Program Verification: Lecture 24

Program Verification: Lecture 24

José Meseguer

University of lllinois at Urbana-Champaign

1/15

Program Verification: Lecture 24

Constructor Pattern Predicates

Recall from Lecture 18 that for an executable rewrite theory

R = (X, E U B, R) with constructor subsignature Q and state sort
St, an expressive set 1 of state predicate names to specify modal
properties of Cg is the set of constrained constructor patterns ul¢,

2/15

Program Verification: Lecture 24

Constructor Pattern Predicates

2/15

Recall from Lecture 18 that for an executable rewrite theory

R = (X, E U B, R) with constructor subsignature Q and state sort
St, an expressive set 1 of state predicate names to specify modal
properties of Cg is the set of constrained constructor patterns ul¢,
with u a constructor Q-term of sort St, vars(u) = X,

Program Verification: Lecture 24

Constructor Pattern Predicates

2/15

Recall from Lecture 18 that for an executable rewrite theory

R = (X, E U B, R) with constructor subsignature Q and state sort
St, an expressive set 1 of state predicate names to specify modal
properties of Cg is the set of constrained constructor patterns ul¢,
with u a constructor Q-term of sort St, vars(u) = X, and ¢(X) a
conjunction of X-equalities.

Program Verification: Lecture 24

2/15

Constructor Pattern Predicates

Recall from Lecture 18 that for an executable rewrite theory

R = (X, E U B, R) with constructor subsignature Q and state sort
St, an expressive set 1 of state predicate names to specify modal
properties of Cg is the set of constrained constructor patterns ul¢,
with u a constructor Q-term of sort St, vars(u) = X, and ¢(X) a
conjunction of Y-equalities. The meaning function ¢, has the

form: ¢, @ (ulp) = [u | ¢],

Program Verification: Lecture 24

2/15

Constructor Pattern Predicates

Recall from Lecture 18 that for an executable rewrite theory

R = (X, E U B, R) with constructor subsignature Q and state sort
St, an expressive set 1 of state predicate names to specify modal
properties of Cg is the set of constrained constructor patterns ul¢,
with u a constructor Q-term of sort St, vars(u) = X, and ¢(X) a
conjunction of Y-equalities. The meaning function _c,, has the
form: ¢, : (ulp) — [u | ¢], with Ju | ¢] the computable subset:

Program Verification: Lecture 24

Constructor Pattern Predicates

2/15

Recall from Lecture 18 that for an executable rewrite theory

R = (X, E U B, R) with constructor subsignature Q and state sort
St, an expressive set 1 of state predicate names to specify modal
properties of Cg is the set of constrained constructor patterns ul¢,
with u a constructor Q-term of sort St, vars(u) = X, and ¢(X) a
conjunction of Y-equalities. The meaning function _c,, has the
form: ¢, : (ulp) — [u | ¢], with Ju | ¢] the computable subset:

[ule]={[v] € C):/E,B,St |Ipst.v=gup N EUBF pp} C C):/E,B,St

Program Verification: Lecture 24

Constructor Pattern Predicates

2/15

Recall from Lecture 18 that for an executable rewrite theory

R = (X, E U B, R) with constructor subsignature Q and state sort
St, an expressive set 1 of state predicate names to specify modal
properties of Cg is the set of constrained constructor patterns ul¢,
with u a constructor Q-term of sort St, vars(u) = X, and ¢(X) a
conjunction of Y-equalities. The meaning function _c,, has the
form: ¢, : (ulp) — [u | ¢], with Ju | ¢] the computable subset:

[ule]={[v] € C):/E,B,St |Ipst.v=gup N EUBF pp} C C):/E,B,St

For narrowing search we first focus on topmost rewrite theories of
the form R = (Q, B, R) and choose as our [1 the set of constructor
patterns u € Tq(X)st.

Program Verification: Lecture 24

Constructor Pattern Predicates

2/15

Recall from Lecture 18 that for an executable rewrite theory

R = (X, E U B, R) with constructor subsignature Q and state sort
St, an expressive set 1 of state predicate names to specify modal
properties of Cg is the set of constrained constructor patterns ul¢,
with u a constructor Q-term of sort St, vars(u) = X, and ¢(X) a
conjunction of Y-equalities. The meaning function _c,, has the
form: ¢, : (ulp) — [u | ¢], with Ju | ¢] the computable subset:

[ule]={[v] € C):/E,B,St |Ipst.v=gup N EUBF pp} C C):/E,B,St

For narrowing search we first focus on topmost rewrite theories of
the form R = (Q, B, R) and choose as our [1 the set of constructor
patterns u € Tq(X)s:. A constructor pattern u coincides with the
constrained constructor pattern u|T.

