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Program Verification: Lecture 24

Constructor Pattern Predicates

Recall from Lecture 18 that for an executable rewrite theory
R = (Σ,E ∪ B,R) with constructor subsignature Ω and state sort
St, an expressive set Π of state predicate names to specify modal
properties of CR is the set of constrained constructor patterns u|φ,

with u a constructor Ω-term of sort St, vars(u) = x⃗ , and φ(x⃗) a
conjunction of Σ-equalities. The meaning function CR has the
form: CR : (u|φ) 7→ Ju | φK, with Ju | φK the computable subset:

Ju | φK = {[v ] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

For narrowing search we first focus on topmost rewrite theories of
the form R = (Ω,B,R) and choose as our Π the set of constructor
patterns u ∈ TΩ(X )St . A constructor pattern u coincides with the
constrained constructor pattern u|⊤. The meaning function is:

CR : u 7→ JuK =def {[v ] ∈ TΩ/B,St | ∃ρ s.t. v =B uρ} ⊆ TΩ/B,St .
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Positive Constructor Pattern Formulas

Positive constructor pattern formulas PCPattF have the grammar:

u | p ∨ p′ | p ∧ p′ | ⊥

where u ∈ TΩ(X )St and p, p′ ∈ PCPattF . I.e., PCPattF is the
closure under conjunctions and disjunctions of TΩ(X )St . ∨ and ∧
are assumed associative-commutative (AC), because ∪ and ∩ are
AC and (recall from Lecture 18), Jp ∨ p′K = JpK ∪ Jp′K, and
Jp ∧ p′K = JpK ∩ Jp′K. Of course, J⊥K = ∅, and Jx :StK = TΩ/B,St .
The proof of the following theorem can be found in Appendix 1:

DNF Theorem. Any p ∈ PCPattF has a disjunctive normal form,
dnf (p), which is either ⊥ or has the form u1 ∨ . . . ∨ un, with
ui ∈ TΩ(X )St , 1 ≤ i ≤ n, n ≥ 1, and is such that JpK = Jdnf (p)K.
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Negative Constructor Pattern Formulas

Negative constructor pattern formulas NCPattF have the grammar:

¬u | n ∨ n′ | n ∧ n′ | ⊤

where u ∈ TΩ(X )St and n, n′ ∈ PCPattF . I.e., NCPattF is the
closure under conjunctions and disjunctions of negations ¬u of
patterns u ∈ TΩ(X )St . As before, ∨ and ∧ are assumed
associative-commutative (AC), because ∪ and ∩ are AC. Recall
form Lecture 18 that J¬uK = TΩ/B,St \ JuK. Also, J⊤K = TΩ/B,St .
The proof of the following theorem can be found in Appendix 1:

NCNF Theorem. Any n ∈ NCPattF has a negative conjunctive
normal form, ncnf (n), with ncnf (n) either ⊤ or of the form
¬u1 ∧ . . . ∧ ¬un, ui ∈ TΩ(X )St , 1 ≤ i ≤ n, n ≥ 1, and s.t.
JnK = Jncnf (n)K. Note that
J¬u1 ∧ . . . ∧ ¬unK = TΩ/B,St \ Ju1 ∨ . . . ∨ unK.
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patterns u ∈ TΩ(X )St . As before, ∨ and ∧ are assumed
associative-commutative (AC), because ∪ and ∩ are AC. Recall
form Lecture 18 that J¬uK = TΩ/B,St \ JuK. Also, J⊤K = TΩ/B,St .

The proof of the following theorem can be found in Appendix 1:

NCNF Theorem. Any n ∈ NCPattF has a negative conjunctive
normal form, ncnf (n), with ncnf (n) either ⊤ or of the form
¬u1 ∧ . . . ∧ ¬un, ui ∈ TΩ(X )St , 1 ≤ i ≤ n, n ≥ 1, and s.t.
JnK = Jncnf (n)K. Note that
J¬u1 ∧ . . . ∧ ¬unK = TΩ/B,St \ Ju1 ∨ . . . ∨ unK.
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Program Verification: Lecture 24

Pattern Formula Containment and Subsumption

Definition. Given constructor patterns u, v ∈ TΩ(X )St and axioms
B, we say that u is B-subsumed by v

(or, equivalently, the v is
B-more general than v), denoted u ⊑B v , iff there exists a
substitution α such that u =B vα. Note that for B any
combination of A and/or C and/or U axioms, the relation u ⊑B v
is decidable (e.g., by Maude’s match command). Likewise, we say
that u is B-contained in v , denoted u ⊆B v , iff JuK ⊆ JvK.

