Program Verification: Lecture 24

José Meseguer

University of Illinois at Urbana-Champaign

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$,

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with *u* a constructor $Ω$ -term of sort *St*, vars(*u*) = \vec{x} ,

2/15

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St , vars $(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ-equalities.

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with *u* a constructor Ω -term of sort *St*, vars(*u*) = \vec{x} , and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $\mathcal{L}_{\mathcal{D}}$ has the form: $\mathcal{L}_{\mathcal{D}}$: $(u|\varphi) \mapsto ||u|| \varphi||$,

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St , vars $(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $C_{\mathcal{R}}$ has the form: $C_{\mathcal{R}}$: $(u|\varphi) \mapsto ||u|| \varphi||$, with $||u|| \varphi||$ the computable subset:

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St , vars $(u) = \vec{x}$, and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $C_{\mathcal{R}}$ has the form: $C_{\mathcal{R}}$: $(u|\varphi) \mapsto ||u|| \varphi||$, with $||u|| \varphi||$ the computable subset:

$$
[\![u \mid \varphi]\!] = \{ [v] \in C_{\Sigma/\vec{E},B,St} \mid \exists \rho \text{ s.t. } v =_B u\rho \land E \cup B \vdash \varphi \rho \} \subseteq C_{\Sigma/\vec{E},B,St}
$$

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, vars(u) = \vec{x} , and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $C_{\mathcal{R}}$ has the form: $C_{\mathcal{R}}$: $(u|\varphi) \mapsto ||u|| \varphi||$, with $||u|| \varphi||$ the computable subset:

$$
[\![u \mid \varphi]\!] = \{ [v] \in C_{\Sigma/\vec{E},B,St} \mid \exists \rho \text{ s.t. } v =_B u\rho \land E \cup B \vdash \varphi \rho \} \subseteq C_{\Sigma/\vec{E},B,St}
$$

For narrowing search we first focus on topmost rewrite theories of the form $\mathcal{R} = (\Omega, B, R)$ and choose as our Π the set of constructor patterns $u \in T_{\Omega}(X)_{S_{t}}$.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, vars(u) = \vec{x} , and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $\mathcal{L}_{\mathcal{D}}$ has the form: $C_{\mathcal{R}}$: $(u|\varphi) \mapsto ||u|| \varphi||$, with $||u|| \varphi||$ the computable subset:

$$
[\![u \mid \varphi]\!] = \{ [v] \in C_{\Sigma/\vec{E},B,St} \mid \exists \rho \text{ s.t. } v =_B u\rho \land E \cup B \vdash \varphi \rho \} \subseteq C_{\Sigma/\vec{E},B,St}
$$

For narrowing search we first focus on topmost rewrite theories of the form $\mathcal{R} = (\Omega, B, R)$ and choose as our Π the set of constructor patterns $u \in T_{\Omega}(X)_{St}$. A constructor pattern u coincides with the constrained constructor pattern u|⊤.

 $\mathbf{E} = \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E}$

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, vars(u) = \vec{x} , and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $\mathcal{L}_{\mathcal{D}}$ has the form: $C_{\mathcal{R}}$: $(u|\varphi) \mapsto ||u|| \varphi||$, with $||u|| \varphi||$ the computable subset:

$$
[\![u \mid \varphi]\!] = \{ [v] \in C_{\Sigma/\vec{E},B,St} \mid \exists \rho \text{ s.t. } v =_B u\rho \land E \cup B \vdash \varphi \rho \} \subseteq C_{\Sigma/\vec{E},B,St}
$$

For narrowing search we first focus on topmost rewrite theories of the form $\mathcal{R} = (\Omega, B, R)$ and choose as our Π the set of constructor patterns $u \in T_{\Omega}(X)_{St}$. A constructor pattern u coincides with the constrained constructor pattern u |⊤. The meaning function is:

Recall from Lecture 18 that for an executable rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with constructor subsignature Ω and state sort St, an expressive set Π of state predicate names to specify modal properties of $\mathbb{C}_{\mathcal{R}}$ is the set of constrained constructor patterns $u|\varphi$, with u a constructor Ω -term of sort St, vars(u) = \vec{x} , and $\varphi(\vec{x})$ a conjunction of Σ -equalities. The meaning function $\mathcal{L}_{\mathcal{D}}$ has the form: $C_{\mathcal{R}}$: $(u|\varphi) \mapsto ||u|| \varphi||$, with $||u|| \varphi||$ the computable subset:

$$
[\![u \mid \varphi]\!] = \{ [v] \in C_{\Sigma/\vec{E},B,St} \mid \exists \rho \text{ s.t. } v =_B u\rho \land E \cup B \vdash \varphi \rho \} \subseteq C_{\Sigma/\vec{E},B,St}
$$

For narrowing search we first focus on topmost rewrite theories of the form $\mathcal{R} = (\Omega, B, R)$ and choose as our Π the set of constructor patterns $u \in T_{\Omega}(X)_{St}$. A constructor pattern u coincides with the constrained constructor pattern u |⊤. The meaning function is:

$$
\mathcal{L}_{\mathcal{R}}: u \mapsto \llbracket u \rrbracket =_{def} \{ [v] \in \mathcal{T}_{\Omega/B,St} \mid \exists \rho \text{ s.t. } v =_{B} u \rho \} \subseteq \mathcal{T}_{\Omega/B,St}.
$$

Positive constructor pattern formulas PCPattF have the grammar:

$$
u~|~p\vee p'~|~p\wedge p'~|~\bot
$$

Positive constructor pattern formulas *PCPattF* have the grammar:

$$
u~|~p\vee p'~|~p\wedge p'~|~\bot
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 수 있어)

where $u \in T_{\Omega}(X)_{St}$ and $p, p' \in PCPattF$.

Positive constructor pattern formulas *PCPattF* have the grammar:

$$
u~|~p\vee p'~|~p\wedge p'~|~\bot
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $p, p' \in \mathit{PCPattF}$. I.e., $\mathit{PCPattF}$ is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$.