Program Verification: Lecture 24

Constructor Pattern Predicates

2/15

Recall from Lecture 18 that for an executable rewrite theory

R = (X, E U B, R) with constructor subsignature Q and state sort
St, an expressive set 1 of state predicate names to specify modal
properties of Cg is the set of constrained constructor patterns ul¢,
with u a constructor Q-term of sort St, vars(u) = X, and ¢(X) a
conjunction of Y-equalities. The meaning function _c,, has the
form: ¢, : (ulp) — [u | ¢], with Ju | ¢] the computable subset:

[ule]={[v] € C):/E,B,St |Ipst.v=gup N EUBF pp} C C):/E,B,St

For narrowing search we first focus on topmost rewrite theories of
the form R = (Q, B, R) and choose as our [1 the set of constructor
patterns u € Tq(X)s:. A constructor pattern u coincides with the
constrained constructor pattern u|T. The meaning function is:

Program Verification: Lecture 24

Constructor Pattern Predicates

2/15

Recall from Lecture 18 that for an executable rewrite theory

R = (X, E U B, R) with constructor subsignature Q and state sort
St, an expressive set 1 of state predicate names to specify modal
properties of Cg is the set of constrained constructor patterns ul¢,
with u a constructor Q-term of sort St, vars(u) = X, and ¢(X) a
conjunction of Y-equalities. The meaning function _c,, has the
form: ¢, : (ulp) — [u | ¢], with Ju | ¢] the computable subset:

[ule]={[v] € C):/E,B,St |Ipst.v=gup N EUBF pp} C C):/E,B,St

For narrowing search we first focus on topmost rewrite theories of
the form R = (Q, B, R) and choose as our [1 the set of constructor
patterns u € Tq(X)s:. A constructor pattern u coincides with the
constrained constructor pattern u|T. The meaning function is:

Cp U [[u]] =def {[V] = TQ/B,St | Elp s.t.v=p UP} - TQ/B,St'

Program Verification: Lecture 24

Positive Constructor Pattern Formulas

Positive constructor pattern formulas PCPattF have the grammar:

ul pvp [pap | L

3/15

Program Verification: Lecture 24

Positive Constructor Pattern Formulas

Positive constructor pattern formulas PCPattF have the grammar:
ul pvp [pap | L

where u € To(X)s: and p, p’ € PCPattF.

3/15

Program Verification: Lecture 24

3/15

Positive Constructor Pattern Formulas

Positive constructor pattern formulas PCPattF have the grammar:
ul pvp [pap | L

where u € To(X)s: and p, p’ € PCPattF. l.e., PCPattF is the
closure under conjunctions and disjunctions of Tq(X)s;.

Program Verification: Lecture 24

Positive Constructor Pattern Formulas

Positive constructor pattern formulas PCPattF have the grammar:
ul pvp [pap | L

where u € To(X)s: and p, p’ € PCPattF. l.e., PCPattF is the
closure under conjunctions and disjunctions of Tq(X)s;. V and A
are assumed associative-commutative (AC), because U and N are
AC and (recall from Lecture 18), [pV p'] = [p] U [P'].

3/15

Program Verification: Lecture 24

Positive Constructor Pattern Formulas

Positive constructor pattern formulas PCPattF have the grammar:
ul pvp [pap | L

where u € To(X)s: and p, p’ € PCPattF. l.e., PCPattF is the
closure under conjunctions and disjunctions of Tq(X)s;. V and A
are assumed associative-commutative (AC), because U and N are
AC and (recall from Lecture 18), [pV p'] = [p] U ['], and

[p AP =[Pl NPT

3/15

Program Verification: Lecture 24

Positive Constructor Pattern Formulas

Positive constructor pattern formulas PCPattF have the grammar:
ul pvp [pap | L

where u € To(X)s: and p, p’ € PCPattF. l.e., PCPattF is the
closure under conjunctions and disjunctions of Tq(X)s;. V and A
are assumed associative-commutative (AC), because U and N are
AC and (recall from Lecture 18), [pV p'] = [p] U ['], and

Ip AP =[p]N[p] Of course, [L] =0,

3/15

Program Verification: Lecture 24

Positive Constructor Pattern Formulas

Positive constructor pattern formulas PCPattF have the grammar:
ul pvp [pap | L

where u € To(X)s: and p, p’ € PCPattF. l.e., PCPattF is the
closure under conjunctions and disjunctions of Tq(X)s;. V and A
are assumed associative-commutative (AC), because U and N are
AC and (recall from Lecture 18), [pV p'] = [p] U ['], and

[p AP =[Pl N[p']. Of course, [L] =0, and [x:St] = Tq/p,s:-

3/15

Program Verification: Lecture 24

Positive Constructor Pattern Formulas

Positive constructor pattern formulas PCPattF have the grammar:
ul pvp [pap | L

where u € To(X)s: and p, p’ € PCPattF. l.e., PCPattF is the
closure under conjunctions and disjunctions of Tq(X)s;. V and A
are assumed associative-commutative (AC), because U and N are
AC and (recall from Lecture 18), [pV p'] = [p] U ['], and

[p AP =[Pl N[p']. Of course, [L] =0, and [x:St] = Tq/p,s:-
The proof of the following theorem can be found in Appendix 1:

3/15

Program Verification: Lecture 24

Positive Constructor Pattern Formulas

Positive constructor pattern formulas PCPattF have the grammar:
ul pvp [pap | L

where u € To(X)s: and p, p’ € PCPattF. l.e., PCPattF is the
closure under conjunctions and disjunctions of Tq(X)s;. V and A
are assumed associative-commutative (AC), because U and N are
AC and (recall from Lecture 18), [pV p'] = [p] U ['], and

[p AP =[Pl N[p']. Of course, [L] =0, and [x:St] = Tq/p,s:-
The proof of the following theorem can be found in Appendix 1:

DNF Theorem. Any p € PCPattF has a disjunctive normal form,
dnf(p), which is either L or has the form u; V...V u,, with
ui € Ta(X)st, 1 <i<n,n>1,and is such that [p] = [dnf(p)].