By definition, given positive pattern formulas u1 ∨ . . . ∨ un and
v1 ∨ . . . ∨ vm, n,m ≥ 1, (i) ⊥ ⊑B u1 ∨ . . . ∨ un, and (ii)
u1 ∨ . . . ∨ un is B-subsumed by v1 ∨ . . . ∨ vm, denoted
u1 ∨ . . .∨ un ⊑B v1 ∨ . . .∨ vm, iff ∀i , 1 ≤ i ≤ n, ∃j , 1 ≤ j ≤ n, s.t.,
ui ⊑B vj . Obviously, for B any combination of A and/or C and/or
U axioms, the relation u1 ∨ . . . ∨ un ⊑B v1 ∨ . . . ∨ vm is decidable.
Likewise, u1 ∨ . . . ∨ un is B-contained in v1 ∨ . . . ∨ vm, denoted
u1 ∨ . . . ∨ un ⊆B v1 ∨ . . . ∨ vm, iff Ju1 ∨ . . . ∨ unK ⊆ Jv1 ∨ . . . ∨ vmK.
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combination of A and/or C and/or U axioms, the relation u ⊑B v
is decidable (e.g., by Maude’s match command). Likewise, we say
that u is B-contained in v , denoted u ⊆B v , iff JuK ⊆ JvK.

By definition, given positive pattern formulas u1 ∨ . . . ∨ un and
v1 ∨ . . . ∨ vm, n,m ≥ 1, (i) ⊥ ⊑B u1 ∨ . . . ∨ un, and (ii)
u1 ∨ . . . ∨ un is B-subsumed by v1 ∨ . . . ∨ vm, denoted
u1 ∨ . . .∨ un ⊑B v1 ∨ . . .∨ vm, iff ∀i , 1 ≤ i ≤ n, ∃j , 1 ≤ j ≤ n, s.t.,
ui ⊑B vj . Obviously, for B any combination of A and/or C and/or
U axioms, the relation u1 ∨ . . . ∨ un ⊑B v1 ∨ . . . ∨ vm is decidable.
Likewise, u1 ∨ . . . ∨ un is B-contained in v1 ∨ . . . ∨ vm, denoted
u1 ∨ . . . ∨ un ⊆B v1 ∨ . . . ∨ vm,

iff Ju1 ∨ . . . ∨ unK ⊆ Jv1 ∨ . . . ∨ vmK.
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Program Verification: Lecture 24

Pattern Formula Containment and Subsumption (II)

Ex.24.2. Prove that:

(1) u ⊑B v ⇒ u ⊆B v , and (2)
u1 ∨ . . . ∨ un ⊑B v1 ∨ . . . ∨ vm ⇒ u1 ∨ . . . ∨ un ⊆B v1 ∨ . . . ∨ vm.
(3) Give an example of constructor paterns u, v ,w such that
u ̸⊑B v ∨ w , but u ⊆B v ∨ w .

The relations u ⊑B v and u1 ∨ . . . ∨ un ⊑B v1 ∨ . . . ∨ vm give us a
decidable sufficient condition to prove the corresponding
B-containments, u ⊆B v and u1 ∨ . . . ∨ un ⊆B v1 ∨ . . . ∨ vm.
However, by Ex.24.2-(3), this is not always a necessary condition.
The following lemma (the proof is left to the reader), can help us
prove a containment u1∨ . . .∨un ⊆B v1∨ . . .∨ vm by means of ⊑B .

Pattern Decompostion Lemma. For u ∈ TΩ/B(X )St ,
x :s ∈ vars(u), and {v1, . . . , vm} a generator set for sort s, we have
the set equality: JuK = Ju{x :s 7→ v1}K ∪ . . . ∪ Ju{x :s 7→ vm}K. 2
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Program Verification: Lecture 24

Reachable, Transition-Closed, and Inductive Invariants

Definition. For R = (Ω,B,R) topmost with state sort St, the set
R∗[I ] of R-reachable states from a set I ⊆ TΩ/B,St of initial states
is, by definition, the set →∗

R/B [I ] (recall STACS).

That is,

R∗[I ] = {[v ] ∈ TΩ/B,St | ∃[u] ∈ I s.t. [u] →∗
R/B [v ]}. Likewise, by

definition, R[I ] =def→R/B [I ], Rn[I ] =def→n
R/B [I ], and

R≤n[I ] =def I ∪R[I ] ∪ . . . ∪Rn[I ], n ∈ N.