Positive constructor pattern formulas *PCPattF* have the grammar:

$$
u \ | \ p \vee p' \ | \ p \wedge p' \ | \ \bot
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $p, p' \in \mathit{PCPattF}$. I.e., $\mathit{PCPattF}$ is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$. \vee and \wedge are assumed associative-commutative (AC), because ∪ and ∩ are AC and (recall from Lecture 18), $\llbracket p \vee p' \rrbracket = \llbracket p \rrbracket \cup \llbracket p' \rrbracket$,

Positive constructor pattern formulas *PCPattF* have the grammar:

$$
u \ | \ p \vee p' \ | \ p \wedge p' \ | \ \bot
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $p, p' \in \mathit{PCPattF}$. I.e., $\mathit{PCPattF}$ is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$. \vee and \wedge are assumed associative-commutative (AC), because ∪ and ∩ are AC and (recall from Lecture 18), $[\![p \vee p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![\mathsf{n} \wedge \mathsf{n'}]\!] = [\![\mathsf{n}]\!] \cup [\![\mathsf{n'}]\!]$, and $\llbracket p \wedge p' \rrbracket = \llbracket p \rrbracket \cap \llbracket p' \rrbracket.$

Positive constructor pattern formulas PCPattF have the grammar:

$$
u \ | \ p \vee p' \ | \ p \wedge p' \ | \ \bot
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $p, p' \in \mathit{PCPattF}$. I.e., $\mathit{PCPattF}$ is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$. \vee and \wedge are assumed associative-commutative (AC), because ∪ and ∩ are AC and (recall from Lecture 18), $[\![p \vee p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![p \wedge p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![p \wedge p']\!] = [\![p]\!] \cap [\![p']\!]$. Of course, $[\![\bot]\!] = \emptyset$,

Positive constructor pattern formulas *PCPattF* have the grammar:

$$
u \ | \ p \vee p' \ | \ p \wedge p' \ | \ \bot
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $p, p' \in \mathit{PCPattF}$. I.e., $\mathit{PCPattF}$ is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{S_t}$. \vee and \wedge are assumed associative-commutative (AC), because ∪ and ∩ are AC and (recall from Lecture 18), $[\![p \vee p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![p \wedge p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![p \wedge p']\!] = [\![p]\!] \cap [\![p']\!]$. Of course, $[\![\bot]\!] = \emptyset$, and $[\![x \colon St]\!] = T_{\Omega/B,St}$.

 $\qquad \qquad \exists \quad \mathbf{1} \in \mathbb{R} \rightarrow \mathbf{1} \in \mathbb{R} \rightarrow \mathbf{1} \oplus \mathbf{1} \math$

Positive constructor pattern formulas PCPattF have the grammar:

$$
u \ | \ p \vee p' \ | \ p \wedge p' \ | \ \bot
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $p, p' \in \mathit{PCPattF}$. I.e., $\mathit{PCPattF}$ is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{St}$. \vee and \wedge are assumed associative-commutative (AC), because ∪ and ∩ are AC and (recall from Lecture 18), $[\![p \vee p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![p \wedge p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![p \wedge p']\!] = [\![p]\!] \cap [\![p']\!]$. Of course, $[\![\bot]\!] = \emptyset$, and $[\![x : St]\!] = T_{\Omega/B,St}$.
The proof of the following theorem can be found in Appendix 1. The proof of the following theorem can be found in Appendix 1:

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

Positive constructor pattern formulas PCPattF have the grammar:

$$
u \ | \ p \vee p' \ | \ p \wedge p' \ | \ \bot
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $p, p' \in \mathit{PCPattF}$. I.e., $\mathit{PCPattF}$ is the closure under conjunctions and disjunctions of $T_{\Omega}(X)_{S_t}$. \vee and \wedge are assumed associative-commutative (AC), because ∪ and ∩ are AC and (recall from Lecture 18), $[\![p \vee p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![p \wedge p']\!] = [\![p]\!] \cup [\![p']\!]$, and $[\![p \wedge p']\!] = [\![p]\!] \cap [\![p']\!]$. Of course, $[\![\bot]\!] = \emptyset$, and $[\![x : St]\!] = T_{\Omega/B,St}$.
The proof of the following theorem can be found in Appendix 1. The proof of the following theorem can be found in Appendix 1:

DNF Theorem. Any $p \in PCPattF$ has a disjunctive normal form, $dnf(p)$, which is either \perp or has the form $u_1 \vee \ldots \vee u_n$, with $u_i \in T_{\Omega}(X)_{St}$, $1 \leq i \leq n$, $n \geq 1$, and is such that $||p|| = ||dnf(p)||$.

Negative constructor pattern formulas NCPattF have the grammar:

$$
\neg u \mid n \vee n' \mid n \wedge n' \mid \top
$$

Negative constructor pattern formulas NCPattF have the grammar:

$$
\neg u \mid n \vee n' \mid n \wedge n' \mid \top
$$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

 QQ

where $u \in T_{\Omega}(X)_{St}$ and $n, n' \in PCPattF$.

4/15

Negative constructor pattern formulas NCPattF have the grammar:

$$
\neg u \mid n \vee n' \mid n \wedge n' \mid \top
$$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $n,n' \in PCPattF$. I.e., $NCPattF$ is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$.

Negative constructor pattern formulas NCPattF have the grammar:

$$
\neg u \mid n \vee n' \mid n \wedge n' \mid \top
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $n,n' \in PCPattF$. I.e., $NCPattF$ is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \vee and \wedge are assumed associative-commutative (AC), because ∪ and \cap are AC.

Negative constructor pattern formulas NCPattF have the grammar:

$$
\neg u \mid n \vee n' \mid n \wedge n' \mid \top
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $n,n' \in PCPattF$. I.e., $NCPattF$ is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \vee and \wedge are assumed associative-commutative (AC), because ∪ and \cap are AC. Recall form Lecture 18 that $\lbrack \lbrack \neg u \rbrack \rbrack = T_{\Omega/B,St} \setminus \lbrack \lbrack u \rbrack \rbrack$.

 $\mathbf{E} = \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E}$

Negative constructor pattern formulas NCPattF have the grammar:

$$
\neg u \mid n \vee n' \mid n \wedge n' \mid \top
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $n,n' \in PCPattF$. I.e., $NCPattF$ is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \vee and \wedge are assumed associative-commutative (AC), because ∪ and \cap are AC. Recall form Lecture 18 that $\llbracket \neg u \rrbracket = \mathcal{T}_{\Omega/B,St} \setminus \llbracket u \rrbracket$. Also, $\llbracket \top \rrbracket = \mathcal{T}_{\Omega/B,St}$.

