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Program Verification: Lecture 21

Decidability of Propositional LTL

It is well-known that, for any computable Kripke structure
Q = (Q,→Q,Q) on state predicates Π, any state q ∈ Q such that
the set of states reachable from q in Q is finite, and any LTL
formula φ ∈ LTL(Π) there is a decision procedure that can
effectively decide the satisfaction relation

Q, q |=LTL φ.

Furthermore, if Q, q ̸|=LTL φ, the decision procedure will exhibit a
counterexample, that is, a path π ∈ Path(Q•)q violating φ.

Since in LTL(Π)+ we have Q, q ̸|=LTL φ iff Q, q |=LTL+ E¬φ, the
counterxample path is a constructive proof of Q, q |=LTL+ E¬φ.
Therefore, we can prove a desired E-property Q, q |=LTL+ Eψ
precisely by getting a counterexample disproving Q, q |=LTL ¬ψ.
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Decidability of Propositional LTL (II)

The procedure to decide whether Q, q |=LTL φ holds is called a
model checking algorithm.

As explained in the Appendix, the
problem can be reduced to a decidable emptiness check for regular
languages, where a trace τ ∈ [N → P(Π)] is viewed as an infinite
word in the alphabet P(Π). Just as P(Π)∗ denotes a set of finite
words, P(Π)ω =def [N → P(Π)] denotes a set of infinite words.
The regular languages we need are subsets L ⊆ P(Π)ω called
ω-regular languages. They are recognized by finite automata, called
here Büchi automata, and are closed under all Boolean operations.
Furthermore, it is decidable wether any such L ⊆ P(Π)ω is empty.

The two key crucial facts are: (1) ∀φ ∈ LTL(Π), the language
Lφ =def {τ ∈ P(Π)ω | τ |=LTL φ} is ω-regular, and (2)
Q, q |=LTL φ iff Tr(Q•)q =def {π; preds | π ∈ Path(Q•)q} ⊆ Lφ.
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here Büchi automata, and are closed under all Boolean operations.

Furthermore, it is decidable wether any such L ⊆ P(Π)ω is empty.

The two key crucial facts are: (1) ∀φ ∈ LTL(Π), the language
Lφ =def {τ ∈ P(Π)ω | τ |=LTL φ} is ω-regular, and (2)
Q, q |=LTL φ iff Tr(Q•)q =def {π; preds | π ∈ Path(Q•)q} ⊆ Lφ.

3/1



Program Verification: Lecture 21

Decidability of Propositional LTL (II)

The procedure to decide whether Q, q |=LTL φ holds is called a
model checking algorithm. As explained in the Appendix, the
problem can be reduced to a decidable emptiness check for regular
languages, where a trace τ ∈ [N → P(Π)] is viewed as an infinite
word in the alphabet P(Π). Just as P(Π)∗ denotes a set of finite
words, P(Π)ω =def [N → P(Π)] denotes a set of infinite words.
The regular languages we need are subsets L ⊆ P(Π)ω called
ω-regular languages. They are recognized by finite automata, called
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here Büchi automata, and are closed under all Boolean operations.
Furthermore, it is decidable wether any such L ⊆ P(Π)ω is empty.

The two key crucial facts are:

(1) ∀φ ∈ LTL(Π), the language
Lφ =def {τ ∈ P(Π)ω | τ |=LTL φ} is ω-regular, and (2)
Q, q |=LTL φ iff Tr(Q•)q =def {π; preds | π ∈ Path(Q•)q} ⊆ Lφ.

3/1



Program Verification: Lecture 21

Decidability of Propositional LTL (II)

The procedure to decide whether Q, q |=LTL φ holds is called a
model checking algorithm. As explained in the Appendix, the
problem can be reduced to a decidable emptiness check for regular
languages, where a trace τ ∈ [N → P(Π)] is viewed as an infinite
word in the alphabet P(Π). Just as P(Π)∗ denotes a set of finite
words, P(Π)ω =def [N → P(Π)] denotes a set of infinite words.
The regular languages we need are subsets L ⊆ P(Π)ω called
ω-regular languages. They are recognized by finite automata, called
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The Maude Model Checker

Lecture 20 explained how, given an admissible system module M
with rewrite theory R = (Σ,E ∪ B,R), we can equationally define
(possibly parametric) state predicates Π in an extended module
M-PREDS, thus defining the Kripke structure CΠ

R.