Definition. For R = (Ω,B,R) topmost with state sort St, a set
Q ⊆ TΩ/B,St is called R-transition-closed iff R[Q] ⊆ Q. Also,
Q ⊆ TΩ/B,St is called an inductive invariant from initial states
I ⊆ TΩ/B,St iff (i) Q is an invariant from I , i.e., R∗[I ] ⊆ Q, and
(ii) Q is R-transition-closed.

Ex.24.1: Prove that: (1) Q is R-transition-closed iff R∗[Q] = Q,
and (2) the smallest invariant from a set of initial states
I ⊆ TΩ/B,St , namely, R∗[I ], is inductive.
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Program Verification: Lecture 24

The Folding Narrowing Search Algorithm

Folding narrowing search is a symbolic model checking algorithm
to verify invariants of infinite-state systems.

It applies to topmost
rewrite theories R = (Σ,E ∪ B,R) with E ∪ B enjoying the finite
variant property (FVP) (more on this in future lectures). Here we
focus on R = (Ω,B,R) topmost. The search algorithm is the
same, just generalizing ;R/B to ;R/E∪B .

The initial state is a possitive pattern formula of the form,
u1 ∨ . . . ∨ un. The goal state is a pattern w . For each depth d ∈ N
the algorithm iteratively computes positive pattern formulas Pd

and Fd , with Fd ⊑B Pd and such that R≤dJu1 ∨ . . . ∨ unK = JPdK.
The algorithm (searching for one solution) terminates if a smallest
d is reached s.t. either: (i) Fd ∧ w ̸= ⊥ (a decidable property: see
Appendix 1), i.e., a solution is found, or (ii) Fd = ⊥, i.e., no
solution exists, proving that J¬wK is an invariant from
Ju1 ∨ . . . ∨ unK. Otherwise, the search loops forever.
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The Folding Narrowing Search Algorithm (II)

The positive pattern formulas Pd(u1 ∨ . . . ∨ un) and
Fd(u1 ∨ . . . ∨ un) associated to a set of initial states Ju1 ∨ . . . ∨ unK
are abbreviated to Pd and Fd .

They are computed inductively for
increasing depth d ∈ N as follows:

P0 = F0 = u1 ∨ . . . ∨ un.

Pd+1 = Pd ∨ Fd+1, where for Fd = v1 ∨ . . . ∨ vm,

Fd+1 =
∨

{w | ∃i , 1 ≤ i ≤ m, s.t., vi ;R/B w ∧ w ̸⊑B Pd}.

where the notation
∨

generalizes the pattern disjunction operation
∨ to any finite set of patterns, e.g.,

∨
{v1, . . . , vm} = v1 ∨ . . .∨ vm.

That is, Fd+1 excludes all w such that vi ;R/B w and w ⊑B Pd ,
i.e., those w that “fold” into Pd . Call Fd the frontier of Pd , d ∈ N.
The algorithm terminates for the smallest d (if any) s.t. either
Fd ∧ v ̸= ⊥ for goal state v , or Fd = ⊥.
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are abbreviated to Pd and Fd . They are computed inductively for
increasing depth d ∈ N as follows:

P0 = F0 = u1 ∨ . . . ∨ un.

Pd+1 = Pd ∨ Fd+1, where for Fd = v1 ∨ . . . ∨ vm,

Fd+1 =
∨

{w | ∃i , 1 ≤ i ≤ m, s.t., vi ;R/B w ∧ w ̸⊑B Pd}.

where the notation
∨

generalizes the pattern disjunction operation
∨ to any finite set of patterns, e.g.,

∨
{v1, . . . , vm} = v1 ∨ . . .∨ vm.

That is, Fd+1 excludes all w such that vi ;R/B w and w ⊑B Pd ,
i.e., those w that “fold” into Pd . Call Fd the frontier of Pd , d ∈ N.
The algorithm terminates for the smallest d (if any) s.t. either
Fd ∧ v ̸= ⊥ for goal state v , or Fd = ⊥.
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The Set-Theoretic Meaning of Narrowing
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The Set-Theoretic Meaning of Folding Narrowing

For Fd = v1 ∨ v2 ∨ v3, then Fd+1 = w1 ∨w2 ∨w4. w3 folded into v3.
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Completeness of Folding Narrowing

Completeness Theorem of Folding Narrowing. Let (Ω,B,R) be
a topmost rewrite theory with state sort St, and u1 ∨ . . . ∨ un an
inititial state. For each depth d ∈ N, JPdK = R≤dJu1 ∨ . . . ∨ unK.

