
Program Verification: Lecture 23

Program Verification: Lecture 23

José Meseguer

University of Illinois at Urbana-Champaign

1/16

Program Verification: Lecture 23

Symbolic Evaluation

Consider the equations [1] n + 0 = n, [2] n + s(m) = s(n +m)
defining natural number addition.

Q1: Can we evaluate x + y?

A1: No, since x + y is not an instance of either n + 0 or n + s(m).

Q2: Can we symbolically evaluate x + y?

A2: We could, if we could find most general instances of x + y
that can be evaluated in the standard sense.

Q3: How do we find those most general instances of x + y?

A3: By unifying x + y with the lefthand sides n + 0 and n + s(m)
equations [1], [2]. This gives unifiers θ1 = {n 7→ x , y 7→ 0}, which
evaluates to y with rule [1], and θ2 = {n 7→ x , y 7→ s(y ′),m 7→ y ′},
which evaluates to s(x + y ′) with rule [2]. This is called narrowing.

2/16

Program Verification: Lecture 23

Symbolic Evaluation

Consider the equations [1] n + 0 = n, [2] n + s(m) = s(n +m)
defining natural number addition.

Q1: Can we evaluate x + y?

A1: No, since x + y is not an instance of either n + 0 or n + s(m).

Q2: Can we symbolically evaluate x + y?

A2: We could, if we could find most general instances of x + y
that can be evaluated in the standard sense.

Q3: How do we find those most general instances of x + y?

A3: By unifying x + y with the lefthand sides n + 0 and n + s(m)
equations [1], [2]. This gives unifiers θ1 = {n 7→ x , y 7→ 0}, which
evaluates to y with rule [1], and θ2 = {n 7→ x , y 7→ s(y ′),m 7→ y ′},
which evaluates to s(x + y ′) with rule [2]. This is called narrowing.

2/16

Program Verification: Lecture 23

Symbolic Evaluation

Consider the equations [1] n + 0 = n, [2] n + s(m) = s(n +m)
defining natural number addition.

Q1: Can we evaluate x + y?

A1: No, since x + y is not an instance of either n + 0 or n + s(m).

Q2: Can we symbolically evaluate x + y?

A2: We could, if we could find most general instances of x + y
that can be evaluated in the standard sense.

Q3: How do we find those most general instances of x + y?

A3: By unifying x + y with the lefthand sides n + 0 and n + s(m)
equations [1], [2]. This gives unifiers θ1 = {n 7→ x , y 7→ 0}, which
evaluates to y with rule [1], and θ2 = {n 7→ x , y 7→ s(y ′),m 7→ y ′},
which evaluates to s(x + y ′) with rule [2]. This is called narrowing.

2/16

Program Verification: Lecture 23

Symbolic Evaluation

Consider the equations [1] n + 0 = n, [2] n + s(m) = s(n +m)
defining natural number addition.

Q1: Can we evaluate x + y?

A1: No, since x + y is not an instance of either n + 0 or n + s(m).

Q2: Can we symbolically evaluate x + y?

A2: We could, if we could find most general instances of x + y
that can be evaluated in the standard sense.

Q3: How do we find those most general instances of x + y?

A3: By unifying x + y with the lefthand sides n + 0 and n + s(m)
equations [1], [2]. This gives unifiers θ1 = {n 7→ x , y 7→ 0}, which
evaluates to y with rule [1], and θ2 = {n 7→ x , y 7→ s(y ′),m 7→ y ′},
which evaluates to s(x + y ′) with rule [2]. This is called narrowing.

2/16

Program Verification: Lecture 23

Symbolic Evaluation

Consider the equations [1] n + 0 = n, [2] n + s(m) = s(n +m)
defining natural number addition.

Q1: Can we evaluate x + y?

A1: No, since x + y is not an instance of either n + 0 or n + s(m).

Q2: Can we symbolically evaluate x + y?

A2: We could, if we could find most general instances of x + y
that can be evaluated in the standard sense.

Q3: How do we find those most general instances of x + y?

A3: By unifying x + y with the lefthand sides n + 0 and n + s(m)
equations [1], [2]. This gives unifiers θ1 = {n 7→ x , y 7→ 0}, which
evaluates to y with rule [1], and θ2 = {n 7→ x , y 7→ s(y ′),m 7→ y ′},
which evaluates to s(x + y ′) with rule [2]. This is called narrowing.

2/16

Program Verification: Lecture 23

Symbolic Evaluation

Consider the equations [1] n + 0 = n, [2] n + s(m) = s(n +m)
defining natural number addition.

Q1: Can we evaluate x + y?

A1: No, since x + y is not an instance of either n + 0 or n + s(m).

Q2: Can we symbolically evaluate x + y?

A2: We could, if we could find most general instances of x + y
that can be evaluated in the standard sense.

Q3: How do we find those most general instances of x + y?

A3: By unifying x + y with the lefthand sides n + 0 and n + s(m)
equations [1], [2]. This gives unifiers θ1 = {n 7→ x , y 7→ 0}, which
evaluates to y with rule [1], and θ2 = {n 7→ x , y 7→ s(y ′),m 7→ y ′},
which evaluates to s(x + y ′) with rule [2]. This is called narrowing.

2/16

Program Verification: Lecture 23

Symbolic Evaluation

Consider the equations [1] n + 0 = n, [2] n + s(m) = s(n +m)
defining natural number addition.

Q1: Can we evaluate x + y?

A1: No, since x + y is not an instance of either n + 0 or n + s(m).

Q2: Can we symbolically evaluate x + y?

A2: We could, if we could find most general instances of x + y
that can be evaluated in the standard sense.

Q3: How do we find those most general instances of x + y?

A3: By unifying x + y with the lefthand sides n + 0 and n + s(m)
equations [1], [2].

This gives unifiers θ1 = {n 7→ x , y 7→ 0}, which
evaluates to y with rule [1], and θ2 = {n 7→ x , y 7→ s(y ′),m 7→ y ′},
which evaluates to s(x + y ′) with rule [2]. This is called narrowing.

2/16

Program Verification: Lecture 23

Symbolic Evaluation

Consider the equations [1] n + 0 = n, [2] n + s(m) = s(n +m)
defining natural number addition.

Q1: Can we evaluate x + y?

A1: No, since x + y is not an instance of either n + 0 or n + s(m).

Q2: Can we symbolically evaluate x + y?

A2: We could, if we could find most general instances of x + y
that can be evaluated in the standard sense.

Q3: How do we find those most general instances of x + y?

A3: By unifying x + y with the lefthand sides n + 0 and n + s(m)
equations [1], [2]. This gives unifiers θ1 = {n 7→ x , y 7→ 0}, which
evaluates to y with rule [1], and θ2 = {n 7→ x , y 7→ s(y ′),m 7→ y ′},
which evaluates to s(x + y ′) with rule [2].

This is called narrowing.

2/16

Program Verification: Lecture 23

Symbolic Evaluation

Consider the equations [1] n + 0 = n, [2] n + s(m) = s(n +m)
defining natural number addition.

Q1: Can we evaluate x + y?

A1: No, since x + y is not an instance of either n + 0 or n + s(m).