KORKARA REPASA DA VOCA

Negative constructor pattern formulas NCPattF have the grammar:

$$
\neg u \mid n \vee n' \mid n \wedge n' \mid \top
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $n,n' \in PCPattF$. I.e., $NCPattF$ is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \vee and \wedge are assumed associative-commutative (AC), because ∪ and \cap are AC. Recall form Lecture 18 that $\llbracket \neg u \rrbracket = \mathcal{T}_{\Omega/B,St} \setminus \llbracket u \rrbracket$. Also, $\llbracket \top \rrbracket = \mathcal{T}_{\Omega/B,St}$. The proof of the following theorem can be found in Appendix 1:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Negative constructor pattern formulas NCPattF have the grammar:

$$
\neg u \mid n \vee n' \mid n \wedge n' \mid \top
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $n,n' \in PCPattF$. I.e., $NCPattF$ is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \vee and \wedge are assumed associative-commutative (AC), because ∪ and \cap are AC. Recall form Lecture 18 that $\llbracket \neg u \rrbracket = \mathcal{T}_{\Omega/B,St} \setminus \llbracket u \rrbracket$. Also, $\llbracket \top \rrbracket = \mathcal{T}_{\Omega/B,St}$. The proof of the following theorem can be found in Appendix 1:

NCNF Theorem. Any $n \in \text{NCPattF}$ has a negative conjunctive normal form, ncnf(n), with ncnf(n) either \top or of the form $\neg u_1 \wedge \ldots \wedge \neg u_n$, $u_i \in T_{\Omega}(X)_{St}$, $1 \leq i \leq n$, $n \geq 1$, and s.t. $\llbracket n \rrbracket = \llbracket ncnf(n) \rrbracket$.

KID K 4 D K R B X R B D D A O V

Negative constructor pattern formulas NCPattF have the grammar:

$$
\neg u \mid n \vee n' \mid n \wedge n' \mid \top
$$

where $u \in \mathcal{T}_{\Omega}(X)_{St}$ and $n,n' \in PCPattF$. I.e., $NCPattF$ is the closure under conjunctions and disjunctions of negations $\neg u$ of patterns $u \in T_{\Omega}(X)_{St}$. As before, \vee and \wedge are assumed associative-commutative (AC), because ∪ and \cap are AC. Recall form Lecture 18 that $\llbracket \neg u \rrbracket = \mathcal{T}_{\Omega/B,St} \setminus \llbracket u \rrbracket$. Also, $\llbracket \top \rrbracket = \mathcal{T}_{\Omega/B,St}$. The proof of the following theorem can be found in Appendix 1:

NCNF Theorem. Any $n \in \text{NCPattF}$ has a negative conjunctive normal form, ncnf(n), with ncnf(n) either \top or of the form $\neg u_1 \wedge \ldots \wedge \neg u_n$, $u_i \in T_{\Omega}(X)_{St}$, $1 \leq i \leq n$, $n \geq 1$, and s.t. $\llbracket n \rrbracket = \llbracket ncnf(n) \rrbracket$. Note that $\llbracket \neg u_1 \wedge \ldots \wedge \neg u_n \rrbracket = \mathcal{T}_{\Omega / B, \mathsf{St}} \backslash \llbracket u_1 \vee \ldots \vee u_n \rrbracket_{\Box \Box \Diamond \Diamond \mathsf{B} \land \Box \Box \Diamond \Diamond \mathsf{St}}$

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v),

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$,

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v \alpha$.

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command).

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

 $\mathbf{E} = \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E}$

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$. By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and

KORKARA REPASA DA VOCA

 $v_1 \vee \ldots \vee v_m$, $n, m \geq 1$,
Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \sqsubseteq_B u_1 \vee \ldots \vee u_n$, and

KORKARA REPASA DE VOQO

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \square_R u_1 \vee \ldots \vee u_n$, and (ii) $u_1 ∨ ... ∨ u_n$ is B-subsumed by $v_1 ∨ ... ∨ v_m$,

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \square_R u_1 \vee \ldots \vee u_n$, and (ii) u_1 ∨ ... ∨ u_n is B-subsumed by v_1 ∨ ... ∨ v_m , denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubset_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \square_R u_1 \vee \ldots \vee u_n$, and (ii) u_1 ∨ ... ∨ u_n is B-subsumed by v_1 ∨ ... ∨ v_m , denoted $u_1 ∨ ... ∨ u_n ⊡_R v_1 ∨ ... ∨ v_m$, iff

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubset_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $\lbrack \lbrack u \rbrack \subseteq \lbrack \lbrack v \rbrack \rbrack$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \square_R u_1 \vee \ldots \vee u_n$, and (ii) u_1 ∨ ... ∨ u_n is B-subsumed by v_1 ∨ ... ∨ v_m , denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$, iff $\forall i, 1 \leq i \leq n, \exists j, 1 \leq j \leq n$, s.t., $u_i \sqsubseteq_B v_j$.

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $\lbrack \lbrack u \rbrack \subseteq \lbrack \lbrack v \rbrack \rbrack$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \square_R u_1 \vee \ldots \vee u_n$, and (ii) u_1 ∨ ... ∨ u_n is B-subsumed by v_1 ∨ ... ∨ v_m , denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$, iff $\forall i, 1 \leq i \leq n, \exists j, 1 \leq j \leq n$, s.t., $u_i \sqsubseteq_B v_j$. Obviously, for B any combination of A and/or C and/or U axioms, the relation $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ is decidable.

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $\lbrack \lbrack u \rbrack \subseteq \lbrack \lbrack v \rbrack \rbrack$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \square_R u_1 \vee \ldots \vee u_n$, and (ii) u_1 ∨ ... ∨ u_n is B-subsumed by v_1 ∨ ... ∨ v_m , denoted u₁ ∨ ... ∨ u_n \square_B v₁ ∨ ... ∨ v_m, iff $\forall i$, $1 \le i \le n$, $\exists j$, $1 \le j \le n$, s.t., $u_i \sqsubseteq_B v_j$. Obviously, for B any combination of A and/or C and/or U axioms, the relation $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ is decidable. Likewise, $u_1 \vee \ldots \vee u_n$ is B-contained in $v_1 \vee \ldots \vee v_m$,

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \square_R u_1 \vee \ldots \vee u_n$, and (ii) u_1 ∨ ... ∨ u_n is B-subsumed by v_1 ∨ ... ∨ v_m , denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$, iff $\forall i, 1 \leq i \leq n, \exists j, 1 \leq j \leq n$, s.t., $u_i \sqsubseteq_B v_j$. Obviously, for B any combination of A and/or C and/or U axioms, the relation $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ is decidable. Likewise, $u_1 \vee \ldots \vee u_n$ is B-contained in $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$. **KORKA SERVER OCH**

Definition. Given constructor patterns $u, v \in T_{\Omega}(X)_{St}$ and axioms B, we say that u is B-subsumed by v (or, equivalently, the v is B-more general than v), denoted $u \sqsubseteq_B v$, iff there exists a substitution α such that $u =_B v\alpha$. Note that for B any combination of A and/or C and/or U axioms, the relation $u \sqsubseteq_B v$ is decidable (e.g., by Maude's match command). Likewise, we say that u is B-contained in v, denoted $u \subseteq_B v$, iff $||u|| \subseteq ||v||$.