Given a ground LTL formula φ ∈ LTL(Π) and an initial state
[u] ∈ CΣ/E∪B,State having a finite set of reachable states, we can

decide the satisfaction relation CΠ
R, [u] |=LTL φ by applying the

general LTL decidability result to the Kripke structure CΠ
R.

Maude uses an on-the-fly LTL model checking procedure that
performs the ω-regular language operations (see page 3 above and
further details in the Appendix). Specifically, a procedure of the
kind described in §9.5 of Clarke, Grumberg, and Peled’s Model
Checking, MIT Press, 2001, that I sketch in what follows.
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The Maude Model Checker (II)

The basis of this procedure (further explained in the Appendix) is
the following. Each LTL formula φ has an associated Büchi
automaton Bφ whose acceptance ω-language is exactly that the set
of traces satisfying φ.

We can then reduce the satisfaction problem

CΠ
R, [u] |=LTL φ

to the emptiness problem of the language accepted by the
synchronous product of B¬φ with (the Büchi automaton
B(CΠ•

R , [u]) associated to) CΠ
R, [u]. The formula φ is satisfied iff

such a language is empty. The model checking procedure checks
emptiness by searching for a counterexample, that is, for an infinite
path π in CΠ•

R from [u] generating a trace τ in the language
recognized by the synchronous product B(CΠ•

R , [u])⊗ B¬φ, i.e., a
trace of CΠ•

R from [u] such that τ ∈ L¬φ.
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The Maude Model Checker (III)

How do we then model check a given LTL formula φ in Maude for
a given initial state [u] in an admissible system module M whose
state predicates Π have been specified in M-PREDS?

We define a
new module, say M-CHECK, according to the following pattern:

mod M-CHECK is

protecting M-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER . *** optional

op init : -> State . *** optional

eq init = u . *** optional

endm

The declaration of init is not necessary: it is a matter of
convenience, since the initial state u may be a large term.
Including the module LTL-SIMPLIFIER is also optional. Its
purpose is to simplify the formula ¬φ to generate a smaller Büchi
automaton B¬φ, since |B¬φ| is exponential on |φ|.
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The LTL Module

MODEL-CHECKER imports the following LTL functional module (in
the file model-checker.maude) providing syntax for LTL formulas:

mod LTL is

protecting BOOL .

sort Formula .

*** primitive LTL operators

ops True False : -> Formula [ctor format (g o)] .

op ~_ : Formula -> Formula [ctor prec 53 format (r o d)] .

op _/\_ : Formula Formula -> Formula [comm ctor gather (E e)

prec 55 format (d r o d)] .

op _\/_ : Formula Formula -> Formula [comm ctor gather (E e)

prec 59 format (d r o d)] .

op O_ : Formula -> Formula [ctor prec 53 format (r o d)] .

op _U_ : Formula Formula -> Formula [ctor prec 63 format (d r o d)] .

op _R_ : Formula Formula -> Formula [ctor prec 63 format (d r o d)] .
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The LTL Module (II)

*** defined LTL operators

op _->_ : Formula Formula -> Formula [gather (e E) prec 65

format (d r o d)] .

op _<->_ : Formula Formula -> Formula [prec 65 format (d r o d)] .

op <>_ : Formula -> Formula [prec 53 format (r o d)] .

op []_ : Formula -> Formula [prec 53 format (r d o d)] .

op _W_ : Formula Formula -> Formula [prec 63 format (d r o d)] .

op _|->_ : Formula Formula -> Formula [prec 63 format (d r o d)] .