Q2: Can we symbolically evaluate x + y?

A2: We could, if we could find most general instances of x + y
that can be evaluated in the standard sense.

Q3: How do we find those most general instances of x + y?

A3: By unifying x + y with the lefthand sides n + 0 and n + s(m)
equations [1], [2]. This gives unifiers θ1 = {n 7→ x , y 7→ 0}, which
evaluates to y with rule [1], and θ2 = {n 7→ x , y 7→ s(y ′),m 7→ y ′},
which evaluates to s(x + y ′) with rule [2]. This is called narrowing.

2/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing

Narrowing generalizes rewriting:

(l → r) ∈ R rewrites t to t[rθ]p, denoted t →R t[rθ]p, iff
there is a position p and a matching substitution θ such that
t|p = lθ.

Rewriting generalizes to narrowing by replacing the matching
substitution θ s.t. t|p = lθ by a unifying substitution θ s.t.
θ ∈ Unif (t|p = l). Here is the precise definition:

Definition. (l → r) ∈ R narrows t to t[r]pθ iff there is a
non-variable position p of t (i.e., t|p ̸= vars(t|p)), and a unifier
θ ∈ Unif (t|p = l). This defines the narrowing relation, denoted:

t
θ
;R t[r]pθ

Note that if t ∈ TΣ, t →R t[rθ]p iff t
θ
;R t[r]pθ. I.e., narrowing

and rewriting coincide for ground terms.

3/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing

Narrowing generalizes rewriting:

(l → r) ∈ R rewrites t to t[rθ]p, denoted t →R t[rθ]p, iff

there is a position p and a matching substitution θ such that
t|p = lθ.

Rewriting generalizes to narrowing by replacing the matching
substitution θ s.t. t|p = lθ by a unifying substitution θ s.t.
θ ∈ Unif (t|p = l). Here is the precise definition:

Definition. (l → r) ∈ R narrows t to t[r]pθ iff there is a
non-variable position p of t (i.e., t|p ̸= vars(t|p)), and a unifier
θ ∈ Unif (t|p = l). This defines the narrowing relation, denoted:

t
θ
;R t[r]pθ

Note that if t ∈ TΣ, t →R t[rθ]p iff t
θ
;R t[r]pθ. I.e., narrowing

and rewriting coincide for ground terms.

3/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing

Narrowing generalizes rewriting:

(l → r) ∈ R rewrites t to t[rθ]p, denoted t →R t[rθ]p, iff
there is a position p and a matching substitution θ such that
t|p = lθ.

Rewriting generalizes to narrowing by replacing the matching
substitution θ s.t. t|p = lθ by a unifying substitution θ s.t.
θ ∈ Unif (t|p = l). Here is the precise definition:

Definition. (l → r) ∈ R narrows t to t[r]pθ iff there is a
non-variable position p of t (i.e., t|p ̸= vars(t|p)), and a unifier
θ ∈ Unif (t|p = l). This defines the narrowing relation, denoted:

t
θ
;R t[r]pθ

Note that if t ∈ TΣ, t →R t[rθ]p iff t
θ
;R t[r]pθ. I.e., narrowing

and rewriting coincide for ground terms.

3/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing

Narrowing generalizes rewriting:

(l → r) ∈ R rewrites t to t[rθ]p, denoted t →R t[rθ]p, iff
there is a position p and a matching substitution θ such that
t|p = lθ.

Rewriting generalizes to narrowing by replacing the matching
substitution θ s.t. t|p = lθ by a unifying substitution θ s.t.
θ ∈ Unif (t|p = l).

Here is the precise definition:

Definition. (l → r) ∈ R narrows t to t[r]pθ iff there is a
non-variable position p of t (i.e., t|p ̸= vars(t|p)), and a unifier
θ ∈ Unif (t|p = l). This defines the narrowing relation, denoted:

t
θ
;R t[r]pθ

Note that if t ∈ TΣ, t →R t[rθ]p iff t
θ
;R t[r]pθ. I.e., narrowing

and rewriting coincide for ground terms.

3/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing

Narrowing generalizes rewriting:

(l → r) ∈ R rewrites t to t[rθ]p, denoted t →R t[rθ]p, iff
there is a position p and a matching substitution θ such that
t|p = lθ.

Rewriting generalizes to narrowing by replacing the matching
substitution θ s.t. t|p = lθ by a unifying substitution θ s.t.
θ ∈ Unif (t|p = l). Here is the precise definition:

Definition. (l → r) ∈ R narrows t to t[r]pθ iff there is a
non-variable position p of t (i.e., t|p ̸= vars(t|p)), and a unifier
θ ∈ Unif (t|p = l). This defines the narrowing relation, denoted:

t
θ
;R t[r]pθ

Note that if t ∈ TΣ, t →R t[rθ]p iff t
θ
;R t[r]pθ. I.e., narrowing

and rewriting coincide for ground terms.

3/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing

Narrowing generalizes rewriting:

(l → r) ∈ R rewrites t to t[rθ]p, denoted t →R t[rθ]p, iff
there is a position p and a matching substitution θ such that
t|p = lθ.

Rewriting generalizes to narrowing by replacing the matching
substitution θ s.t. t|p = lθ by a unifying substitution θ s.t.
θ ∈ Unif (t|p = l). Here is the precise definition:

Definition. (l → r) ∈ R narrows t to t[r]pθ iff

there is a
non-variable position p of t (i.e., t|p ̸= vars(t|p)), and a unifier
θ ∈ Unif (t|p = l). This defines the narrowing relation, denoted:

t
θ
;R t[r]pθ

Note that if t ∈ TΣ, t →R t[rθ]p iff t
θ
;R t[r]pθ. I.e., narrowing

and rewriting coincide for ground terms.

3/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing

Narrowing generalizes rewriting:

(l → r) ∈ R rewrites t to t[rθ]p, denoted t →R t[rθ]p, iff
there is a position p and a matching substitution θ such that
t|p = lθ.

Rewriting generalizes to narrowing by replacing the matching
substitution θ s.t. t|p = lθ by a unifying substitution θ s.t.
θ ∈ Unif (t|p = l). Here is the precise definition:

Definition. (l → r) ∈ R narrows t to t[r]pθ iff there is a
non-variable position p of t (i.e., t|p ̸= vars(t|p)), and a unifier
θ ∈ Unif (t|p = l).

This defines the narrowing relation, denoted:

t
θ
;R t[r]pθ

Note that if t ∈ TΣ, t →R t[rθ]p iff t
θ
;R t[r]pθ. I.e., narrowing

and rewriting coincide for ground terms.

3/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing

Narrowing generalizes rewriting:

(l → r) ∈ R rewrites t to t[rθ]p, denoted t →R t[rθ]p, iff
there is a position p and a matching substitution θ such that
t|p = lθ.