3/15

Program Verification: Lecture 24

Negative Constructor Pattern Formulas

Negative constructor pattern formulas NCPattF have the grammar:

—u | nvn |nAnd | T

4/15

Program Verification: Lecture 24

Negative Constructor Pattern Formulas

Negative constructor pattern formulas NCPattF have the grammar:
—u | nvn |nAnd | T

where u € Tq(X)s: and n,n" € PCPattF.

4/15

Program Verification: Lecture 24

Negative Constructor Pattern Formulas

4/15

Negative constructor pattern formulas NCPattF have the grammar:
—u | nvn |nAnd | T

where u € Tq(X)s: and n,n" € PCPattF. l.e., NCPattF is the
closure under conjunctions and disjunctions of negations —u of
patterns u € Tq(X)s:.

Program Verification: Lecture 24

Negative Constructor Pattern Formulas

Negative constructor pattern formulas NCPattF have the grammar:
—u | nvn |nAnd | T

where u € Tq(X)s: and n,n" € PCPattF. l.e., NCPattF is the
closure under conjunctions and disjunctions of negations —u of
patterns u € Tq(X)s:. As before, V and A are assumed
associative-commutative (AC), because U and N are AC.

4/15

Program Verification: Lecture 24

Negative Constructor Pattern Formulas

4/15

Negative constructor pattern formulas NCPattF have the grammar:
—u | nvn |nAnd | T

where u € Tq(X)s: and n,n" € PCPattF. l.e., NCPattF is the
closure under conjunctions and disjunctions of negations —u of
patterns u € Tq(X)s:. As before, V and A are assumed
associative-commutative (AC), because U and N are AC. Recall
form Lecture 18 that [-u] = Tq/p s \ [u]-

Program Verification: Lecture 24

Negative Constructor Pattern Formulas

4/15

Negative constructor pattern formulas NCPattF have the grammar:
—u | nvn |nAnd | T

where u € Tq(X)s: and n,n" € PCPattF. l.e., NCPattF is the
closure under conjunctions and disjunctions of negations —u of
patterns u € Tq(X)s:. As before, V and A are assumed
associative-commutative (AC), because U and N are AC. Recall
form Lecture 18 that [-u] = Tq,gs: \ [u]. Also, [T] = Tq/s,s:-

Program Verification: Lecture 24

Negative Constructor Pattern Formulas

4/15

Negative constructor pattern formulas NCPattF have the grammar:
—u | nvn |nAnd | T

where u € Tq(X)s: and n,n" € PCPattF. l.e., NCPattF is the
closure under conjunctions and disjunctions of negations —u of
patterns u € Tq(X)s:. As before, V and A are assumed
associative-commutative (AC), because U and N are AC. Recall
form Lecture 18 that [-u] = Tq,gs: \ [u]. Also, [T] = Tq/s,s:-
The proof of the following theorem can be found in Appendix 1:

Program Verification: Lecture 24

Negative Constructor Pattern Formulas

Negative constructor pattern formulas NCPattF have the grammar:
—u | nvn |nAnd | T

where u € Tq(X)s: and n,n" € PCPattF. l.e., NCPattF is the
closure under conjunctions and disjunctions of negations —u of
patterns u € Tq(X)s:. As before, V and A are assumed
associative-commutative (AC), because U and N are AC. Recall
form Lecture 18 that [-u] = Tq,gs: \ [u]. Also, [T] = Tq/s,s:-
The proof of the following theorem can be found in Appendix 1:

NCNF Theorem. Any n € NCPattF has a negative conjunctive
normal form, ncnf(n), with ncnf(n) either T or of the form
—up Ao A, Ui € Ta(X)se, 1 <i<n, n>1, and s.t.

[n] = [nenf(n)].

4/15

Program Verification: Lecture 24

Negative Constructor Pattern Formulas

4/15

Negative constructor pattern formulas NCPattF have the grammar:
—u | nvn |nAnd | T

where u € Tq(X)s: and n,n" € PCPattF. l.e., NCPattF is the
closure under conjunctions and disjunctions of negations —u of
patterns u € Tq(X)s:. As before, V and A are assumed
associative-commutative (AC), because U and N are AC. Recall
form Lecture 18 that [-u] = Tq,gs: \ [u]. Also, [T] = Tq/s,s:-
The proof of the following theorem can be found in Appendix 1:

NCNF Theorem. Any n € NCPattF has a negative conjunctive
normal form, ncnf(n), with ncnf(n) either T or of the form

—up Ao A, Ui € Ta(X)se, 1 <i<n, n>1, and s.t.

[n] = [nenf(n)]. Note that

[mur Ao A=) = Tagse\ [ur VooV ug].

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v

5/15

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms

B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v),

5/15

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v,

5/15

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that u =g va.

5/15

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

5/15

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command).