If it exists, let d be the smallest depth such that Fd+1 = ⊥. Then,
Pd+1 = Pd ∨ Fd+1 = Pd ∨ ⊥, which implies JPdK = JPd+1K. I.e.,
R≤dJu1 ∨ . . . ∨ unK = JPdK = JPd+1K = R≤d+1Ju1 ∨ . . . ∨ unK =
R[R≤dJu1 ∨ . . . ∨ unK] ∪R≤dJu1 ∨ . . . ∨ unK, so that JPdK is
transition-closed. Therefore, by Ex.24.1 we have JPdK = R∗JPdK.
But then JPdK = R∗Ju1 ∨ . . . ∨ unK follows from the inclusions:

R∗Ju1 ∨ . . . ∨ unK ⊆ R∗JPdK = JPdK ⊆ R∗Ju1 ∨ . . . ∨ unK.

That is, we get a finite, symbolic descrition of all reachable states
R∗Ju1 ∨ . . . ∨ unK as the pattern disjunction Pd .
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Four Methods to Symbolically Verify Invariants

For R = (Ω,B,R) a topmost rewrite theory with state sort St,
u1 ∨ . . . ∨ un an inititial state, and Q ⊆ TΩ/B,St , the following four
methods can verify (†) CR, Ju1 ∨ . . . ∨ unK |=S4 2Q.

A. If Q is specifiable as Q = JnK for n a negative pattern formula
different from ⊤ (if n = ⊤, (†) holds trivially). W.L.O.G. we may
assume n = ncnf (n) = ¬v1 ∧ . . . ∧ ¬vm.

Method 1. (†) holds if CR, Ju1 ∨ . . .∨ unK ̸|=S4 ⋄Jv1 ∨ . . .∨ vmK. A
sufficient condition to automatically verify (†) is that the m
commands {fold} vu-narrow u1 ∨ . . . ∨ un =>* vj , 1 ≤ j ≤ m
return: No solution.

If this succeeds, Maude can retun the positive pattern disjunction
Pd such that JPdK = R∗Ju1 ∨ . . . ∨ unK, which enables Method 2.
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Four Methods to Symbolically Verify Invariants (II)

Method 2. If we have found Pd = w1 ∨ . . . ∨ wk s.t.
JPdK = R∗Ju1 ∨ . . . ∨ unK, then (†) holds for any Q of the form,
Q = J¬v1 ∧ . . . ∧ ¬vmK iff ∀1 ≤ i ≤ k , ∀1 ≤ j ≤ m, wi ∧ vj = ⊥,
i.e., (see Appendix 1), iff Unif B(wi = vj) = ∅ for all i , j (we
assume vars(wi ) = vars(vj)). Note that no search is needed!

B. If Q is specifiable as Q = JpK for p a positive pattern formula
different from ⊥ (if p = ⊥, (†) cannot hold). W.L.O.G. we may
assume p = dnf (p) = v1 ∨ . . . ∨ vm.

Method 3. If we have found Pd = w1 ∨ . . . ∨ wk s.t.
JPdK = R∗Ju1 ∨ . . . ∨ unK, then (†) holds for any Q of the form,
Q = Jv1 ∨ . . . ∨ vmK iff w1 ∨ . . . ∨wk ⊆B v1 ∨ . . . ∨ vm. A decidable
sufficient condition is w1 ∨ . . . ∨ wk ⊑B v1 ∨ . . . ∨ vm.
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Four Methods to Symbolically Verify Invariants (III)

Method 4. (†) holds for Q = Jv1 ∨ . . . ∨ vmK if: (1) Q is
transitition-closed; this holds iff a @fold vu-narrow v1 ∨ . . . ∨ vm
=>1 $ command, where $ is a fresh (and therefore unreachable)
constant added to R, generates an F1(v1 ∨ . . . ∨ vm) s.t. either
F1(v1 ∨ . . . ∨ vm) = ⊥, or F1(v1 ∨ . . . ∨ vm) ⊂B v1 ∨ . . . ∨ vm. (2)
u1 ∨ . . . ∨ un ⊂B v1 ∨ . . . ∨ vm. A decidable sufficient condition is
u1 ∨ . . . ∨ un <B v1 ∨ . . . ∨ vm.
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