Rewriting generalizes to narrowing by replacing the matching
substitution θ s.t. t|p = lθ by a unifying substitution θ s.t.
θ ∈ Unif (t|p = l). Here is the precise definition:

Definition. (l → r) ∈ R narrows t to t[r]pθ iff there is a
non-variable position p of t (i.e., t|p ̸= vars(t|p)), and a unifier
θ ∈ Unif (t|p = l). This defines the narrowing relation, denoted:

t
θ
;R t[r]pθ

Note that if t ∈ TΣ, t →R t[rθ]p iff t
θ
;R t[r]pθ. I.e., narrowing

and rewriting coincide for ground terms.

3/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing

Narrowing generalizes rewriting:

(l → r) ∈ R rewrites t to t[rθ]p, denoted t →R t[rθ]p, iff
there is a position p and a matching substitution θ such that
t|p = lθ.

Rewriting generalizes to narrowing by replacing the matching
substitution θ s.t. t|p = lθ by a unifying substitution θ s.t.
θ ∈ Unif (t|p = l). Here is the precise definition:

Definition. (l → r) ∈ R narrows t to t[r]pθ iff there is a
non-variable position p of t (i.e., t|p ̸= vars(t|p)), and a unifier
θ ∈ Unif (t|p = l). This defines the narrowing relation, denoted:

t
θ
;R t[r]pθ

Note that if t ∈ TΣ, t →R t[rθ]p iff t
θ
;R t[r]pθ. I.e., narrowing

and rewriting coincide for ground terms.
3/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing (II)

A narrowing step is a symbolic evaluation step. That is,

Symbolic Evaluation = Narrowing

In our example two such narrowing steps symbolically evaluate

x + y with rules [1] and [2]: x + y
θ1
; x and x + y

θ2
; s(x + y ′).

As for rewriting, we have the reflexive-transitive closure t
θ

;∗
R v ,

where for 0 steps we get θ = id and v = t, and for n + 1 steps we
get a sequence:

t
θ1
;R t1 . . . tn

θn+1
;R tn+1

with v = tn+1 and θ the composed substitution θ = θ1 . . . θn+1. To
avoid variable capture, we always assume that rules in R are
variable renamed so that they do not share any variables with any
of the terms ti ; and that for each unifier θi , 1 ≤ i ≤ n + 1, the
variables in rng(θi) = {y ∈ X | ∃x ∈ dom(θi) s.t. y ∈ vars(θi (x)},
are fresh (i.e., never used before).

4/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing (II)

A narrowing step is a symbolic evaluation step. That is,
Symbolic Evaluation = Narrowing

In our example two such narrowing steps symbolically evaluate

x + y with rules [1] and [2]: x + y
θ1
; x and x + y

θ2
; s(x + y ′).

As for rewriting, we have the reflexive-transitive closure t
θ

;∗
R v ,

where for 0 steps we get θ = id and v = t, and for n + 1 steps we
get a sequence:

t
θ1
;R t1 . . . tn

θn+1
;R tn+1

with v = tn+1 and θ the composed substitution θ = θ1 . . . θn+1. To
avoid variable capture, we always assume that rules in R are
variable renamed so that they do not share any variables with any
of the terms ti ; and that for each unifier θi , 1 ≤ i ≤ n + 1, the
variables in rng(θi) = {y ∈ X | ∃x ∈ dom(θi) s.t. y ∈ vars(θi (x)},
are fresh (i.e., never used before).

4/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing (II)

A narrowing step is a symbolic evaluation step. That is,
Symbolic Evaluation = Narrowing

In our example two such narrowing steps symbolically evaluate

x + y with rules [1] and [2]:

x + y
θ1
; x and x + y

θ2
; s(x + y ′).

As for rewriting, we have the reflexive-transitive closure t
θ

;∗
R v ,

where for 0 steps we get θ = id and v = t, and for n + 1 steps we
get a sequence:

t
θ1
;R t1 . . . tn

θn+1
;R tn+1

with v = tn+1 and θ the composed substitution θ = θ1 . . . θn+1. To
avoid variable capture, we always assume that rules in R are
variable renamed so that they do not share any variables with any
of the terms ti ; and that for each unifier θi , 1 ≤ i ≤ n + 1, the
variables in rng(θi) = {y ∈ X | ∃x ∈ dom(θi) s.t. y ∈ vars(θi (x)},
are fresh (i.e., never used before).

4/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing (II)

A narrowing step is a symbolic evaluation step. That is,
Symbolic Evaluation = Narrowing

In our example two such narrowing steps symbolically evaluate

x + y with rules [1] and [2]: x + y
θ1
; x

and x + y
θ2
; s(x + y ′).

As for rewriting, we have the reflexive-transitive closure t
θ

;∗
R v ,

where for 0 steps we get θ = id and v = t, and for n + 1 steps we
get a sequence:

t
θ1
;R t1 . . . tn

θn+1
;R tn+1

with v = tn+1 and θ the composed substitution θ = θ1 . . . θn+1. To
avoid variable capture, we always assume that rules in R are
variable renamed so that they do not share any variables with any
of the terms ti ; and that for each unifier θi , 1 ≤ i ≤ n + 1, the
variables in rng(θi) = {y ∈ X | ∃x ∈ dom(θi) s.t. y ∈ vars(θi (x)},
are fresh (i.e., never used before).

4/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing (II)

A narrowing step is a symbolic evaluation step. That is,
Symbolic Evaluation = Narrowing

In our example two such narrowing steps symbolically evaluate

x + y with rules [1] and [2]: x + y
θ1
; x and x + y

θ2
; s(x + y ′).

As for rewriting, we have the reflexive-transitive closure t
θ

;∗
R v ,

where for 0 steps we get θ = id and v = t, and for n + 1 steps we
get a sequence:

t
θ1
;R t1 . . . tn

θn+1
;R tn+1

with v = tn+1 and θ the composed substitution θ = θ1 . . . θn+1. To
avoid variable capture, we always assume that rules in R are
variable renamed so that they do not share any variables with any
of the terms ti ; and that for each unifier θi , 1 ≤ i ≤ n + 1, the
variables in rng(θi) = {y ∈ X | ∃x ∈ dom(θi) s.t. y ∈ vars(θi (x)},
are fresh (i.e., never used before).

4/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing (II)

A narrowing step is a symbolic evaluation step. That is,
Symbolic Evaluation = Narrowing

In our example two such narrowing steps symbolically evaluate

x + y with rules [1] and [2]: x + y
θ1
; x and x + y

θ2
; s(x + y ′).

As for rewriting, we have the reflexive-transitive closure t
θ

;∗
R v ,

where for 0 steps we get θ = id and v = t, and for n + 1 steps we
get a sequence:

t
θ1
;R t1 . . . tn

θn+1
;R tn+1

with v = tn+1 and θ the composed substitution θ = θ1 . . . θn+1.

To
avoid variable capture, we always assume that rules in R are
variable renamed so that they do not share any variables with any
of the terms ti ; and that for each unifier θi , 1 ≤ i ≤ n + 1, the
variables in rng(θi) = {y ∈ X | ∃x ∈ dom(θi) s.t. y ∈ vars(θi (x)},
are fresh (i.e., never used before).

4/16

Program Verification: Lecture 23

Symbolic Evaluation = Narrowing (II)

A narrowing step is a symbolic evaluation step. That is,
Symbolic Evaluation = Narrowing

In our example two such narrowing steps symbolically evaluate

x + y with rules [1] and [2]: x + y
θ1
; x and x + y

θ2
; s(x + y ′).