By definition, given positive pattern formulas $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$, $n, m \ge 1$, (i) $\perp \square_R u_1 \vee \ldots \vee u_n$, and (ii) u_1 ∨ ... ∨ u_n is B-subsumed by v_1 ∨ ... ∨ v_m , denoted $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$, iff $\forall i, 1 \leq i \leq n, \exists j, 1 \leq j \leq n$, s.t., $u_i \sqsubseteq_B v_j$. Obviously, for B any combination of A and/or C and/or U axioms, the relation $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ is decidable. Likewise, $u_1 \vee \ldots \vee u_n$ is B-contained in $v_1 \vee \ldots \vee v_m$, denoted $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$ $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$ $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$ $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$ $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$ $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$ $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$, iff $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$, $\subseteq \llbracket v_1 \vee \ldots \vee v_m \rrbracket$.

Ex.24.2. Prove that:

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m \Rightarrow u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$.

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m \Rightarrow u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$. (3) Give an example of constructor paterns u, v, w such that $u \not\sqsubseteq_B v \vee w$, but $u \subseteq_B v \vee w$.

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \sqsubseteq_B v$, and (2) $u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m \Rightarrow u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m$ (3) Give an example of constructor paterns u, v, w such that $u \not\sqsubseteq_B v \vee w$, but $u \subseteq_B v \vee w$.

The relations $u \sqsubseteq_B v$ and $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ give us a decidable sufficient condition to prove the corresponding B-containments,

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \sqsubseteq_B v$, and (2) $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m \Rightarrow u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$. (3) Give an example of constructor paterns u, v, w such that $u \not\sqsubseteq_B v \vee w$, but $u \subseteq_B v \vee w$.

The relations $u \sqsubseteq_B v$ and $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ give us a decidable sufficient condition to prove the corresponding B-containments, $u \subseteq_B v$ and $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$.

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \sqsubseteq_B v$, and (2) $u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m \Rightarrow u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m$ (3) Give an example of constructor paterns u, v, w such that $u \not\sqsubseteq_B v \vee w$, but $u \subseteq_B v \vee w$.

The relations $u \sqsubseteq_B v$ and $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ give us a decidable sufficient condition to prove the corresponding B-containments, $u \subseteq_B v$ and $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$. However, by $Ex.24.2-(3)$, this is not always a necessary condition.

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \sqsubseteq_B v$, and (2) $u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m \Rightarrow u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m$ (3) Give an example of constructor paterns u, v, w such that $u \not\sqsubseteq_B v \vee w$, but $u \subseteq_B v \vee w$.

The relations $u \sqsubseteq_B v$ and $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ give us a decidable sufficient condition to prove the corresponding B-containments, $u \subseteq_B v$ and $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$. However, by $Ex.24.2-(3)$, this is not always a necessary condition. The following lemma (the proof is left to the reader), can help us prove a containment $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$ by means of \sqsubseteq_B .

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \sqsubseteq_B v$, and (2) $u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m \Rightarrow u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m$ (3) Give an example of constructor paterns u, v, w such that $u \not\sqsubseteq_B v \vee w$, but $u \subseteq_B v \vee w$.

The relations $u \sqsubseteq_B v$ and $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ give us a decidable sufficient condition to prove the corresponding B-containments, $u \subseteq_B v$ and $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$. However, by $Ex.24.2-(3)$, this is not always a necessary condition. The following lemma (the proof is left to the reader), can help us prove a containment $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$ by means of \sqsubseteq_B .

Pattern Decompostion Lemma. For $u \in T_{\Omega/B}(X)_{St}$, $x : s \in \text{vars}(u)$, and $\{v_1, \ldots, v_m\}$ a generator set for sort s,

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m \Rightarrow u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m$ (3) Give an example of constructor paterns u, v, w such that $u \not\sqsubseteq_B v \vee w$, but $u \subseteq_B v \vee w$.

The relations $u \sqsubseteq_B v$ and $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ give us a decidable sufficient condition to prove the corresponding B-containments, $u \subseteq_B v$ and $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$. However, by $Ex.24.2-(3)$, this is not always a necessary condition. The following lemma (the proof is left to the reader), can help us prove a containment $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$ by means of \sqsubseteq_B .

Pattern Decompostion Lemma. For $u \in T_{\Omega/B}(X)_{St}$, $x : s \in \text{vars}(u)$, and $\{v_1, \ldots, v_m\}$ a generator set for sort s, we have the set equality:

Ex.24.2. Prove that: (1) $u \sqsubseteq_B v \Rightarrow u \subseteq_B v$, and (2) $u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m \Rightarrow u_1 \vee \ldots \vee u_n \sqsubseteq_R v_1 \vee \ldots \vee v_m$ (3) Give an example of constructor paterns u, v, w such that $u \not\sqsubseteq_B v \vee w$, but $u \subseteq_B v \vee w$.

The relations $u \sqsubseteq_B v$ and $u_1 \vee \ldots \vee u_n \sqsubseteq_B v_1 \vee \ldots \vee v_m$ give us a decidable sufficient condition to prove the corresponding B-containments, $u \subseteq_B v$ and $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$. However, by $Ex.24.2-(3)$, this is not always a necessary condition. The following lemma (the proof is left to the reader), can help us prove a containment $u_1 \vee \ldots \vee u_n \subseteq_B v_1 \vee \ldots \vee v_m$ by means of \sqsubseteq_B .