*** leads-to

op _=>_ : Formula Formula -> Formula [gather (e E) prec 65 format (d r o d)] .

op _<=>_ : Formula Formula -> Formula [prec 65 format (d r o d)] .

vars f g : Formula .

eq f -> g = ~ f \/ g .

eq f <-> g = (f -> g) /\ (g -> f) .

eq <> f = True U f .

eq [] f = False R f .

eq f W g = (f U g) \/ [] f .

eq f |-> g = [](f -> (<> g)) .

eq f => g = [] (f -> g) .

eq f <=> g = [] (f <-> g) .
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The LTL Module (III)

*** negative normal form

eq ~ True = False .

eq ~ False = True .

eq ~ ~ f = f .

eq ~ (f \/ g) = ~ f /\ ~ g .

eq ~ (f /\ g) = ~ f \/ ~ g .

eq ~ O f = O ~ f .

eq ~(f U g) = (~ f) R (~ g) .

eq ~(f R g) = (~ f) U (~ g) .

endfm

The set Π of state predicates is not specified. This happens in
MODEL-CHECKER through declaration: subsort Prop < Formula

and the importation of M-PREDS, where Π is equationally specified.

Since, for model checking, LTL formulas are put in negative normal
form, we also need as constructors the duals of the basic
constructor connectives ⊤, ⃝, U , and ∨, i.e., the dual connectives:
⊥, R, and ∧ (⃝ is self-dual).
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The Maude Model Checker (IV)

The module MODEL-CHECKER is as follows.

fmod MODEL-CHECKER is protecting QID . including SATISFACTION .

including LTL .

subsort Prop < Formula .

*** transitions and results

sorts RuleName Transition TransitionList ModelCheckResult .

subsort Qid < RuleName .

subsort Transition < TransitionList .

subsort Bool < ModelCheckResult .

ops unlabeled deadlock : -> RuleName .

op {_,_} : State RuleName -> Transition [ctor] .

op nil : -> TransitionList [ctor] .

op __ : TransitionList TransitionList -> TransitionList [ctor assoc id: nil] .

op counterexample : TransitionList TransitionList -> ModelCheckResult [ctor] .

op modelCheck : State Formula ~> ModelCheckResult [special ( ... )] .

endfm
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Program Verification: Lecture 21

A MUTEX Example

Its key operator is modelCheck (whose special attribute has
been omitted here), which takes an initial state and an LTL
formula and returns either the Boolean true if the formula is
satisfied, or a counterexample when it is not satisfied.

Let us illustrate the use of MODEL-CHECKER with a very simple
MUTEX mutual exclusion protocol with two processes a and b.

mod MUTEX is

sorts Name Mode Proc Token Conf .

subsorts Token Proc < Conf .

op none : -> Conf .

op __ : Conf Conf -> Conf [assoc comm id: none] .

ops a b : -> Name .

ops wait critical : -> Mode .

op [_,_] : Name Mode -> Proc .

ops * $ : -> Token .

rl [a-enter] : $ [a,wait] => [a,critical] .

rl [b-enter] : * [b,wait] => [b,critical] .

rl [a-exit] : [a,critical] => [a,wait] * .

rl [b-exit] : [b,critical] => [b,wait] $ .

endm
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A MUTEX Example (II)

mod MUTEX-PREDS is protecting MUTEX . including SATISFACTION .

subsort Conf < State .

ops crit wait : Name -> Prop .

var N : Name .

var C : Conf .

eq [N,critical] C |= crit(N) = true .

eq [N,wait] C |= wait(N) = true .

endm

mod MUTEX-CHECK is

protecting MUTEX-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

ops initial1 initial2 : -> Conf .

eq initial1 = $ [a,wait] [b,wait] .

eq initial2 = * [a,wait] [b,wait] .

endm
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A MUTEX Example (III)

We are now ready to model check different LTL properties of
MUTEX. The first obvious property to check is mutual exclusion:

Maude> red modelCheck(initial1,[] ~(crit(a) /\ crit(b))) .

result Bool: true

Maude> red modelCheck(initial2,[] ~(crit(a) /\ crit(b))) .

result Bool: true
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A MUTEX Example (IV)