As for rewriting, we have the reflexive-transitive closure t
θ

;∗
R v ,

where for 0 steps we get θ = id and v = t, and for n + 1 steps we
get a sequence:

t
θ1
;R t1 . . . tn

θn+1
;R tn+1

with v = tn+1 and θ the composed substitution θ = θ1 . . . θn+1. To
avoid variable capture, we always assume that rules in R are
variable renamed so that they do not share any variables with any
of the terms ti ; and that for each unifier θi , 1 ≤ i ≤ n + 1, the
variables in rng(θi) = {y ∈ X | ∃x ∈ dom(θi) s.t. y ∈ vars(θi (x)},
are fresh (i.e., never used before).

4/16

Program Verification: Lecture 23

The Narrowing Tree

Symbolic computations in such sequences t
θ

;∗
R v from an initial

term t are the paths in the so-called narrowing tree of t. E.g.,

5/16

Program Verification: Lecture 23

The Narrowing Tree

Symbolic computations in such sequences t
θ

;∗
R v from an initial

term t are the paths in the so-called narrowing tree of t. E.g.,

5/16

Program Verification: Lecture 23

The Lifting Lemma

Symbolic computation by narrowing covers all rewriting
computations as instances as shown below (proof in Appendix):

Theorem (Lifting Lemma). Let (Σ,R) be a term rewriting system,
t ∈ TΣ(X), and θ an R-irreducible substitution (i.e., if
x ∈ dom(θ), then θ(x) cannot be rewritten with R).

Then for each
rewrite step tθ →R u there is a narrowing step t

α
;R v and an

R-irreducible substitution δ such that vδ = u.

Since each narrowing step in the Lifting Lemma preserves the
invariant that the substitution θ for t, resp. γ for v , is
R-irreducible, the Lifting Lemma extends in a straightforward
manner to R-rewriting sequences of the form tθ →∗

R w with θ an
R-irreducible, which are indeed all covered as instances by

narrowing sequences t
θ1
;R t1 . . . tn

θn+1
;R tn+1, with w = tn+1δ.

6/16

Program Verification: Lecture 23

The Lifting Lemma

Symbolic computation by narrowing covers all rewriting
computations as instances as shown below (proof in Appendix):

Theorem (Lifting Lemma). Let (Σ,R) be a term rewriting system,
t ∈ TΣ(X), and θ an R-irreducible substitution (i.e., if
x ∈ dom(θ), then θ(x) cannot be rewritten with R). Then for each
rewrite step tθ →R u there is a narrowing step t

α
;R v and an

R-irreducible substitution δ such that vδ = u.

Since each narrowing step in the Lifting Lemma preserves the
invariant that the substitution θ for t, resp. γ for v , is
R-irreducible, the Lifting Lemma extends in a straightforward
manner to R-rewriting sequences of the form tθ →∗

R w with θ an
R-irreducible, which are indeed all covered as instances by

narrowing sequences t
θ1
;R t1 . . . tn

θn+1
;R tn+1, with w = tn+1δ.

6/16

Program Verification: Lecture 23

The Lifting Lemma

Symbolic computation by narrowing covers all rewriting
computations as instances as shown below (proof in Appendix):

Theorem (Lifting Lemma). Let (Σ,R) be a term rewriting system,
t ∈ TΣ(X), and θ an R-irreducible substitution (i.e., if
x ∈ dom(θ), then θ(x) cannot be rewritten with R). Then for each
rewrite step tθ →R u there is a narrowing step t

α
;R v and an

R-irreducible substitution δ such that vδ = u.

Since each narrowing step in the Lifting Lemma preserves the
invariant that the substitution θ for t, resp. γ for v , is
R-irreducible,

the Lifting Lemma extends in a straightforward
manner to R-rewriting sequences of the form tθ →∗

R w with θ an
R-irreducible, which are indeed all covered as instances by

narrowing sequences t
θ1
;R t1 . . . tn

θn+1
;R tn+1, with w = tn+1δ.

6/16

Program Verification: Lecture 23

The Lifting Lemma

Symbolic computation by narrowing covers all rewriting
computations as instances as shown below (proof in Appendix):

Theorem (Lifting Lemma). Let (Σ,R) be a term rewriting system,
t ∈ TΣ(X), and θ an R-irreducible substitution (i.e., if
x ∈ dom(θ), then θ(x) cannot be rewritten with R). Then for each
rewrite step tθ →R u there is a narrowing step t

α
;R v and an

R-irreducible substitution δ such that vδ = u.

Since each narrowing step in the Lifting Lemma preserves the
invariant that the substitution θ for t, resp. γ for v , is
R-irreducible, the Lifting Lemma extends in a straightforward
manner to R-rewriting sequences of the form tθ →∗

R w with θ an
R-irreducible, which are indeed all covered as instances by

narrowing sequences t
θ1
;R t1 . . . tn

θn+1
;R tn+1, with w = tn+1δ.

6/16

Program Verification: Lecture 23

Narrowing Modulo B

The same way that rewriting with R extends to rewriting modulo
axioms B, narrowing extends in a completely smilar way. Here is
the precise definition (including the case B = ∅ as a special case):

Definition. Given a rewrite theory (Σ,B,R), and a term

t ∈ TΣ(X), an R-narrowing step modulo B, denoted t
θ

;R,B v
holds iff there exists a non-variable position p in t, a rule l → r in
R, and a B-unifier θ ∈ Unif B(t|p = l) such that v = t[r]pθ.

In particular, the Lifting Lemma extends in a natural way to
narrowing steps and narrowing sequences modulo B, so that all
R/B-rewriting computations tθ →∗

R/B w are covered as instances.

A small technicality is that we should narrow t not just with R,
but with all its B-extensions, which for R/B-rewriting is done
automatically by Maude (see §4.8 in “All About Maude”).

7/16

Program Verification: Lecture 23

Narrowing Modulo B

The same way that rewriting with R extends to rewriting modulo
axioms B, narrowing extends in a completely smilar way. Here is
the precise definition (including the case B = ∅ as a special case):

Definition. Given a rewrite theory (Σ,B,R), and a term

t ∈ TΣ(X), an R-narrowing step modulo B, denoted t
θ

;R,B v
holds iff there exists a non-variable position p in t, a rule l → r in
R, and a B-unifier θ ∈ Unif B(t|p = l) such that v = t[r]pθ.

In particular, the Lifting Lemma extends in a natural way to
narrowing steps and narrowing sequences modulo B, so that all
R/B-rewriting computations tθ →∗

R/B w are covered as instances.

A small technicality is that we should narrow t not just with R,
but with all its B-extensions, which for R/B-rewriting is done
automatically by Maude (see §4.8 in “All About Maude”).

7/16

Program Verification: Lecture 23

Narrowing Modulo B

The same way that rewriting with R extends to rewriting modulo
axioms B, narrowing extends in a completely smilar way. Here is
the precise definition (including the case B = ∅ as a special case):

Definition. Given a rewrite theory (Σ,B,R), and a term

t ∈ TΣ(X), an R-narrowing step modulo B, denoted t
θ

;R,B v
holds iff there exists a non-variable position p in t, a rule l → r in
R, and a B-unifier θ ∈ Unif B(t|p = l) such that v = t[r]pθ.

