing

The Set-Theoretic Meaning of Folding Narrowing

For $F_d = v_1 \lor v_2 \lor v_3$, then $F_{d+1} = w_1 \lor w_2 \lor w_4$. w_3 folded into v_3 .

Completeness of Folding Narrowing

Completeness Theorem of Folding Narrowing. Let (Ω, B, R) be a topmost rewrite theory with state sort St, and $u_1 \vee \ldots \vee u_n$ an initial state. For each depth $d \in \mathbb{N}$, $\llbracket P_d \rrbracket = \mathcal{R}^{\leq d} \llbracket u_1 \vee \ldots \vee u_n \rrbracket$.

If it exists, let *d* be the smallest depth such that $F_{d+1} = \bot$. Then, $P_{d+1} = P_d \lor F_{d+1} = P_d \lor \bot$, which implies $\llbracket P_d \rrbracket = \llbracket P_{d+1} \rrbracket$. I.e., $\mathcal{R}^{\leq d} \llbracket u_1 \lor \ldots \lor u_n \rrbracket = \llbracket P_d \rrbracket = \llbracket P_{d+1} \rrbracket = \mathcal{R}^{\leq d+1} \llbracket u_1 \lor \ldots \lor u_n \rrbracket =$ $\mathcal{R}[\mathcal{R}^{\leq d} \llbracket u_1 \lor \ldots \lor u_n \rrbracket] \cup \mathcal{R}^{\leq d} \llbracket u_1 \lor \ldots \lor u_n \rrbracket$, so that $\llbracket P_d \rrbracket$ is transition-closed. Therefore, by **Ex.24.1** we have $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket P_d \rrbracket$. But then $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \lor \ldots \lor u_n \rrbracket$ follows from the inclusions:

$$\mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket \subseteq \mathcal{R}^*\llbracket P_d \rrbracket = \llbracket P_d \rrbracket \subseteq \mathcal{R}^*\llbracket u_1 \vee \ldots \vee u_n \rrbracket.$$

That is, we get a finite, symbolic descrition of all reachable states $\mathcal{R}^*[\![u_1 \lor \ldots \lor u_n]\!]$ as the pattern disjunction P_d .

・ロット (雪) ・ (日) ・ (日) ・ (日)

Four Methods to Symbolically Verify Invariants

For $\mathcal{R} = (\Omega, B, R)$ a topmost rewrite theory with state sort St, $u_1 \vee \ldots \vee u_n$ an initial state, and $Q \subseteq T_{\Omega/B,St}$, the following four methods can verify (†) $\mathbb{C}_{\mathcal{R}}, [\![u_1 \vee \ldots \vee u_n]\!] \models_{S4} \Box Q$.

A. If Q is specifiable as Q = [n] for n a negative pattern formula different from \top (if $n = \top$, (†) holds trivially). W.L.O.G. we may assume $n = ncnf(n) = \neg v_1 \land \ldots \land \neg v_m$.

Method 1. (†) holds if $\mathbb{C}_{\mathcal{R}}$, $\llbracket u_1 \vee \ldots \vee u_n \rrbracket \not\models_{S4} \diamond \llbracket v_1 \vee \ldots \vee v_m \rrbracket$. A sufficient condition to automatically verify (†) is that the *m* commands {fold} vu-narrow $u_1 \vee \ldots \vee u_n =>* v_j$, $1 \leq j \leq m$ return: No solution.

If this succeeds, Maude can retun the positive pattern disjunction P_d such that $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \lor \ldots \lor u_n \rrbracket$, which enables **Method 2**.

・ロット (雪) ・ (日) ・ (日) ・ (日)

Four Methods to Symbolically Verify Invariants (II)

Method 2. If we have found $P_d = w_1 \vee \ldots \vee w_k$ s.t. $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$, then (†) holds for any Q of the form, $Q = \llbracket \neg v_1 \wedge \ldots \wedge \neg v_m \rrbracket$ iff $\forall 1 \le i \le k, \forall 1 \le j \le m, w_i \wedge v_j = \bot$, i.e., (see Appendix 1), iff $Unif_B(w_i = v_j) = \emptyset$ for all i, j (we assume $vars(w_i) = vars(v_j)$). Note that no search is needed!

B. If Q is specifiable as $Q = \llbracket p \rrbracket$ for p a positive pattern formula different from \bot (if $p = \bot$, (†) cannot hold). W.L.O.G. we may assume $p = dnf(p) = v_1 \lor \ldots \lor v_m$.

Method 3. If we have found $P_d = w_1 \vee \ldots \vee w_k$ s.t. $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$, then (†) holds for any Q of the form, $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$ iff $w_1 \vee \ldots \vee w_k \subseteq_B v_1 \vee \ldots \vee v_m$. A decidable sufficient condition is $w_1 \vee \ldots \vee w_k \sqsubseteq_B v_1 \vee \ldots \vee v_m$.

Four Methods to Symbolically Verify Invariants (III)

Method 4. (†) holds for $Q = [v_1 \lor \ldots \lor v_m]$ if: (1) Q is transitition-closed; this holds iff a @fold vu-narrow $v_1 \lor \ldots \lor v_m$ =>1 \$ command, where \$ is a fresh (and therefore unreachable) constant added to \mathcal{R} , generates an $F_1(v_1 \lor \ldots \lor v_m)$ s.t. either $F_1(v_1 \lor \ldots \lor v_m) = \bot$, or $F_1(v_1 \lor \ldots \lor v_m) \subset_B v_1 \lor \ldots \lor v_m$. (2) $u_1 \lor \ldots \lor u_n \subset_B v_1 \lor \ldots \lor v_m$. A decidable sufficient condition is $u_1 \lor \ldots \lor u_n \sqsubset_B v_1 \lor \ldots \lor v_m$.

・ロト ・ 四ト ・ 日ト ・ 日下