Appendix 1 to Lecture 24

J. Meseguer

Before proving the DNF and NCNF theorems for positve (res. negative) pattern formulas, note that the sets $T_{\Omega}(X)_{St}$, PCPattF, and NCPattF are subsets of the set $T_{\Sigma_{BL}}(T_{\Omega}(X)_{St})$ of Boolean expressions with constants $T_{\Omega}(X)_{St}$ for the unsorted signature $\Sigma_{BL} = \{\vee, \wedge, \neg, \top, \bot\}.$ That is, they are subsets of the underlying set of the free Σ_{BL} -algebra $\mathbb{T}_{\Sigma_{BL}}(T_{\Omega}(X)_{St})$ when we regard the set of constants $T_{\Omega}(X)_{St}$ as the set of "variables" of such a free algebra. Note also that the powerset $\mathcal{P}(T_{\Omega/B,St})$ is a Σ_{BL} -algebra with \vee interpreted as \cup , \wedge interpreted as \cap , \neg interpreted as $\lambda U \in \mathcal{P}(T_{\Omega/B,St})$. $T_{\Omega/B,St}\setminus U$, \top interpreted $T_{\Omega/B,St}$, and \bot interpreted as \emptyset . Furthemore, $\mathcal{P}(T_{\Omega/B,St})$ is a *Boolean algebra*, i.e., $\mathcal{P}(T_{\Omega/B,St}) \models E_{BL}$, where E_{BL} are the equations axiomatizing Boolean algebras.

Therefore, by the Freeness Theorem, the assignment map $\llbracket _ \ \rbrack : T_{\Omega}(X)_{St} \to \mathcal{P}(T_{\Omega/B,St})$ defining the semantics of constructor patterns extends to a unique Σ_{BL} -homomorphism, also denoted $\llbracket _ \rrbracket$, of the form:

$$
[\![.]\!] : \mathbb{T}_{\Sigma_{BL}}(T_{\Omega}(X)_{St}) \to \mathcal{P}(T_{\Omega/B,St})
$$

It then follows immediately by the Completeness Theorem for equational Logic and $\mathcal{P}(T_{\Omega/B,St})$ being a Boolean algebra, that for any two Boolean expressions $q, q' \in T_{\Sigma_{BL}}(T_{\Omega}(X)_{St})$ we have the implication:

$$
E_{BL} \vdash q = q' \Rightarrow [q] = [q']].
$$

Therefore, for any $p, p' \in PCPattF$ and $n, n' \in NCPattF$ we have:

$$
E_{BL} \vdash p = p' \Rightarrow [p] = [p'] \quad and \quad E_{BL} \vdash n = n' \Rightarrow [n] = [n'].
$$

In particular, using the distributivity equation $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ in E_{BL} as a terminating rewrite rule modulo AC, any positive formula p is E_{BL} -equal to a formula p in disjunctive normal form, i.e., p' is either \bot , or u, or has the form ľ

$$
(\dagger) \quad p' = \bigvee_{i \in I} \bigwedge_{j \in J_i} u_j
$$

i.e., it is a disjunction of conjunctions of patterns.

The next observation is that for each positive pattern formula $p_1 = \bigwedge_{j \in J} u_j$ there is another The next observation is that for each positive pattern formula $p_1 = \bigwedge_{j \in J} u_j$ there is another
positive pattern fomula p'_1 with $[\![p_1]\!] = [\![p'_1]\!]$, and with p'_1 of the form $\bigvee_{k \in K} v_j$, where, by
convention when convention, when $K = \emptyset$, then $p'_1 = \bot$, and if K is a singleton set, then p'_1 is a single pattern. Why is this so?

First of all note also that the semantic function $\llbracket \cdot \rrbracket : T_{\Omega}(X)_{St} \to \mathcal{P}(T_{\Omega/B,St})$ enjoys the property that for any sort-preserving and bijective substitution $\alpha: X \to X$ (called a variable renaming) we trivially have the identity $\llbracket u \rrbracket = \llbracket u \alpha \rrbracket$. This means that for any conjunction $v_1 \wedge \ldots v_n$ W.L.O.G. we may assume that $vars(v_i) \cap vars(v_j) = \emptyset$, $1 \leq i < j \leq n$, since otherwise we can always rename the variables of each v_i by a variable renaming α_i so that $vars(v_i\alpha_i) \cap$ $vars(v_i\alpha_i) = \emptyset$ holds. Second, assuming the above variable disjointness, we have:

$$
(\ddagger) \quad [v_1 \wedge \ldots \wedge v_n] = \bigcup_{\alpha \in Unif_B(v_1 = v_2 \wedge \ldots \wedge v_1 = v_n)} [v_1 \alpha] = \bigcup_{\alpha \in Unif_B(v_1 = v_2 \wedge \ldots \wedge v_1 = v_n)} v_1 \alpha]
$$