In particular, the Lifting Lemma extends in a natural way to
narrowing steps and narrowing sequences modulo B, so that all
R/B-rewriting computations tθ →∗

R/B w are covered as instances.

A small technicality is that we should narrow t not just with R,
but with all its B-extensions, which for R/B-rewriting is done
automatically by Maude (see §4.8 in “All About Maude”).

7/16

Program Verification: Lecture 23

Narrowing Modulo B

The same way that rewriting with R extends to rewriting modulo
axioms B, narrowing extends in a completely smilar way. Here is
the precise definition (including the case B = ∅ as a special case):

Definition. Given a rewrite theory (Σ,B,R), and a term

t ∈ TΣ(X), an R-narrowing step modulo B, denoted t
θ

;R,B v
holds iff there exists a non-variable position p in t, a rule l → r in
R, and a B-unifier θ ∈ Unif B(t|p = l) such that v = t[r]pθ.

In particular, the Lifting Lemma extends in a natural way to
narrowing steps and narrowing sequences modulo B, so that all
R/B-rewriting computations tθ →∗

R/B w are covered as instances.

A small technicality is that we should narrow t not just with R,
but with all its B-extensions, which for R/B-rewriting is done
automatically by Maude (see §4.8 in “All About Maude”).

7/16

Program Verification: Lecture 23

Topmost Rewrite Theories

Call a rewrite theory R = (Σ,E ∪ B,R) topmost if it has a sort
State, which is the top sort of one of its connected components,
such that:

(i) no Σ-term f (u1, . . . , un) can have a proper subterm
of sort State; and (ii) for all rules l → r in R, l (and therefore r)
has sort State. As we shall see shortly, topmost rewrite theories are
very useful for narrowing-based symbolic model checking.

Many rewrite theories can be easily transformed into semantically
equivalent topmost ones. For example, if R specifies a concurrent
object system, we can just add a new sort State and a constructor
{ } : Configuration → State and convert, for example, a rule
credit(O,M) ⟨O : Accnt|bal : N⟩ → ⟨O : Accnt|bal : N +M⟩ into
the semantically equivalent rule: {credit(O,M) ⟨O : Accnt|bal :
N⟩ C} → ⟨O : Accnt|bal : N +M⟩ C}, with C of sort
Configuration.

8/16

Program Verification: Lecture 23

Topmost Rewrite Theories

Call a rewrite theory R = (Σ,E ∪ B,R) topmost if it has a sort
State, which is the top sort of one of its connected components,
such that: (i) no Σ-term f (u1, . . . , un) can have a proper subterm
of sort State; and

(ii) for all rules l → r in R, l (and therefore r)
has sort State. As we shall see shortly, topmost rewrite theories are
very useful for narrowing-based symbolic model checking.

Many rewrite theories can be easily transformed into semantically
equivalent topmost ones. For example, if R specifies a concurrent
object system, we can just add a new sort State and a constructor
{ } : Configuration → State and convert, for example, a rule
credit(O,M) ⟨O : Accnt|bal : N⟩ → ⟨O : Accnt|bal : N +M⟩ into
the semantically equivalent rule: {credit(O,M) ⟨O : Accnt|bal :
N⟩ C} → ⟨O : Accnt|bal : N +M⟩ C}, with C of sort
Configuration.

8/16

Program Verification: Lecture 23

Topmost Rewrite Theories

Call a rewrite theory R = (Σ,E ∪ B,R) topmost if it has a sort
State, which is the top sort of one of its connected components,
such that: (i) no Σ-term f (u1, . . . , un) can have a proper subterm
of sort State; and (ii) for all rules l → r in R, l (and therefore r)
has sort State.

As we shall see shortly, topmost rewrite theories are
very useful for narrowing-based symbolic model checking.

Many rewrite theories can be easily transformed into semantically
equivalent topmost ones. For example, if R specifies a concurrent
object system, we can just add a new sort State and a constructor
{ } : Configuration → State and convert, for example, a rule
credit(O,M) ⟨O : Accnt|bal : N⟩ → ⟨O : Accnt|bal : N +M⟩ into
the semantically equivalent rule: {credit(O,M) ⟨O : Accnt|bal :
N⟩ C} → ⟨O : Accnt|bal : N +M⟩ C}, with C of sort
Configuration.

8/16

Program Verification: Lecture 23

Topmost Rewrite Theories

Call a rewrite theory R = (Σ,E ∪ B,R) topmost if it has a sort
State, which is the top sort of one of its connected components,
such that: (i) no Σ-term f (u1, . . . , un) can have a proper subterm
of sort State; and (ii) for all rules l → r in R, l (and therefore r)
has sort State. As we shall see shortly, topmost rewrite theories are
very useful for narrowing-based symbolic model checking.

Many rewrite theories can be easily transformed into semantically
equivalent topmost ones. For example, if R specifies a concurrent
object system, we can just add a new sort State and a constructor
{ } : Configuration → State and convert, for example, a rule
credit(O,M) ⟨O : Accnt|bal : N⟩ → ⟨O : Accnt|bal : N +M⟩ into
the semantically equivalent rule: {credit(O,M) ⟨O : Accnt|bal :
N⟩ C} → ⟨O : Accnt|bal : N +M⟩ C}, with C of sort
Configuration.

8/16

Program Verification: Lecture 23

Topmost Rewrite Theories

Call a rewrite theory R = (Σ,E ∪ B,R) topmost if it has a sort
State, which is the top sort of one of its connected components,
such that: (i) no Σ-term f (u1, . . . , un) can have a proper subterm
of sort State; and (ii) for all rules l → r in R, l (and therefore r)
has sort State. As we shall see shortly, topmost rewrite theories are
very useful for narrowing-based symbolic model checking.

Many rewrite theories can be easily transformed into semantically
equivalent topmost ones.

For example, if R specifies a concurrent
object system, we can just add a new sort State and a constructor
{ } : Configuration → State and convert, for example, a rule
credit(O,M) ⟨O : Accnt|bal : N⟩ → ⟨O : Accnt|bal : N +M⟩ into
the semantically equivalent rule: {credit(O,M) ⟨O : Accnt|bal :
N⟩ C} → ⟨O : Accnt|bal : N +M⟩ C}, with C of sort
Configuration.

8/16

Program Verification: Lecture 23

Topmost Rewrite Theories

Call a rewrite theory R = (Σ,E ∪ B,R) topmost if it has a sort
State, which is the top sort of one of its connected components,
such that: (i) no Σ-term f (u1, . . . , un) can have a proper subterm
of sort State; and (ii) for all rules l → r in R, l (and therefore r)
has sort State. As we shall see shortly, topmost rewrite theories are
very useful for narrowing-based symbolic model checking.