Pattern Decompostion Lemma. For $u \in T_{\Omega/B}(X)_{St}$, $x : s \in \text{vars}(u)$, and $\{v_1, \ldots, v_m\}$ a generator set for sort s, we have the set equality: $[\![u]\!] = [\![u\{x : s \mapsto v_1\}]\!] \cup \ldots \cup [\![u\{x : s \mapsto v_m\}]\!]$.

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$).

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort *St*, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is,

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is, $\mathcal{R}^* [I] = \{ [v] \in \mathcal{T}_{\Omega / B, \mathsf{St}} \mid \exists [u] \in I \; \text{ s.t. } \; [u] \rightarrow^*_{R/B} [v] \}.$

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is, $\mathcal{R}^* [I] = \{ [v] \in \mathcal{T}_{\Omega / B, \mathsf{St}} \mid \exists [u] \in I \; \text{ s.t. } \; [u] \rightarrow^*_{R/B} [v] \}.$ Likewise, by definition,

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is, $\mathcal{R}^* [I] = \{ [v] \in \mathcal{T}_{\Omega / B, \mathsf{St}} \mid \exists [u] \in I \; \text{ s.t. } \; [u] \rightarrow^*_{R/B} [v] \}.$ Likewise, by definition, $\mathcal{R}[I] =_{def} \rightarrow_{R/B} [I]$,

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is, $\mathcal{R}^* [I] = \{ [v] \in \mathcal{T}_{\Omega / B, \mathsf{St}} \mid \exists [u] \in I \; \text{ s.t. } \; [u] \rightarrow^*_{R/B} [v] \}.$ Likewise, by definition, $\mathcal{R}[I]=_{def}\ {\rightarrow}_{R/B} [I],\ \mathcal{R}^n[I]=_{def}{\rightarrow}_{R/B}^n[I],$

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort *St*, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is, $\mathcal{R}^* [I] = \{ [v] \in \mathcal{T}_{\Omega / B, \mathsf{St}} \mid \exists [u] \in I \; \text{ s.t. } \; [u] \rightarrow^*_{R/B} [v] \}.$ Likewise, by definition, $\mathcal{R}[I]=_{def}\rightarrow_{R/B}[I],$ $\mathcal{R}^n[I]=_{def}\rightarrow_{R/B}^n[I],$ and $\mathcal{R}^{\leq n}[l] =_{def} l \cup \mathcal{R}[l] \cup \ldots \cup \mathcal{R}^{n}[l], n \in \mathbb{N}.$

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort *St*, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is, $\mathcal{R}^* [I] = \{ [v] \in \mathcal{T}_{\Omega / B, \mathsf{St}} \mid \exists [u] \in I \; \text{ s.t. } \; [u] \rightarrow^*_{R/B} [v] \}.$ Likewise, by definition, $\mathcal{R}[I]=_{def}\rightarrow_{R/B}[I],$ $\mathcal{R}^n[I]=_{def}\rightarrow_{R/B}^n[I],$ and $\mathcal{R}^{\leq n}[l] =_{def} l \cup \mathcal{R}[l] \cup \ldots \cup \mathcal{R}^{n}[l], n \in \mathbb{N}.$

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St , a set $Q \subseteq T_{\Omega/B,St}$ is called \mathcal{R} -transition-closed iff $\mathcal{R}[Q] \subseteq Q$.

KORKARA REPASA DE VOQO

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort *St*, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is, $\mathcal{R}^* [I] = \{ [v] \in \mathcal{T}_{\Omega / B, \mathsf{St}} \mid \exists [u] \in I \; \text{ s.t. } \; [u] \rightarrow^*_{R/B} [v] \}.$ Likewise, by definition, $\mathcal{R}[I]=_{def}\rightarrow_{R/B}[I],$ $\mathcal{R}^n[I]=_{def}\rightarrow_{R/B}^n[I],$ and $\mathcal{R}^{\leq n}[l] =_{def} l \cup \mathcal{R}[l] \cup \ldots \cup \mathcal{R}^{n}[l], n \in \mathbb{N}.$

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, a set $Q \subseteq T_{\Omega/B,St}$ is called \mathcal{R} -transition-closed iff $\mathcal{R}[Q] \subseteq Q$. Also, $Q \subseteq T_{\Omega/B,St}$ is called an inductive invariant from initial states $I \subseteq T_{\Omega/B,St}$ iff

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort *St*, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is, $\mathcal{R}^* [I] = \{ [v] \in \mathcal{T}_{\Omega / B, \mathsf{St}} \mid \exists [u] \in I \; \text{ s.t. } \; [u] \rightarrow^*_{R/B} [v] \}.$ Likewise, by definition, $\mathcal{R}[I]=_{def}\rightarrow_{R/B}[I],$ $\mathcal{R}^n[I]=_{def}\rightarrow_{R/B}^n[I],$ and $\mathcal{R}^{\leq n}[l] =_{def} l \cup \mathcal{R}[l] \cup \ldots \cup \mathcal{R}^{n}[l], n \in \mathbb{N}.$

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, a set $Q \subseteq T_{Q/B, S_t}$ is called \mathcal{R} -transition-closed iff $\mathcal{R}[Q] \subseteq Q$. Also, $Q \subseteq T_{\Omega/B,St}$ is called an inductive invariant from initial states $I\subseteq \mathcal{T}_{\Omega / \mathcal{B}, \mathcal{S}t}$ iff (i) Q is an invariant from I , i.e., $\mathcal{R}^{*}[I]\subseteq Q$, and

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort *St*, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is, $\mathcal{R}^* [I] = \{ [v] \in \mathcal{T}_{\Omega / B, \mathsf{St}} \mid \exists [u] \in I \; \text{ s.t. } \; [u] \rightarrow^*_{R/B} [v] \}.$ Likewise, by definition, $\mathcal{R}[I]=_{def}\rightarrow_{R/B}[I],$ $\mathcal{R}^n[I]=_{def}\rightarrow_{R/B}^n[I],$ and $\mathcal{R}^{\leq n}[l] =_{def} l \cup \mathcal{R}[l] \cup \ldots \cup \mathcal{R}^{n}[l], n \in \mathbb{N}.$

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, a set $Q \subseteq T_{Q/B, S_t}$ is called \mathcal{R} -transition-closed iff $\mathcal{R}[Q] \subseteq Q$. Also, $Q \subseteq T_{\Omega/B,St}$ is called an inductive invariant from initial states $I\subseteq \mathcal{T}_{\Omega / \mathcal{B}, \mathcal{S}t}$ iff (i) Q is an invariant from I , i.e., $\mathcal{R}^{*}[I]\subseteq Q$, and (ii) Q is R -transition-closed.