We can also model check the strong fairness property (a kind of
liveness property) that if a process waits infinitely often, then it is
in its critical section infinitely often:

Maude> red modelCheck(initial1,([] <> wait(a)) -> ([] <> crit(a))) .

result Bool: true

Maude> red modelCheck(initial1,([] <> wait(b)) -> ([] <> crit(b))) .

result Bool: true

Maude> red modelCheck(initial2,([] <> wait(a)) -> ([] <> crit(a))) .

result Bool: true

Maude> red modelCheck(initial2,([] <> wait(b)) -> ([] <> crit(b))) .

result Bool: true
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A MUTEX Example (V)

Of course, not all properties are true. Therefore, instead of a
success we can get a counterexample showing why a property fails.
Suppose that we want to check whether, beginning in the state
initial1, process b will always be waiting. We then get the
counterexample:

Maude> red modelCheck(initial1,[] wait(b)) .

result ModelCheckResult:

counterexample({$ [a,wait] [b,wait],’a-enter}

{[a,critical] [b,wait],’a-exit}

{* [a,wait] [b,wait],’b-enter},

{[a,wait] [b,critical],’b-exit}

{$ [a,wait] [b,wait],’a-enter}

{[a,critical] [b,wait],’a-exit}

{* [a,wait] [b,wait],’b-enter})
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Program Verification: Lecture 21

The Maude Model Checker (V)

The main counterexample term constructors are:

op {_,_} : State RuleName -> Transition .

op nil : -> TransitionList [ctor] .

op __ : TransitionList TransitionList -> TransitionList [ctor assoc id: nil] .

op counterexample : TransitionList TransitionList -> ModelCheckResult [ctor] .

A counterexample is a pair consisting of two lists of transitions: the
first is a finite path beginning in the initial state, and the second
describes a loop. This is because, if an LTL formula φ is not
satisfied by a finite-state Kripke structure, it is always possible to
find a counterexample for φ having the form of a path of
transitions followed by a cycle. Note that each transition is
represented as a pair, consisting of a state and the label of the rule
applied to reach the next state.
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Program Verification: Lecture 21

COMM Revisited

In Lecture 22 we defined equationally the state predicates used in
formalizing the requirements for successful communication between
a sender A and a receiver B as a parametric formula.

Now we can
verify it for any initial state with a list of data to be sent:
omod COMM-CHECK is

protecting COMM-PREDS .

inc MODEL-CHECKER .

vars A B : Oid . var L : List .

op success-comm : Oid Oid List -> Formula .

eq success-comm(A,B,L) =

<> ((~ enabled) /\ no-msgs /\ holds(B,L) /\ holds(A,nil) /\

(~ waits-ack(A)) /\ cnt(A,| L |) /\ cnt(B,| L |)) .

endom

red modelCheck(init(’a,’b,1 ; 2 ; 3),success-comm(’a,’b,1 ; 2 ; 3)) .

result Bool: true
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COMM Revisited (II)

Usually, by a deadlock we mean an unwanted terminating state.

For
example, the final state guaranteed by the success-comm formula
is a wanted terminating state and therefore not a deadlock in this
sense. So we can also ask: Are there any deadlocks in COMM? The
LTL formula asserting that there are none is remarkably simple:

red modelCheck(init(’a,’b,nil),((~ enabled) => success-comm(’a,’b,nil))) .

result Bool: true

red modelCheck(init(’a,’b,1 ; 2 ; 3),((~ enabled) =>

success-comm(’a,’b,1 ; 2 ; 3))) .

result Bool: true

red modelCheck(init(’a,’b,1 ; 2 ; 3 ; 4 ; 5),((~ enabled) =>

success-comm(’a,’b,1 ; 2 ; 3 ; 4 ; 5))) .

result Bool: true

18/1



Program Verification: Lecture 21

COMM Revisited (II)

Usually, by a deadlock we mean an unwanted terminating state. For
example, the final state guaranteed by the success-comm formula
is a wanted terminating state and therefore not a deadlock in this
sense.