Many rewrite theories can be easily transformed into semantically
equivalent topmost ones. For example, if R specifies a concurrent
object system, we can just add a new sort State and a constructor
{ } : Configuration → State and convert, for example, a rule
credit(O,M) ⟨O : Accnt|bal : N⟩ → ⟨O : Accnt|bal : N +M⟩ into
the semantically equivalent rule:

{credit(O,M) ⟨O : Accnt|bal :
N⟩ C} → ⟨O : Accnt|bal : N +M⟩ C}, with C of sort
Configuration.

8/16

Program Verification: Lecture 23

Topmost Rewrite Theories

Call a rewrite theory R = (Σ,E ∪ B,R) topmost if it has a sort
State, which is the top sort of one of its connected components,
such that: (i) no Σ-term f (u1, . . . , un) can have a proper subterm
of sort State; and (ii) for all rules l → r in R, l (and therefore r)
has sort State. As we shall see shortly, topmost rewrite theories are
very useful for narrowing-based symbolic model checking.

Many rewrite theories can be easily transformed into semantically
equivalent topmost ones. For example, if R specifies a concurrent
object system, we can just add a new sort State and a constructor
{ } : Configuration → State and convert, for example, a rule
credit(O,M) ⟨O : Accnt|bal : N⟩ → ⟨O : Accnt|bal : N +M⟩ into
the semantically equivalent rule: {credit(O,M) ⟨O : Accnt|bal :
N⟩ C} → ⟨O : Accnt|bal : N +M⟩ C}, with C of sort
Configuration.

8/16

Program Verification: Lecture 23

Symbolic Model Checking of Topmost Rewrite Theories

Given a topmost rewrite theory R = (Σ,B,R), where the number
of reachable states from a given initial state may be infinite,
narrowing with R modulo axioms B supports the following
symbolic reachability analysis result:

Theorem (Completeness of Narrowing Search). For R = (Σ,B,R)
topmost, t a non-variable term of sort State with variables x⃗ , and u
a term of sort State with variables y⃗ , the FOL existential formula:

∃x⃗ , y⃗ , t →∗ u

with x⃗ ∩ y⃗ = ∅ is satisfied in CR iff there is an R,B-narrowing

sequence t
θ

;∗
R,B v and a B-unifier γ ∈ Unif B(u = v).

The proof is a simple application of the Lifting Lemma and is left
as an exercise.

9/16

Program Verification: Lecture 23

Symbolic Model Checking of Topmost Rewrite Theories

Given a topmost rewrite theory R = (Σ,B,R), where the number
of reachable states from a given initial state may be infinite,
narrowing with R modulo axioms B supports the following
symbolic reachability analysis result:

Theorem (Completeness of Narrowing Search). For R = (Σ,B,R)
topmost, t a non-variable term of sort State with variables x⃗ , and u
a term of sort State with variables y⃗ , the FOL existential formula:

∃x⃗ , y⃗ , t →∗ u

with x⃗ ∩ y⃗ = ∅ is satisfied in CR iff there is an R,B-narrowing

sequence t
θ

;∗
R,B v and a B-unifier γ ∈ Unif B(u = v).

The proof is a simple application of the Lifting Lemma and is left
as an exercise.

9/16

Program Verification: Lecture 23

Symbolic Model Checking of Topmost Rewrite Theories

Given a topmost rewrite theory R = (Σ,B,R), where the number
of reachable states from a given initial state may be infinite,
narrowing with R modulo axioms B supports the following
symbolic reachability analysis result:

Theorem (Completeness of Narrowing Search). For R = (Σ,B,R)
topmost, t a non-variable term of sort State with variables x⃗ , and u
a term of sort State with variables y⃗ , the FOL existential formula:

∃x⃗ , y⃗ , t →∗ u

with x⃗ ∩ y⃗ = ∅ is satisfied in CR iff

there is an R,B-narrowing

sequence t
θ

;∗
R,B v and a B-unifier γ ∈ Unif B(u = v).

The proof is a simple application of the Lifting Lemma and is left
as an exercise.

9/16

Program Verification: Lecture 23

Symbolic Model Checking of Topmost Rewrite Theories

Given a topmost rewrite theory R = (Σ,B,R), where the number
of reachable states from a given initial state may be infinite,
narrowing with R modulo axioms B supports the following
symbolic reachability analysis result:

Theorem (Completeness of Narrowing Search). For R = (Σ,B,R)
topmost, t a non-variable term of sort State with variables x⃗ , and u
a term of sort State with variables y⃗ , the FOL existential formula:

∃x⃗ , y⃗ , t →∗ u

with x⃗ ∩ y⃗ = ∅ is satisfied in CR iff there is an R,B-narrowing

sequence t
θ

;∗
R,B v and a B-unifier γ ∈ Unif B(u = v).

The proof is a simple application of the Lifting Lemma and is left
as an exercise.

9/16

Program Verification: Lecture 23

Symbolic Model Checking of Topmost Rewrite Theories

Given a topmost rewrite theory R = (Σ,B,R), where the number
of reachable states from a given initial state may be infinite,
narrowing with R modulo axioms B supports the following
symbolic reachability analysis result:

Theorem (Completeness of Narrowing Search). For R = (Σ,B,R)
topmost, t a non-variable term of sort State with variables x⃗ , and u
a term of sort State with variables y⃗ , the FOL existential formula:

∃x⃗ , y⃗ , t →∗ u

with x⃗ ∩ y⃗ = ∅ is satisfied in CR iff there is an R,B-narrowing

sequence t
θ

;∗
R,B v and a B-unifier γ ∈ Unif B(u = v).

The proof is a simple application of the Lifting Lemma and is left
as an exercise.

9/16

Program Verification: Lecture 23

Symbolic Verification of Invariants by Narrowing

Breadth-first search with the rewriting relation →R/B gives us a
semi-decision procedure for verifying invariant failure from a
concrete initial state by searching for a counterexample.

Likewise, thanks to the Completeness of Narrowing Theorem,
breadth-first search with the narrowing relation ;R,B gives us a
semi-decision procedure for verifying invariant failure from a
symbolic initial state (i.e., a term t of sort State with variables or,
more generally, a finite set {t1, . . . , tn} of terms with variables) by
searching for a symbolic counterexample, provided R = (Σ,B,R)
is topmost.

The only requirement is that the negation of the invariant (i.e., its
complement) can be expressed as a term u with variables, or, more
generally, as a finite set {u1, . . . , um} of terms with variables.

10/16

Program Verification: Lecture 23

Symbolic Verification of Invariants by Narrowing

Breadth-first search with the rewriting relation →R/B gives us a
semi-decision procedure for verifying invariant failure from a
concrete initial state by searching for a counterexample.

Likewise, thanks to the Completeness of Narrowing Theorem,
breadth-first search with the narrowing relation ;R,B gives us a
semi-decision procedure for verifying invariant failure from a
symbolic initial state (i.e., a term t of sort State with variables or,
more generally, a finite set {t1, . . . , tn} of terms with variables) by
searching for a symbolic counterexample, provided R = (Σ,B,R)
is topmost.

The only requirement is that the negation of the invariant (i.e., its
complement) can be expressed as a term u with variables, or, more
generally, as a finite set {u1, . . . , um} of terms with variables.