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort *St*, the set $\mathcal{R}^* [l]$ of $\mathcal{R}\text{-reachable states}$ from a set $I \subseteq \mathcal{T}_{\Omega/B,St}$ of initial states is, by definition, the set $\rightarrow^*_{R/B}[I]$ (recall $STACS$). That is, $\mathcal{R}^* [I] = \{ [v] \in \mathcal{T}_{\Omega / B, \mathsf{St}} \mid \exists [u] \in I \; \text{ s.t. } \; [u] \rightarrow^*_{R/B} [v] \}.$ Likewise, by definition, $\mathcal{R}[I]=_{def}\rightarrow_{R/B}[I],$ $\mathcal{R}^n[I]=_{def}\rightarrow_{R/B}^n[I],$ and $\mathcal{R}^{\leq n}[l] =_{def} l \cup \mathcal{R}[l] \cup \ldots \cup \mathcal{R}^{n}[l], n \in \mathbb{N}.$

Definition. For $\mathcal{R} = (\Omega, B, R)$ topmost with state sort St, a set $Q \subseteq T_{Q/B, S_t}$ is called \mathcal{R} -transition-closed iff $\mathcal{R}[Q] \subseteq Q$. Also, $Q \subseteq T_{\Omega/B,St}$ is called an inductive invariant from initial states $I\subseteq \mathcal{T}_{\Omega / \mathcal{B}, \mathcal{S}t}$ iff (i) Q is an invariant from I , i.e., $\mathcal{R}^{*}[I]\subseteq Q$, and (ii) Q is R -transition-closed.

Ex.24.1: Prove that: (1) Q is \mathcal{R} -transition-closed iff $\mathcal{R}^*[Q] = Q$, and (2) the smallest invariant from a set of initial states $I \subseteq T_{\Omega/B,St}$, namely, $\mathcal{R}^*[I]$, is inductive.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures).

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\rightsquigarrow_{R/B}$ to $\rightsquigarrow_{R/E\cup B}$.
Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\rightsquigarrow_{R/B}$ to $\rightsquigarrow_{R/E\cup B}$.

KORKARYKERKE PORCH

The initial state is a possitive pattern formula of the form, $u_1 \vee \ldots \vee u_n$.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\rightsquigarrow_{R/B}$ to $\rightsquigarrow_{R/E\cup B}$.

KORKARYKERKE PORCH

The initial state is a possitive pattern formula of the form, $u_1 \vee \ldots \vee u_n$. The goal state is a pattern w.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\rightsquigarrow_{R/B}$ to $\rightsquigarrow_{R/E\cup B}$.

The initial state is a possitive pattern formula of the form, u_1 ∨... ∨ u_n . The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that

KORKARYKERKE PORCH

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\rightsquigarrow_{R/B}$ to $\rightsquigarrow_{R/E\cup B}$.

The initial state is a possitive pattern formula of the form, u_1 ∨... ∨ u_n . The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that $\mathcal{R}^{\le d}[\![u_1 \vee \ldots \vee u_n]\!] = [\![P_d]\!]$.

KORKARA REPASA DA VOCA

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\rightsquigarrow_{R/B}$ to $\rightsquigarrow_{R/E\cup B}$.

The initial state is a possitive pattern formula of the form, u_1 ∨... ∨ u_n . The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that $\mathcal{R}^{\le d}[\![u_1 \vee \ldots \vee u_n]\!] = [\![P_d]\!]$.
The algorithm (coarching for one solution) terminates if a smallest The algorithm (searching for one solution) terminates if a smallest d is reached s.t. either:

KORKARYKERKE PORCH

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\rightsquigarrow_{R/B}$ to $\rightsquigarrow_{R/E\cup B}$.

The initial state is a possitive pattern formula of the form, u_1 ∨... ∨ u_n . The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that $\mathcal{R}^{\le d}[\![u_1 \vee \ldots \vee u_n]\!] = [\![P_d]\!]$.
The algorithm (coarching for one solution) terminates if a smallest The algorithm (searching for one solution) terminates if a smallest d is reached s.t. either: (i) $F_d \wedge w \neq \perp$ (a decidable property: see Appendix 1), i.e., a solution is found, or

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\rightsquigarrow_{R/B}$ to $\rightsquigarrow_{R/E\cup B}$.

The initial state is a possitive pattern formula of the form, u_1 ∨... ∨ u_n . The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that $\mathcal{R}^{\le d}[\![u_1 \vee \ldots \vee u_n]\!] = [\![P_d]\!]$.
The algorithm (coarching for one solution) terminates if a smallest The algorithm (searching for one solution) terminates if a smallest d is reached s.t. either: (i) $F_d \wedge w \neq \perp$ (a decidable property: see Appendix 1), i.e., a solution is found, or (ii) $F_d = \perp$, i.e., no solution exists, proving that $[\neg w]$ is an invariant from
 $[\![u_1 \vee \ldots \vee u_n]\!]$. $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$.

Folding narrowing search is a symbolic model checking algorithm to verify invariants of infinite-state systems. It applies to topmost rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$ with $E \cup B$ enjoying the finite variant property (FVP) (more on this in future lectures). Here we focus on $\mathcal{R} = (\Omega, B, R)$ topmost. The search algorithm is the same, just generalizing $\rightsquigarrow_{R/B}$ to $\rightsquigarrow_{R/E\cup B}$.

The initial state is a possitive pattern formula of the form, u_1 ∨... ∨ u_n . The goal state is a pattern w. For each depth $d \in \mathbb{N}$ the algorithm iteratively computes positive pattern formulas P_d and F_d , with $F_d \sqsubseteq_B P_d$ and such that $\mathcal{R}^{\le d}[\![u_1 \vee \ldots \vee u_n]\!] = [\![P_d]\!]$.
The algorithm (coarching for one solution) terminates if a smallest The algorithm (searching for one solution) terminates if a smallest d is reached s.t. either: (i) $F_d \wedge w \neq \perp$ (a decidable property: see Appendix 1), i.e., a solution is found, or (ii) $F_d = \perp$, i.e., no solution exists, proving that $\llbracket\neg w\rrbracket$ is an invariant from Iu₁ V . . . V u_nI. Otherwise, the search loops [for](#page-78-0)[ev](#page-80-0)[er](#page-67-0)s > < E > < E > E > > SQQ

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d .