So we can also ask: Are there any deadlocks in COMM? The
LTL formula asserting that there are none is remarkably simple:

red modelCheck(init(’a,’b,nil),((~ enabled) => success-comm(’a,’b,nil))) .

result Bool: true

red modelCheck(init(’a,’b,1 ; 2 ; 3),((~ enabled) =>

success-comm(’a,’b,1 ; 2 ; 3))) .

result Bool: true

red modelCheck(init(’a,’b,1 ; 2 ; 3 ; 4 ; 5),((~ enabled) =>

success-comm(’a,’b,1 ; 2 ; 3 ; 4 ; 5))) .

result Bool: true

18/1



Program Verification: Lecture 21

COMM Revisited (II)

Usually, by a deadlock we mean an unwanted terminating state. For
example, the final state guaranteed by the success-comm formula
is a wanted terminating state and therefore not a deadlock in this
sense. So we can also ask: Are there any deadlocks in COMM? The
LTL formula asserting that there are none is remarkably simple:

red modelCheck(init(’a,’b,nil),((~ enabled) => success-comm(’a,’b,nil))) .

result Bool: true

red modelCheck(init(’a,’b,1 ; 2 ; 3),((~ enabled) =>

success-comm(’a,’b,1 ; 2 ; 3))) .

result Bool: true

red modelCheck(init(’a,’b,1 ; 2 ; 3 ; 4 ; 5),((~ enabled) =>

success-comm(’a,’b,1 ; 2 ; 3 ; 4 ; 5))) .

result Bool: true

18/1



Program Verification: Lecture 21

COMM Revisited (II)

Usually, by a deadlock we mean an unwanted terminating state. For
example, the final state guaranteed by the success-comm formula
is a wanted terminating state and therefore not a deadlock in this
sense. So we can also ask: Are there any deadlocks in COMM? The
LTL formula asserting that there are none is remarkably simple:

red modelCheck(init(’a,’b,nil),((~ enabled) => success-comm(’a,’b,nil))) .

result Bool: true

red modelCheck(init(’a,’b,1 ; 2 ; 3),((~ enabled) =>

success-comm(’a,’b,1 ; 2 ; 3))) .

result Bool: true

red modelCheck(init(’a,’b,1 ; 2 ; 3 ; 4 ; 5),((~ enabled) =>

success-comm(’a,’b,1 ; 2 ; 3 ; 4 ; 5))) .

result Bool: true

18/1
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COMM Revisited (III)

We can try to ask an answer a stronger question about COMM.

Given a parametric initial state init(A,B,L) the
success-comm(A,B,L) property ensures that L is received
correctly. But is the order of L preserved in all intermediate states
of the computation?

This question is interesting because it requires us to:

1 Think carefully about COMM to see how we can specify those
intermediate states as a disjunction of constrained constructor
patterns, and therefore as a (parametric) state predicate.

2 Once we have done so, verify that this conjectured set of
intermediate states is an invariant from init(A,B,L).

Part (1) of the question can be answered by adding to COMM-PREDS

the following parametric state predicate and its defining equations:
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COMM Revisited (IV)

*** parametric predicate: in-order-comm

op in-order-comm : Oid Oid List -> Prop [ctor] .

ceq < A : Sender | buff : L2, rec : B, cnt : M, ack-w : false >

< B : Receiver | buff : L1, snd : A, cnt : M >

|= in-order-comm(A,B,L) = true if L = L1 ; L2 /\ M = | L1 | .

ceq < A : Sender | buff : L2, rec : B, cnt : M, ack-w : true >

(to B from A val N cnt M)

< B : Receiver | buff : L1, snd : A, cnt : M >

|= in-order-comm(A,B,L) = true if L = L1 ; N ; L2 /\ | L1 | = M .

ceq < A : Sender | buff : L2, rec : B, cnt : M, ack-w : true >

(to A from B ack M)

< B : Receiver | buff : (L1 ; N), snd : A, cnt : s(M) >

|= in-order-comm(A,B,L) = true if L = L1 ; N ; L2 /\ | L1 | = M .