10/16

Program Verification: Lecture 23

Symbolic Verification of Invariants by Narrowing

Breadth-first search with the rewriting relation →R/B gives us a
semi-decision procedure for verifying invariant failure from a
concrete initial state by searching for a counterexample.

Likewise, thanks to the Completeness of Narrowing Theorem,
breadth-first search with the narrowing relation ;R,B gives us a
semi-decision procedure for verifying invariant failure from a
symbolic initial state (i.e., a term t of sort State with variables or,
more generally, a finite set {t1, . . . , tn} of terms with variables) by
searching for a symbolic counterexample, provided R = (Σ,B,R)
is topmost.

The only requirement is that the negation of the invariant (i.e., its
complement) can be expressed as a term u with variables, or, more
generally, as a finite set {u1, . . . , um} of terms with variables.

10/16

Program Verification: Lecture 23

Narrowing with Folding May Terminate

Just as for the search command, a narrowing search may not
terminate.

However, Maude supports a {fold} vu-narrow

narrowing search command option that tries to fold the usually
infinite narrowing search tree into a hopefully finite narrowing
search graph, by not exploring tree nodes that are substitution
instances modulo B of more general, previously explored nodes.

Definition. Term u, reached by narrowing at depth d , is folded
into another term v reached by narrowing at depth ≤ d (i.e., u is
no further explored) if there is a substitution α s.t. u =B vα.

Folding can make the search graph finite, allowing termination of
narrowing seach and making verification of an invariant decidable.

Lets us see an example. Consider the following Maude specification
of Lamport’s bakery protocol:

11/16

Program Verification: Lecture 23

Narrowing with Folding May Terminate

Just as for the search command, a narrowing search may not
terminate. However, Maude supports a {fold} vu-narrow

narrowing search command option that tries to fold the usually
infinite narrowing search tree into a hopefully finite narrowing
search graph, by not exploring tree nodes that are substitution
instances modulo B of more general, previously explored nodes.

Definition. Term u, reached by narrowing at depth d , is folded
into another term v reached by narrowing at depth ≤ d (i.e., u is
no further explored) if there is a substitution α s.t. u =B vα.

Folding can make the search graph finite, allowing termination of
narrowing seach and making verification of an invariant decidable.

Lets us see an example. Consider the following Maude specification
of Lamport’s bakery protocol:

11/16

Program Verification: Lecture 23

Narrowing with Folding May Terminate

Just as for the search command, a narrowing search may not
terminate. However, Maude supports a {fold} vu-narrow

narrowing search command option that tries to fold the usually
infinite narrowing search tree into a hopefully finite narrowing
search graph, by not exploring tree nodes that are substitution
instances modulo B of more general, previously explored nodes.

Definition. Term u, reached by narrowing at depth d , is folded
into another term v reached by narrowing at depth ≤ d (i.e., u is
no further explored) if there is a substitution α s.t. u =B vα.

Folding can make the search graph finite, allowing termination of
narrowing seach and making verification of an invariant decidable.

Lets us see an example. Consider the following Maude specification
of Lamport’s bakery protocol:

11/16

Program Verification: Lecture 23

Narrowing with Folding May Terminate

Just as for the search command, a narrowing search may not
terminate. However, Maude supports a {fold} vu-narrow

narrowing search command option that tries to fold the usually
infinite narrowing search tree into a hopefully finite narrowing
search graph, by not exploring tree nodes that are substitution
instances modulo B of more general, previously explored nodes.

Definition. Term u, reached by narrowing at depth d , is folded
into another term v reached by narrowing at depth ≤ d (i.e., u is
no further explored) if there is a substitution α s.t. u =B vα.

Folding can make the search graph finite, allowing termination of
narrowing seach and making verification of an invariant decidable.

Lets us see an example. Consider the following Maude specification
of Lamport’s bakery protocol:

11/16

Program Verification: Lecture 23

Narrowing with Folding May Terminate

Just as for the search command, a narrowing search may not
terminate. However, Maude supports a {fold} vu-narrow

narrowing search command option that tries to fold the usually
infinite narrowing search tree into a hopefully finite narrowing
search graph, by not exploring tree nodes that are substitution
instances modulo B of more general, previously explored nodes.

Definition. Term u, reached by narrowing at depth d , is folded
into another term v reached by narrowing at depth ≤ d (i.e., u is
no further explored) if there is a substitution α s.t. u =B vα.

Folding can make the search graph finite, allowing termination of
narrowing seach and making verification of an invariant decidable.

Lets us see an example. Consider the following Maude specification
of Lamport’s bakery protocol:

11/16

Program Verification: Lecture 23

12/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol

mod BAKERY is sorts Nat LNat Nat? State WProcs Procs .

subsorts Nat LNat < Nat? . subsort WProcs < Procs .

op 0 : -> Nat . op s : Nat -> Nat .

op [_] : Nat -> LNat . *** number-locking operator

op < wait,_> : Nat -> WProcs . op < crit,_> : Nat -> Procs .

op mt : -> WProcs . *** empty multiset

op __ : Procs Procs -> Procs [assoc comm id: mt] . *** union

op __ : WProcs WProcs -> WProcs [assoc comm id: mt] . *** union

op _|_|_ : Nat Nat? Procs -> State .

vars n m i j k : Nat . var x? : Nat? . var PS : Procs . var WPS : WProcs .

rl [new]: m | n | PS => s(m) | n | < wait,m > PS [narrowing] .

rl [enter]: m | n | < wait,n > PS => m | [n] | < crit,n > PS [narrowing] .

rl [leave]: m | [n] | < crit,n > PS => m | s(n) | PS [narrowing] .

endm

States have the form “m | x? | PS”with m the ticket counter, x?
the counter to access the critical section, and PS a multiset of
processes. BAKERY is infinite-state because of [new]. When a
waiting process n enters the critical section, the second counter n
is locked as [n]; and it is unlocked and incremented when n leaves.

13/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol (II)

The key invariant is mutual exclusion. Its complement is specified
by the term i | x? | < crit, j > < crit, k > PS.

Without the fold option, narrowing search does not terminate.
But with the following folding search command we can verify that
BAKERY satisfies mutual exclusion, not just for the initial state
0 | 0 | mt, but for the more general infinite set of initial states,
having only waiting processes, m | n | WPS.

Maude> {fold} vu-narrow

m | n | WPS =>* i | x? | < crit, j > < crit, k > PS .

No solution.

We can visualize the dramatic state space reduction obtained by
folding an infinite tree of symbolic states into a finite graph with
only four states in the figure below.

14/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol (II)

The key invariant is mutual exclusion. Its complement is specified
by the term i | x? | < crit, j > < crit, k > PS.

Without the fold option, narrowing search does not terminate.
But with the following folding search command we can verify that
BAKERY satisfies mutual exclusion, not just for the initial state
0 | 0 | mt, but for the more general infinite set of initial states,
having only waiting processes, m | n | WPS.

Maude> {fold} vu-narrow

m | n | WPS =>* i | x? | < crit, j > < crit, k > PS .

No solution.

We can visualize the dramatic state space reduction obtained by
folding an infinite tree of symbolic states into a finite graph with
only four states in the figure below.