Program Verification: Lecture 24

5/15

Pattern Formula Containment and Subsumption

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

5/15

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

By definition, given positive pattern formulas v; V...V u, and
vivV...Vvp, nom>1,

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

5/15

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

By definition, given positive pattern formulas v; V...V u, and
vivV...Vvmnm>1 () LCgu V...V u, and

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

5/15

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

By definition, given positive pattern formulas v; V...V u, and
vivV...Vvmnm>1 (i) LCgu V...V up, and (ii)
ur V...V upis B-subsumed by vi V...V vy,

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

5/15

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

By definition, given positive pattern formulas v; V...V u, and
vivV...Vvmnm>1 (i) LCgu V...V up, and (ii)

up V...V upis B-subsumed by vi V...V v, denoted
mV...Vu,EgwviV...Vvy,

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

5/15

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

By definition, given positive pattern formulas v; V...V u, and
vivV...Vvmnm>1 (i) LCgu V...V up, and (ii)

up V...V upis B-subsumed by vi V...V v, denoted
nV..Vu,CEg vy V...V vy, iff

Program Verification: Lecture 24

5/15

Pattern Formula Containment and Subsumption

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

By definition, given positive pattern formulas v; V...V u, and
vivV...Vvmnm>1 (i) LCgu V...V up, and (ii)

up V...V upis B-subsumed by v; V...V v, denoted
nmV..Vu,Cgwvi V...V, iff Vi, 1<i<n 3j,1<j<n,st,
ui Ep vj.

Program Verification: Lecture 24

5/15

Pattern Formula Containment and Subsumption

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

By definition, given positive pattern formulas v; V...V u, and
vivV...Vvmnm>1 (i) LCgu V...V up, and (ii)

up V...V upis B-subsumed by v; V...V v, denoted
nmV..Vu,Cgwvi V...V, iff Vi, 1<i<n 3j,1<j<n,st,
uj Cg v;. Obviously, for B any combination of A and/or C and/or
U axioms, the relation u1 V...V u, Eg vi V...V v, is decidable.

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

5/15

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

By definition, given positive pattern formulas v; V...V u, and
vivV...Vvmnm>1 (i) LCgu V...V up, and (ii)

up V...V upis B-subsumed by v; V...V v, denoted
nmV..Vu,Cgwvi V...V, iff Vi, 1<i<n 3j,1<j<n,st,
uj Cg v;. Obviously, for B any combination of A and/or C and/or
U axioms, the relation u1 V...V u, Eg vi V...V v, is decidable.
Likewise, u1 V...V u, is B-contained in v{ V...V vy,

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

5/15

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

By definition, given positive pattern formulas v; V...V u, and
vivV...Vvmnm>1 (i) LCgu V...V up, and (ii)

up V...V upis B-subsumed by v; V...V v, denoted
nmV..Vu,Cgwvi V...V, iff Vi, 1<i<n 3j,1<j<n,st,
uj Cg v;. Obviously, for B any combination of A and/or C and/or
U axioms, the relation u1 V...V u, Eg vi V...V v, is decidable.
Likewise, u1 V...V u, is B-contained in vy V...V v, denoted
nV..Vu, CgwviV...Vvny,

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

5/15

Definition. Given constructor patterns u, v € Tq(X)s;: and axioms
B, we say that u is B-subsumed by v (or, equivalently, the v is
B-more general than v), denoted u Cg v, iff there exists a
substitution « such that v =g va. Note that for B any
combination of A and/or C and/or U axioms, the relation u Cg v
is decidable (e.g., by Maude's match command). Likewise, we say
that v is B-contained in v, denoted u Cg v, iff Ju] C [v].

By definition, given positive pattern formulas v; V...V u, and
vivV...Vvmnm>1 (i) LCgu V...V up, and (ii)

up V...V upis B-subsumed by v; V...V v, denoted
nmV..Vu,Cgwvi V...V, iff Vi, 1<i<n 3j,1<j<n,st,
uj Cg v;. Obviously, for B any combination of A and/or C and/or
U axioms, the relation u1 V...V u, Eg vi V...V v, is decidable.
Likewise, u1 V...V u, is B-contained in vy V...V v, denoted
nV.. . NVu, CgviV.oioVy iff [unV...Vus] Clvi V...V vy].

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that:

6/15

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that: (1) uCg v = uCpg v, and

6/15

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that: (1) uCg v = u Cpg v, and (2)
nV..Vu,CgwyV...Vvpy=wun V...Vu, Cgvi V...V V.

6/15

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that: (1) uCg v = u Cpg v, and (2)
nV..Vu,CgwyV...Vvpy=wun V...Vu, Cgvi V...V V.
(3) Give an example of constructor paterns u, v, w such that
ulZgvVw,butuCgvVw.

6/15

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that: (1) uCg v = u Cpg v, and (2)
nV..Vu,CgwyV...Vvpy=wun V...Vu, Cgvi V...V V.
(3) Give an example of constructor paterns u, v, w such that
ulZgvVw,butuCgvVw.

The relationsuCgvand 3 V...Vu, Eg vy V...V vy, give us a
decidable sufficient condition to prove the corresponding
B-containments,

6/15

Program Verification: Lecture 24

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that: (1) uCg v = u Cpg v, and (2)
nV..Vu,CgwyV...Vvpy=wun V...Vu, Cgvi V...V V.
(3) Give an example of constructor paterns u, v, w such that
ulZgvVw,butuCgvVw.