That is, as claimed above, any conjunction of patterns is semantically equivalent to a disjunction of patterns. The above identities in fact hold because, by definition of $[\![.\!]$, $[\![v_1 \wedge \ldots \wedge v_n]\!] =$ $[\![v_1]\!] \cap \ldots \cap [\![v_n]\!]$. But $[w] \in [\![v_1]\!] \cap \ldots \cap [v_n]$ iff there are ground substitutions $\rho_1, \ldots \rho_n$ such that: (i) $[w] = [v_1 \rho_1]$, and (ii) $v_1 \rho_1 = B v_2 \rho_2 \wedge \ldots v_1 \rho_1 = B v_n \rho_n$, that is, iff $\rho_1 \oplus \ldots \oplus \rho_n$ is a B-unifier of the system of equations $v_1 = v_2 \wedge \ldots v_1 = v_n$. But this is the case iff there is a unifier $\alpha \in Unif_B(v_1 = v_2 \land ... \land v_1 = v_n)$ and a ground unifier τ such that $\rho_1 \oplus ... \oplus \rho_n =_B \alpha \tau$. Of course, if $Unif_B(v_1 = v_2 \land \ldots \land v_1 = v_n) = \emptyset$, then $v_1 \land \ldots \land v_n$ is semantically equivalent to \perp . Therefore, the identities (\downarrow) hold as claimed. Then it immediately follows from (†) and (\ddagger) that, as claimed, any possitive pattern formula is semantically equivalent to either \perp or to a pattern disjunction. That is, we then obtain as a trivial corollary the DNF Theorem,

DNF Theorem. Any $p \in PCPattF$ has a disjunctive normal form, $dnf(p)$, which is either \perp or has the form $u_1 \vee \ldots \vee u_n$, with $u_i \in T_{\Omega}(X)_{St}$, $1 \leq i \leq n$, $n \geq 1$, and is such that $[\![p]\!] = [\![dnf(p)]\!]$. \Box

We are now ready to prove the CNF Theorem,

NCNF Theorem. Any $n \in NCPattF$ has a negative conjunctive normal form, ncnf(n), which is either \top or has the form $\neg u_1 \wedge \ldots \wedge \neg u_n$, with $u_i \in T_{\Omega}(X)_{St}$, $1 \leq i \leq n$, $n \geq 1$, and is s.t. $\llbracket n \rrbracket = \llbracket ncnf(n) \rrbracket$. Note that $\llbracket \neg u_1 \wedge \ldots \wedge \neg u_n \rrbracket = T_{\Omega/B,St} \setminus \llbracket u_1 \vee \ldots \vee u_n \rrbracket$.

Proof: E_{BL} includes the De Morgan Laws $\neg x \wedge \neg y = \neg(x \vee y)$ and $\neg x \vee \neg y = \neg(x \wedge y)$. Using them as left-to-right rewrite rules modulo AC , we can put any negative pattern formula n into a semantically equivalent form $\neg(p)$, where p is a positive pattern formula. Furthermore, by the DNF Theorem we can put p itself in DNF form, i.e., $\neg(p)$ is semantically equivalent to a Boolean formula of either the form $\neg(\perp)$ or the form $\neg(u_1 \vee \ldots \vee u_n)$. But then, $\neg(\perp) = \top$ is in E_{BL} , and using $\neg x \vee \neg y = \neg(x \wedge y)$ as a right-to-left rewrite rule modulo AC , $\neg(u_1 \vee \ldots \vee u_n)$ is semantically equivalent to the negative pattern formula $\neg u_1 \wedge \dots \wedge \neg u_n, n \geq 1$, as desired. \Box

A last, useful propoperty about the semantic function $u \mapsto [u]$, is that, it follows easily from the definition of $\llbracket u \rrbracket$ that $\llbracket u \alpha \rrbracket \subseteq \llbracket u \rrbracket$ for any substitution α .