14/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol (II)

The key invariant is mutual exclusion. Its complement is specified
by the term i | x? | < crit, j > < crit, k > PS.

Without the fold option, narrowing search does not terminate.
But with the following folding search command we can verify that
BAKERY satisfies mutual exclusion, not just for the initial state
0 | 0 | mt, but for the more general infinite set of initial states,
having only waiting processes, m | n | WPS.

Maude> {fold} vu-narrow

m | n | WPS =>* i | x? | < crit, j > < crit, k > PS .

No solution.

We can visualize the dramatic state space reduction obtained by
folding an infinite tree of symbolic states into a finite graph with
only four states in the figure below.

14/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol (II)

The key invariant is mutual exclusion. Its complement is specified
by the term i | x? | < crit, j > < crit, k > PS.

Without the fold option, narrowing search does not terminate.
But with the following folding search command we can verify that
BAKERY satisfies mutual exclusion, not just for the initial state
0 | 0 | mt, but for the more general infinite set of initial states,
having only waiting processes, m | n | WPS.

Maude> {fold} vu-narrow

m | n | WPS =>* i | x? | < crit, j > < crit, k > PS .

No solution.

We can visualize the dramatic state space reduction obtained by
folding an infinite tree of symbolic states into a finite graph with
only four states in the figure below.

14/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol (III)

A somewhat counterintuitive lesson that can be learned from this
example and its initial state m | n | WPS is that, for narrowing
model checking, the more general the initial state, the better.

The reason is that, if we start with a quite specific initial state, the
subsequent symbolic states will be even more specific. This is what
the word “narrowing” means. The more specific a state is, the less
it can generalize other symbolic states by folding them. Worse of
all are ground initial states like 0 | 0 | mt, which turn narrowing
search into rewriting search and make generalization impossible.

15/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol (III)

A somewhat counterintuitive lesson that can be learned from this
example and its initial state m | n | WPS is that, for narrowing
model checking, the more general the initial state, the better.

The reason is that, if we start with a quite specific initial state, the
subsequent symbolic states will be even more specific. This is what
the word “narrowing” means. The more specific a state is, the less
it can generalize other symbolic states by folding them. Worse of
all are ground initial states like 0 | 0 | mt, which turn narrowing
search into rewriting search and make generalization impossible.

15/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol (III)

A somewhat counterintuitive lesson that can be learned from this
example and its initial state m | n | WPS is that, for narrowing
model checking, the more general the initial state, the better.

The reason is that, if we start with a quite specific initial state, the
subsequent symbolic states will be even more specific.

This is what
the word “narrowing” means. The more specific a state is, the less
it can generalize other symbolic states by folding them. Worse of
all are ground initial states like 0 | 0 | mt, which turn narrowing
search into rewriting search and make generalization impossible.

15/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol (III)

A somewhat counterintuitive lesson that can be learned from this
example and its initial state m | n | WPS is that, for narrowing
model checking, the more general the initial state, the better.

The reason is that, if we start with a quite specific initial state, the
subsequent symbolic states will be even more specific. This is what
the word “narrowing” means.

The more specific a state is, the less
it can generalize other symbolic states by folding them. Worse of
all are ground initial states like 0 | 0 | mt, which turn narrowing
search into rewriting search and make generalization impossible.

15/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol (III)

A somewhat counterintuitive lesson that can be learned from this
example and its initial state m | n | WPS is that, for narrowing
model checking, the more general the initial state, the better.

The reason is that, if we start with a quite specific initial state, the
subsequent symbolic states will be even more specific. This is what
the word “narrowing” means. The more specific a state is, the less
it can generalize other symbolic states by folding them.

Worse of
all are ground initial states like 0 | 0 | mt, which turn narrowing
search into rewriting search and make generalization impossible.

15/16

Program Verification: Lecture 23

Lamport’s Bakery Protocol (III)

A somewhat counterintuitive lesson that can be learned from this
example and its initial state m | n | WPS is that, for narrowing
model checking, the more general the initial state, the better.

The reason is that, if we start with a quite specific initial state, the
subsequent symbolic states will be even more specific. This is what
the word “narrowing” means. The more specific a state is, the less
it can generalize other symbolic states by folding them. Worse of
all are ground initial states like 0 | 0 | mt, which turn narrowing
search into rewriting search and make generalization impossible.

15/16

Program Verification: Lecture 23

Initial States as Disjunctions of Patterns

Since the more general the initial state, the better, an important
way of achieving such generality, so as to increase the chances that
variant narrowing search terminates, is to allow initial states to be
a disjunction of patterns. Indeed, Maude 3.5 allows narrowing
search commands of the form:

{fold} vu-narrow u1 ∨ . . . ∨ un =>* v

This means that we can try to solve existential reachability
formulas of the form ∃x⃗ , y⃗ , u1 ∨ . . . ∨ un →∗ v1 ∨ . . . ∨ vm by
means of m {fold} vu-narrow commands of the above form.

We shall further explore the advantages of this greater generality
for specifying initial states in Lecture 24.

16/16

Program Verification: Lecture 23

Initial States as Disjunctions of Patterns

Since the more general the initial state, the better, an important
way of achieving such generality, so as to increase the chances that
variant narrowing search terminates, is to allow initial states to be
a disjunction of patterns. Indeed, Maude 3.5 allows narrowing
search commands of the form:

{fold} vu-narrow u1 ∨ . . . ∨ un =>* v

This means that we can try to solve existential reachability
formulas of the form ∃x⃗ , y⃗ , u1 ∨ . . . ∨ un →∗ v1 ∨ . . . ∨ vm by
means of m {fold} vu-narrow commands of the above form.

We shall further explore the advantages of this greater generality
for specifying initial states in Lecture 24.

16/16

Program Verification: Lecture 23

Initial States as Disjunctions of Patterns

Since the more general the initial state, the better, an important
way of achieving such generality, so as to increase the chances that
variant narrowing search terminates, is to allow initial states to be
a disjunction of patterns. Indeed, Maude 3.5 allows narrowing
search commands of the form:

{fold} vu-narrow u1 ∨ . . . ∨ un =>* v

This means that we can try to solve existential reachability
formulas of the form ∃x⃗ , y⃗ , u1 ∨ . . . ∨ un →∗ v1 ∨ . . . ∨ vm by
means of m {fold} vu-narrow commands of the above form.

We shall further explore the advantages of this greater generality
for specifying initial states in Lecture 24.

16/16

Program Verification: Lecture 23

Initial States as Disjunctions of Patterns

Since the more general the initial state, the better, an important
way of achieving such generality, so as to increase the chances that
variant narrowing search terminates, is to allow initial states to be
a disjunction of patterns. Indeed, Maude 3.5 allows narrowing
search commands of the form:

{fold} vu-narrow u1 ∨ . . . ∨ un =>* v

This means that we can try to solve existential reachability
formulas of the form ∃x⃗ , y⃗ , u1 ∨ . . . ∨ un →∗ v1 ∨ . . . ∨ vm by
means of m {fold} vu-narrow commands of the above form.

We shall further explore the advantages of this greater generality
for specifying initial states in Lecture 24.

16/16