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

$$
\bullet \ \ P_0=F_0=u_1\vee \ldots \vee u_n.
$$

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

$$
\bullet \ \ P_0=F_0=u_1\vee \ldots \vee u_n.
$$

•
$$
P_{d+1} = P_d \vee F_{d+1}
$$
, where

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

$$
\bullet \ \ P_0=F_0=u_1\vee \ldots \vee u_n.
$$

•
$$
P_{d+1} = P_d \vee F_{d+1}
$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

$$
\bullet \ \ P_0=F_0=u_1\vee \ldots \vee u_n.
$$

•
$$
P_{d+1} = P_d \vee F_{d+1}
$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$
F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \sim_{R/B} w \land w \not\sqsubseteq_B P_d \}.
$$

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

$$
\bullet \ \ P_0=F_0=u_1\vee \ldots \vee u_n.
$$

•
$$
P_{d+1} = P_d \vee F_{d+1}
$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$
F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \sim_{R/B} w \land w \not\sqsubseteq_B P_d \}.
$$

 $\mathbf{E} = \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E}$

where the notation \bigvee generalizes the pattern disjunction operation ∨ to any finite set of patterns,

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

$$
\bullet \ \ P_0=F_0=u_1\vee \ldots \vee u_n.
$$

•
$$
P_{d+1} = P_d \vee F_{d+1}
$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$
F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \sim_{R/B} w \land w \not\sqsubseteq_B P_d \}.
$$

KORKARA REPASA DA VOCA

where the notation \bigvee generalizes the pattern disjunction operation \vee to any finite set of patterns, e.g., $\bigvee \{ \mathsf{v}_1, \ldots, \mathsf{v}_m \} = \mathsf{v}_1 \vee \ldots \vee \mathsf{v}_m.$

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

$$
\bullet \ \ P_0=F_0=u_1\vee \ldots \vee u_n.
$$

•
$$
P_{d+1} = P_d \vee F_{d+1}
$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$
F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \sim_{R/B} w \land w \not\sqsubseteq_B P_d \}.
$$

where the notation \bigvee generalizes the pattern disjunction operation \vee to any finite set of patterns, e.g., $\bigvee \{ \mathsf{v}_1, \ldots, \mathsf{v}_m \} = \mathsf{v}_1 \vee \ldots \vee \mathsf{v}_m.$ That is, F_{d+1} excludes all w such that $v_i \sim_{R/B} w$ and $w \sqsubseteq_B P_d$,

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

$$
\bullet \ \ P_0=F_0=u_1\vee \ldots \vee u_n.
$$

•
$$
P_{d+1} = P_d \vee F_{d+1}
$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$
F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \sim_{R/B} w \land w \not\sqsubseteq_B P_d \}.
$$

KORKARA REPASA DA VOCA

where the notation \bigvee generalizes the pattern disjunction operation \vee to any finite set of patterns, e.g., $\bigvee \{ \mathsf{v}_1, \ldots, \mathsf{v}_m \} = \mathsf{v}_1 \vee \ldots \vee \mathsf{v}_m.$ That is, F_{d+1} excludes all w such that $v_i \sim_{R/B} w$ and $w \sqsubseteq_B P_d$, i.e., those w that "fold" into P_d .

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

$$
\bullet \ \ P_0=F_0=u_1\vee \ldots \vee u_n.
$$

•
$$
P_{d+1} = P_d \vee F_{d+1}
$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$
F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \sim_{R/B} w \land w \not\sqsubseteq_B P_d \}.
$$

where the notation \bigvee generalizes the pattern disjunction operation \vee to any finite set of patterns, e.g., $\bigvee \{ \mathsf{v}_1, \ldots, \mathsf{v}_m \} = \mathsf{v}_1 \vee \ldots \vee \mathsf{v}_m.$ That is, F_{d+1} excludes all w such that $v_i \sim_{R/B} w$ and $w \sqsubseteq_B P_d$, i.e., those w that "fold" into P_d . Call F_d the frontier of P_d , $d \in \mathbb{N}$.

The positive pattern formulas $P_d(u_1 \vee \ldots \vee u_n)$ and $F_d(u_1 \vee \ldots \vee u_n)$ associated to a set of initial states $\llbracket u_1 \vee \ldots \vee u_n \rrbracket$ are abbreviated to P_d and F_d . They are computed inductively for increasing depth $d \in \mathbb{N}$ as follows:

$$
\bullet \ \ P_0=F_0=u_1\vee \ldots \vee u_n.
$$

•
$$
P_{d+1} = P_d \vee F_{d+1}
$$
, where for $F_d = v_1 \vee \ldots \vee v_m$,

$$
F_{d+1} = \bigvee \{ w \mid \exists i, \ 1 \leq i \leq m, \ s.t., v_i \sim_{R/B} w \land w \not\sqsubseteq_B P_d \}.
$$

where the notation \bigvee generalizes the pattern disjunction operation \vee to any finite set of patterns, e.g., $\bigvee \{ \mathsf{v}_1, \ldots, \mathsf{v}_m \} = \mathsf{v}_1 \vee \ldots \vee \mathsf{v}_m.$ That is, F_{d+1} excludes all w such that $v_i \sim_{R/B} w$ and $w \sqsubseteq_B P_d$, i.e., those w that "fold" into P_d . Call F_d the frontier of P_d , $d \in \mathbb{N}$. The algorithm terminates for the smallest d (if any) s.t. either $F_d \wedge v \neq \perp$ for goal state v, or $F_d = \perp$. $\mathbf{E} = \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{B} \mathbf{A} + \mathbf{A} \mathbf{B}$

The Set-Theoretic Meaning of Narrowing

The Set-Theoretic Meaning of Folding Narrowing

For $F_d = v_1 \vee v_2 \vee v_3$, then $F_{d+1} = w_1 \vee w_2 \vee w_4$. w_3 folded into v_3 .

 QQ

Completeness of Folding Narrowing

Completeness Theorem of Folding Narrowing. Let (Ω, B, R) be a topmost rewrite theory with state sort St, and $u_1 \vee \ldots \vee u_n$ and inititial state. For each depth $d \in \mathbb{N}$, $[\![P_d]\!] = \mathcal{R}^{\le d}[\![u_1 \vee \ldots \vee u_n]\!]$.

