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increasing depth d € N as follows:

e Ph=Fp=wu1 V...Vu,.

@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

Fai1 = \/ {w|3i, 1<i<m, s.t.,y ~R/BW AW g P4}

where the notation \/ generalizes the pattern disjunction operation
V to any finite set of patterns, e.g., \/{v1,...,Vm} =wvi V...V Vp.
That is, Fy11 excludes all w such that v; ~R/B W and w Cpg Py,
i.e., those w that “fold” into Py.
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The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]
are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Ph=Fp=wu1 V...Vu,.

@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

Fai1 = \/ {w|3i, 1<i<m, s.t.,y ~R/BW AW g P4}

where the notation \/ generalizes the pattern disjunction operation
V to any finite set of patterns, e.g., \/{v1,...,Vm} =wvi V...V Vp.
That is, Fy11 excludes all w such that v; ~R/B W and w Cpg Py,

i.e., those w that “fold” into Py4. Call Fy the frontier of P4, d € N.
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The Folding Narrowing Search Algorithm (11)

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]
are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Ph=Fp=wu1 V...Vu,.

@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

Fai1 = \/ {w|3i, 1<i<m, s.t.,y ~R/BW AW g P4}

where the notation \/ generalizes the pattern disjunction operation
V to any finite set of patterns, e.g., \/{v1,...,Vm} =wvi V...V Vp.
That is, Fy11 excludes all w such that v; ~R/B W and w Cpg Py,
i.e., those w that “fold” into Py4. Call Fy the frontier of P4, d € N.
The algorithm terminates for the smallest d (if any) s.t. either

Fa N v # L for goal state v, or Fg = L.
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The Set-Theoretic Meaning of Folding Narrowing

For Fg = vi Vva Vs, then Fyi1 = wi V wy V wa. ws folded into vs.
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Completeness of Folding Narrowing

Completeness Theorem of Folding Narrowing. Let (2, B, R) be
a topmost rewrite theory with state sort St, and v V...V u, an
inititial state. For each depth d € N, [Py] = RS [uyr V... V u,].

If it exists, let d be the smallest depth such that Fy;1 = L. Then,
Pgy1 = P4V Fgy1 = Pg VvV L, which implies [[Pd]] = [[Pd+1]]. le.,
Rgd[[ul V...V U,,]] = IIPd]] = [[Pd+1]] = Rgd—HHUl V...V Lln]] =
R[REuy V...V up]JURSur V... V u,], so that [Py] is
transition-closed. Therefore, by Ex.24.1 we have [Py = R*[P4].
But then [Py] = R*[u1 V ...V u,] follows from the inclusions:

R[ur V...V up] € R*[Pa] = [Pa] € R*[ur V ... V ).

That is, we get a finite, symbolic descrition of all reachable states
R*[ur V...V up] as the pattern disjunction Py.
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For R = (Q, B, R) a topmost rewrite theory with state sort St,
up V...V u, an inititial state, and Q C Tq/g s, the following four
methods can verify () Cg,[u1 V...V u,] Ess OQ.

A. If Q is specifiable as Q = [n] for n a negative pattern formula
different from T (if n =T, (f) holds trivially). W.L.O.G. we may
assume n = ncnf(n) = —vi A ... A =W

Method 1. (1) holds if Cr,[u1 V...V u,] FEsao[vi V...V vy]. A
sufficient condition to automatically verify (1) is that the m
commands {fold} vu-narrow uyV...Vu, =>%v;, 1 <j<m
return: No solution.

If this succeeds, Maude can retun the positive pattern disjunction
Py such that [Py] = R*[u1 V ...V up], which enables Method 2.
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Four Methods to Symbolically Verify Invariants (II)

Method 2. If we have found Py = wy V...V wg s.t.

[Pa] = R*[u1 V ...V up], then (1) holds for any Q of the form,
Q=[viAN.. A vp] iffVI<i<kVI<j<m wAv=1,
i.e., (see Appendix 1), iff Unif g(w; = v;) = () for all i, (we
assume vars(w;) = vars(v;)). Note that no search is needed!

B. If Q is specifiable as Q = [p] for p a positive pattern formula
different from L (if p = L, (}) cannot hold). W.L.O.G. we may
assume p = dnf(p) =vi V...V vp.

Method 3. If we have found Py = wy V...V wg s.t.

[Pa]l = R*[u1 V ...V up], then (t) holds for any Q of the form,
Q=[wviV...Vvp]iff wiV...Vwg CgviV...V vy Adecidable
sufficient conditionis wi V...Vw CEg vi V...V V.
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Four Methods to Symbolically Verify Invariants (llI)

Method 4. (}) holds for Q = [[vi V...V vu] if: (1) Qis
transitition-closed; this holds iff a @fold vu-narrow vi V...V vy,
=>1 $ command, where $ is a fresh (and therefore unreachable)
constant added to R, generates an F1(v1 V...V vpy,) s.t. either
F1(V1\/...\/Vm):J_, or Fl(vl\/...\/vm) CegwviV...Vvny. (2)
nV...Vu, Cgwvi V...V vy A decidable sufficient condition is
nmV..Vu,CpviV...Vvy.
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