The relationsuCgvand 3 V...Vu, Eg vy V...V vy, give us a
decidable sufficient condition to prove the corresponding
B-containments, uCgvand 1 V...Vu,Cgwvi V...V vy

6/15

Program Verification: Lecture 24

6/15

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that: (1) uCg v = u Cpg v, and (2)
nV..Vu,CgwyV...Vvpy=wun V...Vu, Cgvi V...V V.
(3) Give an example of constructor paterns u, v, w such that
ulZgvVw,butuCgvVw.

The relationsuCgvand 3 V...Vu, Eg vy V...V vy, give us a
decidable sufficient condition to prove the corresponding
B-containments, uCgvand 1 V...Vu,Cgwvi V...V vy
However, by Ex.24.2-(3), this is not always a necessary condition.

Program Verification: Lecture 24

6/15

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that: (1) uCg v = u Cpg v, and (2)
nV..Vu,CgwyV...Vvpy=wun V...Vu, Cgvi V...V V.
(3) Give an example of constructor paterns u, v, w such that
ulZgvVw,butuCgvVw.

The relationsuCgvand 3 V...Vu, Eg vy V...V vy, give us a
decidable sufficient condition to prove the corresponding
B-containments, uCgvand 1 V...Vu,Cgwvi V...V vy
However, by Ex.24.2-(3), this is not always a necessary condition.
The following lemma (the proof is left to the reader), can help us
prove a containment u1 V...Vu, Cg v V...V vy, by means of Cg.

Program Verification: Lecture 24

6/15

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that: (1) uCg v = u Cpg v, and (2)
nV..Vu,CgwyV...Vvpy=wun V...Vu, Cgvi V...V V.
(3) Give an example of constructor paterns u, v, w such that
ulZgvVw,butuCgvVw.

The relationsuCgvand 3 V...Vu, Eg vy V...V vy, give us a
decidable sufficient condition to prove the corresponding
B-containments, uCgvand 1 V...Vu,Cgwvi V...V vy
However, by Ex.24.2-(3), this is not always a necessary condition.
The following lemma (the proof is left to the reader), can help us
prove a containment u1 V...Vu, Cg v V...V vy, by means of Cg.

Pattern Decompostion Lemma. For u € Tq/g(X)st,
x:s € vars(u), and {vi,..., vy} a generator set for sort s,

Program Verification: Lecture 24

6/15

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that: (1) uCg v = u Cpg v, and (2)
nV..Vu,CgwyV...Vvpy=wun V...Vu, Cgvi V...V V.
(3) Give an example of constructor paterns u, v, w such that
ulZgvVw,butuCgvVw.

The relationsuCgvand 3 V...Vu, Eg vy V...V vy, give us a
decidable sufficient condition to prove the corresponding
B-containments, uCgvand 1 V...Vu,Cgwvi V...V vy
However, by Ex.24.2-(3), this is not always a necessary condition.
The following lemma (the proof is left to the reader), can help us
prove a containment u1 V...Vu, Cg v V...V vy, by means of Cg.

Pattern Decompostion Lemma. For u € Tq/g(X)st,
x:s € vars(u), and {vi,..., vy} a generator set for sort s, we have
the set equality:

Program Verification: Lecture 24

6/15

Pattern Formula Containment and Subsumption (I1)

Ex.24.2. Prove that: (1) uCg v = u Cpg v, and (2)
nV..Vu,CgwyV...Vvpy=wun V...Vu, Cgvi V...V V.
(3) Give an example of constructor paterns u, v, w such that
ulZgvVw,butuCgvVw.

The relationsuCgvand 3 V...Vu, Eg vy V...V vy, give us a
decidable sufficient condition to prove the corresponding
B-containments, uCgvand 1 V...Vu,Cgwvi V...V vy
However, by Ex.24.2-(3), this is not always a necessary condition.
The following lemma (the proof is left to the reader), can help us
prove a containment u1 V...Vu, Cg v V...V vy, by means of Cg.

Pattern Decompostion Lemma. For u € Tq/g(X)st,
x:s € vars(u), and {vi,..., vy} a generator set for sort s, we have
the set equality: [u] = [u{x:s—> w}]U...Uu{x:s = vy}]. O

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states

is, by definition, the set —>’;?/B[l] (recall STACS).

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states

is, by definition, the set —>’;?/B[l] (recall STACS). That is,

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states
is, by definition, the set —>’;?/B[l] (recall STACS). That is,

R ={lvl€ Taspse | Aul €1 st [u] =g [V]}-

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states
is, by definition, the set —>’;?/B[l] (recall STACS). That is,

R[] ={lvl € Ta/g,s: | Ju]l € s.t. [u] —k/B [v]}. Likewise, by
definition,

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states
is, by definition, the set —>’;?/B[l] (recall STACS). That is,

R[] ={lvl € Ta/g,s: | Ju]l € s.t. [u] —k/B [v]}. Likewise, by
definition, R[/] =der—r/8 /],

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states
is, by definition, the set —>’;?/B[l] (recall STACS). That is,

R[] ={lvl € Ta/g,s: | Ju]l € s.t. [u] —k/B [v]}. Likewise, by
definition, R[/] =def —"R/B [/], Rn[/] :def—>E/B [/],

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states
is, by definition, the set —>’;?/B[l] (recall STACS). That is,

R[] ={lvl € Ta/g,s: | Ju]l € s.t. [u] —k/B [v]}. Likewise, by
definition, R[I] =def —7R/B [/], Rn[l] :def—>%/5 [/], and

RSH[/] =der | UR[IJU...UR"[l], n € N.