If it exists, let d be the smallest depth such that $F_{d+1} = \bot$. Then, $P_{d+1} = P_d \vee F_{d+1} = P_d \vee \perp$, which implies $[P_d] = [P_{d+1}]$. I.e., $\mathcal{R}^{\le d}[\![u_1\vee\ldots\vee u_n]\!] = [\![P_d]\!] = [\![P_{d+1}]\!] = \mathcal{R}^{\le d+1}[\![u_1\vee\ldots\vee u_n]\!] = \mathcal{R}^{\le d}[\![u_1\vee\ldots\vee u_n]\!]$ $\mathcal{R}[\mathcal{R}^{\le d}[\![u_1 \vee \ldots \vee u_n]\!]] \cup \mathcal{R}^{\le d}[\![u_1 \vee \ldots \vee u_n]\!]$, so that $[\![P_d]\!]$ is
transition closed. Therefore, by Ex 24.1 we have $[\![P_x]\!] = \mathcal{R}^*$ transition-closed. Therefore, by **Ex.24.1** we have $[P_d] = \mathcal{R}^* [P_d]$.
But then $[P_d] = \mathcal{R}^* [u, \lambda] \longrightarrow \lambda u$. If follows from the inclusions: But then $[\![P_d]\!] = \mathcal{R}^*[\![u_1 \vee \ldots \vee u_n]\!]$ follows from the inclusions:

$$
\mathcal{R}^*[\![u_1 \vee \ldots \vee u_n]\!] \subseteq \mathcal{R}^*[\![P_d]\!] = [\![P_d]\!] \subseteq \mathcal{R}^*[\![u_1 \vee \ldots \vee u_n]\!].
$$

That is, we get a finite, symbolic descrition of all reachable states $\mathcal{R}^\ast\llbracket u_1\vee\ldots\vee u_n\rrbracket$ as the pattern disjunction P_d .

Four Methods to Symbolically Verify Invariants

For $\mathcal{R} = (\Omega, B, R)$ a topmost rewrite theory with state sort St, $u_1 ∨ ... ∨ u_n$ an inititial state, and $Q ⊆ T_{\Omega/B, St}$, the following four methods can verify (†) $\mathbb{C}_{\mathcal{R}}$, $\llbracket u_1 \vee \ldots \vee u_n \rrbracket \models_{S_4} \Box Q$.

A. If Q is specifiable as $Q = \llbracket n \rrbracket$ for n a negative pattern formula different from \top (if $n = \top$, (†) holds trivially). W.L.O.G. we may assume $n = ncnf(n) = \neg v_1 \wedge ... \wedge \neg v_m$.

Method 1. (†) holds if $\mathbb{C}_{\mathcal{R}}$, $\llbracket u_1 \vee \ldots \vee u_n \rrbracket \not\models_{S_4} \diamond \llbracket v_1 \vee \ldots \vee v_m \rrbracket$. A sufficient condition to automatically verify (\dagger) is that the m commands {fold} vu–narrow $u_1 \vee \ldots \vee u_n$ =>* v_j , $1 \leq j \leq m$ return: No solution.

If this succeeds, Maude can retun the positive pattern disjunction P_d such that $[[P_d]] = \mathcal{R}^*[[u_1 \vee \ldots \vee u_n]]$, which enables **Method 2**.

Four Methods to Symbolically Verify Invariants (II)

Method 2. If we have found $P_d = w_1 \vee \ldots \vee w_k$ s.t. $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$, then (†) holds for any Q of the form,
 $Q = \llbracket -u_1 \wedge \ldots \wedge u_n \rrbracket$ iff $\forall 1 \leq i \leq k$ $\forall 1 \leq i \leq m$, $u_1 \wedge u_2 = 1$ $Q = \lceil \neg v_1 \wedge \ldots \wedge \neg v_m \rceil$ iff $\forall 1 \leq i \leq k$, $\forall 1 \leq j \leq m$, $w_i \wedge v_j = \bot$, i.e., (see Appendix 1), iff $Unif_B(w_i = v_i) = \emptyset$ for all i, j (we assume vars $(w_i) = \text{vars}(v_i)$). Note that no search is needed!

B. If Q is specifiable as $Q = ||p||$ for p a positive pattern formula different from \perp (if $p = \perp$, (†) cannot hold). W.L.O.G. we may assume $p = dn f(p) = v_1 \vee \ldots \vee v_m$.

Method 3. If we have found $P_d = w_1 \vee \ldots \vee w_k$ s.t. $\llbracket P_d \rrbracket = \mathcal{R}^* \llbracket u_1 \vee \ldots \vee u_n \rrbracket$, then (†) holds for any Q of the form,
 $Q = \llbracket u_1 \vee \ldots \vee u_n \rrbracket$ iff $u_2 \vee \ldots \vee u_n \subset \llbracket u_n \vee \ldots \vee u_n \rrbracket$ decide $Q = \llbracket v_1 \vee \ldots \vee v_m \rrbracket$ iff $w_1 \vee \ldots \vee w_k \subseteq_B v_1 \vee \ldots \vee v_m$. A decidable sufficient condition is $w_1 \vee \ldots \vee w_k \sqsubseteq_B v_1 \vee \ldots \vee v_m$.

KORK EXTERNE PROVIDE

Four Methods to Symbolically Verify Invariants (III)

Method 4. (†) holds for $Q = ||v_1 \vee ... \vee v_m||$ if: (1) Q is transitition-closed; this holds iff a @fold vu-narrow $v_1 \vee \ldots \vee v_m$ \Rightarrow 1 \$ command, where \$ is a fresh (and therefore unreachable) constant added to \mathcal{R} , generates an $F_1(v_1 \vee \ldots \vee v_m)$ s.t. either $F_1(v_1 \vee \ldots \vee v_m) = \perp$, or $F_1(v_1 \vee \ldots \vee v_m) \subset_B v_1 \vee \ldots \vee v_m$. (2) $u_1 ∨ ... ∨ u_n ⊂_R v_1 ∨ ... ∨ v_m$. A decidable sufficient condition is $u_1 \vee \ldots \vee u_n \sqsubset_B v_1 \vee \ldots \vee v_m$.

 $\qquad \qquad \exists \quad \mathbf{1} \in \mathbb{R} \rightarrow \mathbf{1} \in \mathbb{R} \rightarrow \mathbf{1} \oplus \mathbf{1} \math$