Note that, as explained in Lecture 22, each conditional equation
uses each of the constrained constructor patterns in the disjunction
to define the in-order-comm state predicate.
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COMM Revisited (IV)
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op in-order-comm : Oid Oid List -> Prop [ctor] .

ceq < A : Sender | buff : L2, rec : B, cnt : M, ack-w : false >

< B : Receiver | buff : L1, snd : A, cnt : M >

|= in-order-comm(A,B,L) = true if L = L1 ; L2 /\ M = | L1 | .

ceq < A : Sender | buff : L2, rec : B, cnt : M, ack-w : true >

(to B from A val N cnt M)

< B : Receiver | buff : L1, snd : A, cnt : M >

|= in-order-comm(A,B,L) = true if L = L1 ; N ; L2 /\ | L1 | = M .

ceq < A : Sender | buff : L2, rec : B, cnt : M, ack-w : true >

(to A from B ack M)

< B : Receiver | buff : (L1 ; N), snd : A, cnt : s(M) >

|= in-order-comm(A,B,L) = true if L = L1 ; N ; L2 /\ | L1 | = M .

Note that, as explained in Lecture 22, each conditional equation
uses each of the constrained constructor patterns in the disjunction
to define the in-order-comm state predicate.

20/1



Program Verification: Lecture 21

COMM Revisited (V)

We can now answer Part (2) of the question by giving, for various
instances of the parametric initial state init(A,B,L), the model
checking commands:

red modelCheck(init(’a,’b,nil),[] in-order-comm(’a,’b,nil)) .

result Bool: true

red modelCheck(init(’a,’b,1 ; 2 ; 3),[] in-order-comm(’a,’b,1 ; 2 ; 3)) .

result Bool: true

red modelCheck(init(’a,’b,1 ; 2 ; 3 ; 4 ; 5),

[] in-order-comm(’a,’b,1 ; 2 ; 3 ; 4 ; 5)) .

result Bool: true
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COMM Revisited (V)
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Program Verification: Lecture 21

COMM Revisited (VI)

As a last example, we can use COMM to illustrate how we can verify
LTL(Π)+ formulas Eφ by model checking ¬φ and getting a
counterexample as a proof of Eφ.

The point is that LTL(Π)+ allows us to ask useful questions
regarding possible relations between reachable states not
expressible in LTL(Π). For example, we can ask:

Are there states reachable from init(A,B,L) such that the
counters of A and B hold different values?

We can express the negation ¬φ of this property by adding to
CHECK-PREDS the following parametric predicate definition:
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Program Verification: Lecture 21

COMM Revisited (VII)

op same-cnts : Oid Oid -> Prop .

eq < A : Sender | buff : L2, rec : B, cnt : N, ack-w : TV >

< B : Receiver | buff : L1, snd : A, cnt : N > C |= same-cnts(A,B) = true .

Now we can ask and answer the original question Eφ(A,B), i.e.,

E <> ~ same-cnts(A,B)

by model checking ¬φ(A,B), that is, by model checking

[] same-cnts(A,B)

and getting as a proof the counterexample:
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Program Verification: Lecture 21

COMM Revisited (VIII)

red modelCheck(init(’a,’b,1),[] same-cnts(’a,’b)) .

result ModelCheckResult: counterexample(

{< ’a : Sender | buff : 1, rec : ’b, cnt : 0, ack-w : false >

< ’b : Receiver | buff : nil, cnt : 0, snd : ’a >,’snd}

{< ’a : Sender | buff : nil, rec : ’b, cnt : 0, ack-w : true >

< ’b : Receiver | buff : nil, cnt : 0, snd : ’a >

to ’b from ’a val 1 cnt 0,’rec}

{< ’a : Sender | buff : nil, rec : ’b, cnt : 0, ack-w : true >

< ’b : Receiver | buff : 1, cnt : 1, snd : ’a >

to ’a from ’b ack 0,’ack-rec},

{< ’a : Sender | buff : nil, rec : ’b, cnt : 1, ack-w : false >

< ’b : Receiver | buff : 1, cnt : 1, snd : ’a >,deadlock})
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