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states
is, by definition, the set —>’;?/B[l] (recall STACS). That is,

R[] ={lvl € Ta/g,s: | Ju]l € s.t. [u] —k/B [v]}. Likewise, by
definition, R[I] =def —7R/B [/], Rn[l] :def—>%/5 [/], and

RSH[/] =der | UR[IJU...UR"[l], n € N.

Definition. For R = (€2, B, R) topmost with state sort St, a set
QC Tqa/B,st is called R-transition-closed iff R[Q] C Q.

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states
is, by definition, the set —>’;?/B[l] (recall STACS). That is,

R[] ={lvl € Ta/g,s: | Ju]l € s.t. [u] —k/B [v]}. Likewise, by
definition, R[I] =def —7R/B [/], Rn[l] :def—>%/5 [/], and

RSH[/] =der | UR[IJU...UR"[l], n € N.

Definition. For R = (€2, B, R) topmost with state sort St, a set

QC Tqa/B,st is called R-transition-closed iff R[Q] C Q. Also,

Q C Tq/B,s: is called an inductive invariant from initial states
I C Tq/p,s: iff

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states
is, by definition, the set —>’;?/B[l] (recall STACS). That is,

R[] ={lvl € Ta/g,s: | Ju]l € s.t. [u] —k/B [v]}. Likewise, by
definition, R[/] =dger—r/g[/], R"[/] =def ~R/B [/], and

RSH[/] =der | UR[IJU...UR"[l], n € N.

Definition. For R = (€2, B, R) topmost with state sort St, a set
QC Tqa/B,st is called R-transition-closed iff R[Q] C Q. Also,

Q C Tq/B,s: is called an inductive invariant from initial states
I C Tqp,s: iff (i) Q is an invariant from /, i.e., R*[/] C Q, and

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states
is, by definition, the set —>’;?/B[l] (recall STACS). That is,

R[] ={lvl € Ta/g,s: | Ju]l € s.t. [u] —k/B [v]}. Likewise, by
definition, R[I] =def —7R/B [/], Rn[l] :def—>E/B [/], and

RSH[/] =der | UR[IJU...UR"[l], n € N.

Definition. For R = (€2, B, R) topmost with state sort St, a set
QC Tqa/B,st is called R-transition-closed iff R[Q] C Q. Also,
Q C Tq/B,s: is called an inductive invariant from initial states

I C Tqp,s: iff (i) Q is an invariant from /, i.e., R*[/] C Q, and
(i) Q is R-transition-closed.

7/15

Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (2, B, R) topmost with state sort St, the set
R*[I] of R-reachable states from a set | C Tq,p s, of initial states
is, by definition, the set —>’;?/B[l] (recall STACS). That is,

R[] ={lvl € Ta/g,s: | Ju]l € s.t. [u] —k/B [v]}. Likewise, by
definition, R[I] =def —7R/B [/], Rn[l] :def—>E/B [/], and

RSH[/] =der | UR[IJU...UR"[l], n € N.

Definition. For R = (€2, B, R) topmost with state sort St, a set
QC Tqa/B,st is called R-transition-closed iff R[Q] C Q. Also,
Q C Tq/B,s: is called an inductive invariant from initial states

I C Tqp,s: iff (i) Q is an invariant from /, i.e., R*[/] C Q, and
(i) Q is R-transition-closed.

Ex.24.1: Prove that: (1) Q is R-transition-closed iff R*[Q] = Q,
and (2) the smallest invariant from a set of initial states

I C Tq/,s:, namely, R*[/], is inductive.
7/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems.

8/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures).

8/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm

to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (2, B, R) topmost.

8/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (2, B, R) topmost. The search algorithm is the
same, just generalizing ~g/g to ~gr/EUB.

8/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (2, B, R) topmost. The search algorithm is the
same, just generalizing ~g/g to ~gr/EUB.

The initial state is a possitive pattern formula of the form,
u V...V u,.

8/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (2, B, R) topmost. The search algorithm is the
same, just generalizing ~g/g to ~gr/EUB.

The initial state is a possitive pattern formula of the form,
uy V...V u,. The goal state is a pattern w.

8/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (2, B, R) topmost. The search algorithm is the
same, just generalizing ~g/g to ~gr/EUB.

The initial state is a possitive pattern formula of the form,

uy V...V u,. The goal state is a pattern w. For each depth d € N
the algorithm iteratively computes positive pattern formulas Py
and Fy, with Fy Cg P4 and such that

8/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (2, B, R) topmost. The search algorithm is the
same, just generalizing ~g/g to ~gr/EUB.

The initial state is a possitive pattern formula of the form,

uy V...V u,. The goal state is a pattern w. For each depth d € N
the algorithm iteratively computes positive pattern formulas Py
and Fy, with Fy Cg P4 and such that R<9[uy V... V u,] = [P4].

8/15

Program Verification: Lecture 24

8/15

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (2, B, R) topmost. The search algorithm is the
same, just generalizing ~g/g to ~gr/EUB.

The initial state is a possitive pattern formula of the form,

uy V...V u,. The goal state is a pattern w. For each depth d € N
the algorithm iteratively computes positive pattern formulas Py
and Fy, with Fy Cg P4 and such that R<9[uy V... V u,] = [P4].
The algorithm (searching for one solution) terminates if a smallest
d is reached s.t. either:

Program Verification: Lecture 24

8/15

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (2, B, R) topmost. The search algorithm is the
same, just generalizing ~g/g to ~gr/EUB.

The initial state is a possitive pattern formula of the form,

uy V...V u,. The goal state is a pattern w. For each depth d € N
the algorithm iteratively computes positive pattern formulas Py
and Fy, with Fy Cg P4 and such that R<9[uy V... V u,] = [P4].
The algorithm (searching for one solution) terminates if a smallest
d is reached s.t. either: (i) Fy A w # L (a decidable property: see
Appendix 1), i.e., a solution is found, or

Program Verification: Lecture 24

8/15

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (2, B, R) topmost. The search algorithm is the
same, just generalizing ~g/g to ~gr/EUB.

The initial state is a possitive pattern formula of the form,

uy V...V u,. The goal state is a pattern w. For each depth d € N
the algorithm iteratively computes positive pattern formulas Py
and Fy, with Fy Cg P4 and such that R<9[uy V... V u,] = [P4].
The algorithm (searching for one solution) terminates if a smallest
d is reached s.t. either: (i) Fy A w # L (a decidable property: see
Appendix 1), i.e., a solution is found, or (ii) F; = L, i.e., no
solution exists, proving that [-w] is an invariant from
[[ul\/...\/u,,]].

Program Verification: Lecture 24

8/15

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems. It applies to topmost
rewrite theories R = (X, E U B, R) with E U B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (2, B, R) topmost. The search algorithm is the
same, just generalizing ~g/g to ~gr/EUB.

The initial state is a possitive pattern formula of the form,

uy V...V u,. The goal state is a pattern w. For each depth d € N
the algorithm iteratively computes positive pattern formulas Py
and Fy, with Fy Cg P4 and such that R<9[uy V... V u,] = [P4].
The algorithm (searching for one solution) terminates if a smallest
d is reached s.t. either: (i) Fy A w # L (a decidable property: see
Appendix 1), i.e., a solution is found, or (ii) F; = L, i.e., no
solution exists, proving that [-w] is an invariant from

[ui V...V up]. Otherwise, the search loops forever:

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm (11)

The positive pattern formulas Py(u; V...V u,) and

Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]
are abbreviated to Py and Fy.

9/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm (11)

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]

are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

9/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm (11)

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]

are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Po=Fp=uwt1V...Vu,.

9/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm (11)

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]

are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Po=Fp=uwt1V...Vu,.
® Pyir1=PygV Fgi1, where

9/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm (11)

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]

are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Po=Fp=uwt1V...Vu,.
@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

9/15

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm (11)

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]

are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Po=Fp=uwt1V...Vu,.
@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

Fai1 = \/ {w|3i, 1<i<m, s.t.,y ~R/BW AW g P4}

9/15

Program Verification: Lecture 24

9/15

The Folding Narrowing Search Algorithm (11)

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]
are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Ph=Fp=wu1 V...Vu,.

@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

Fai1 = \/ {w|3i, 1<i<m, s.t.,y ~R/BW AW g P4}

where the notation \/ generalizes the pattern disjunction operation
V to any finite set of patterns,

Program Verification: Lecture 24

9/15

The Folding Narrowing Search Algorithm (11)

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]
are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Ph=Fp=wu1 V...Vu,.

@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

Fai1 = \/ {w|3i, 1<i<m, s.t.,y ~R/BW AW g P4}

where the notation \/ generalizes the pattern disjunction operation
V to any finite set of patterns, e.g., \/{vi,...,Vm} =v1 V...V vp.

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm (11)

9/15

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]
are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Ph=Fp=wu1 V...Vu,.

@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

Fai1 = \/ {w|3i, 1<i<m, s.t.,y ~R/BW AW g P4}

where the notation \/ generalizes the pattern disjunction operation
V to any finite set of patterns, e.g., \/{vi,...,Vm} =v1 V...V vp.
That is, Fy11 excludes all w such that v; ~R/B W and w Cpg Py,

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm (11)

9/15

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]
are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Ph=Fp=wu1 V...Vu,.

@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

Fai1 = \/ {w|3i, 1<i<m, s.t.,y ~R/BW AW g P4}

where the notation \/ generalizes the pattern disjunction operation
V to any finite set of patterns, e.g., \/{v1,...,Vm} =wvi V...V Vp.
That is, Fy11 excludes all w such that v; ~R/B W and w Cpg Py,
i.e., those w that “fold” into Py.

Program Verification: Lecture 24

The Folding Narrowing Search Algorithm (11)

9/15

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]
are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Ph=Fp=wu1 V...Vu,.

@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

Fai1 = \/ {w|3i, 1<i<m, s.t.,y ~R/BW AW g P4}

where the notation \/ generalizes the pattern disjunction operation
V to any finite set of patterns, e.g., \/{v1,...,Vm} =wvi V...V Vp.
That is, Fy11 excludes all w such that v; ~R/B W and w Cpg Py,

i.e., those w that “fold” into Py4. Call Fy the frontier of P4, d € N.

Program Verification: Lecture 24

9/15

The Folding Narrowing Search Algorithm (11)

The positive pattern formulas Py(u; V...V u,) and
Fq(u1 V...V up) associated to a set of initial states [u; V...V u,]
are abbreviated to Py and F,. They are computed inductively for
increasing depth d € N as follows:

e Ph=Fp=wu1 V...Vu,.

@ Pyyr1=PygV Fgi1, where for Fg =vi V...V vy,

Fai1 = \/ {w|3i, 1<i<m, s.t.,y ~R/BW AW g P4}

where the notation \/ generalizes the pattern disjunction operation
V to any finite set of patterns, e.g., \/{v1,...,Vm} =wvi V...V Vp.
That is, Fy11 excludes all w such that v; ~R/B W and w Cpg Py,
i.e., those w that “fold” into Py4. Call Fy the frontier of P4, d € N.
The algorithm terminates for the smallest d (if any) s.t. either

Fa N v # L for goal state v, or Fg = L.

Program Verification: Lecture 24

The Set-Theoretic Meaning of Narrowing

Program Verification: Lecture 24

The Set-Theoretic Meaning of Folding Narrowing

For Fg = vi Vva Vs, then Fyi1 = wi V wy V wa. ws folded into vs.

Program Verification: Lecture 24

12/15

Completeness of Folding Narrowing

Completeness Theorem of Folding Narrowing. Let (2, B, R) be
a topmost rewrite theory with state sort St, and v V...V u, an
inititial state. For each depth d € N, [Py] = RS [uyr V... V u,].

If it exists, let d be the smallest depth such that Fy;1 = L. Then,
Pgy1 = P4V Fgy1 = Pg VvV L, which implies [[Pd]] = [[Pd+1]]. le.,
Rgd[[ul V...V U,,]] = IIPd]] = [[Pd+1]] = Rgd—HHUl V...V Lln]] =
R[REuy V...V up]JURSur V... V u,], so that [Py] is
transition-closed. Therefore, by Ex.24.1 we have [Py = R*[P4].
But then [Py] = R*[u1 V ...V u,] follows from the inclusions:

R[ur V...V up] € R*[Pa] = [Pa] € R*[ur V ... V).

That is, we get a finite, symbolic descrition of all reachable states
R*[ur V...V up] as the pattern disjunction Py.

Program Verification: Lecture 24

Four Methods to Symbolically Verify Invariants

13/15

For R = (Q, B, R) a topmost rewrite theory with state sort St,
up V...V u, an inititial state, and Q C Tq/g s, the following four
methods can verify () Cg,[u1 V...V u,] Ess OQ.

A. If Q is specifiable as Q = [n] for n a negative pattern formula
different from T (if n =T, (f) holds trivially). W.L.O.G. we may
assume n = ncnf(n) = —vi A ... A =W

Method 1. (1) holds if Cr,[u1 V...V u,] FEsao[vi V...V vy]. A
sufficient condition to automatically verify (1) is that the m
commands {fold} vu-narrow uyV...Vu, =>%v;, 1 <j<m
return: No solution.

If this succeeds, Maude can retun the positive pattern disjunction
Py such that [Py] = R*[u1 V ...V up], which enables Method 2.

Program Verification: Lecture 24

14/15

Four Methods to Symbolically Verify Invariants (II)

Method 2. If we have found Py = wy V...V wg s.t.

[Pa] = R*[u1 V ...V up], then (1) holds for any Q of the form,
Q=[viAN.. A vp] iffVI<i<kVI<j<m wAv=1,
i.e., (see Appendix 1), iff Unif g(w; = v;) = () for all i, (we
assume vars(w;) = vars(v;)). Note that no search is needed!

B. If Q is specifiable as Q = [p] for p a positive pattern formula
different from L (if p = L, (}) cannot hold). W.L.O.G. we may
assume p = dnf(p) =vi V...V vp.

Method 3. If we have found Py = wy V...V wg s.t.

[Pa]l = R*[u1 V ...V up], then (t) holds for any Q of the form,
Q=[wviV...Vvp]iff wiV...Vwg CgviV...V vy Adecidable
sufficient conditionis wi V...Vw CEg vi V...V V.

Program Verification: Lecture 24

Four Methods to Symbolically Verify Invariants (llI)

Method 4. (}) holds for Q = [[vi V...V vu] if: (1) Qis
transitition-closed; this holds iff a @fold vu-narrow vi V...V vy,
=>1 $ command, where $ is a fresh (and therefore unreachable)
constant added to R, generates an F1(v1 V...V vpy,) s.t. either
F1(V1\/...\/Vm):J_, or Fl(vl\/...\/vm) CegwviV...Vvny. (2)
nV...Vu, Cgwvi V...V vy A decidable sufficient condition is
nmV..Vu,CpviV...Vvy.

15/15

