Program Verification: Lecture 20

José Meseguer

University of Illinois at Urbana-Champaign

LTL Verification of Concurrent Programs

Modal logic can express reachability properties. But concurrent systems must also satisfy so-called liveness properties that involve infinite computations such as, e.g., (i) infinite occurrence of desired states, e.g., process non-starvation; (ii) fairness assumptions, which are crucial in many communication protocols, and (iii) infinite occurrence of desired communication patterns.

Various temporal logics extend modal logics so as to express such infinite-behavior properties. We shall study linear temporal logic (LTL), which is arguably the most user-friendly temporal logic,¹ as well as explicit-state and symbolic LTL verification methods for both declarative and imperative concurrent programs.

¹See M. Vardi, "Branching vs. Linear Time: Final Showdown," Proc. *TACAS*, 2001, 1-22, Springer LNCS 2031, 2001.

The Syntax of $LTL(\Pi)$

Given a set Π of state predicates (also called "*atomic* propositions"), we define the formulae of the propositional linear temporal logic $LTL(\Pi)$ inductively as follows:

- **True**: $\top \in LTL(\Pi)$.
- State predicates: If $p \in \Pi$, then $p \in LTL(\Pi)$.
- Next operator: If $\varphi \in LTL(\Pi)$, then $\bigcirc \varphi \in LTL(\Pi)$.
- Until operator: If $\varphi, \psi \in LTL(\Pi)$, then $\varphi \mathcal{U} \psi \in LTL(\Pi)$.
- Boolean connectives: If $\varphi, \psi \in LTL(\Pi)$, then the formulae $\neg \varphi$, and $\varphi \lor \psi$ are in $LTL(\Pi)$.

The Syntax of $LTL(\Pi)$ (II)

Other LTL connectives can be defined as follows:

- Other Boolean connectives:
 - False: $\bot = \neg \top$
 - Conjunction: $\varphi \wedge \psi = \neg((\neg \varphi) \lor (\neg \psi))$
 - Implication: $\varphi \to \psi = (\neg \varphi) \lor \psi$.
- Other temporal operators:
 - Eventually: $\Diamond \varphi = \top \ \mathcal{U} \ \varphi$
 - Always: $\Box \varphi = \neg \Diamond \neg \varphi$
 - Release: $\varphi \mathcal{R} \psi = \neg((\neg \varphi) \mathcal{U} (\neg \psi))$
 - Weak Until: $\varphi \mathcal{W} \psi = (\varphi \mathcal{U} \psi) \lor (\Box \varphi)$
 - Leads-to: $\varphi \rightsquigarrow \psi = \Box(\varphi \rightarrow (\Diamond \psi))$
 - Strong implication: $\varphi \Rightarrow \psi = \Box(\varphi \rightarrow \psi)$
 - Strong equivalence: $\varphi \Leftrightarrow \psi = \Box(\varphi \leftrightarrow \psi).$

The Models of LTL

The models of LTL are exactly those of modal logic, namely, Kripke structures over an alphabet Π of state predicate names. Recall from Lecture 18 that they are just triples $Q = (Q, \rightarrow_Q, \neg_Q)$ with (Q, \rightarrow_Q) a transition system and $\neg_Q : \Pi \ni p \mapsto p_Q \in \mathcal{P}(Q)$ a meaning function interpreting each predicate name p as a subset of states $p_Q \subseteq Q$.

The semantics of LTL is defined over maximal computation paths; that is, over sequences of state transitions that cannot be further continued. In a Kripke structure $Q = (Q, \rightarrow_Q, _{-Q})$ there are two kinds of such maximal computations paths namely, (1) finite maximal paths of the form $q_0 \rightarrow_Q q_1 \rightarrow_Q q_2 \dots q_{n-1} \rightarrow_Q q_n$ with q_n a deadlock state, and (2) infinite paths of the form:

$$q_0 \rightarrow_{\mathcal{Q}} q_1 \rightarrow_{\mathcal{Q}} q_2 \dots q_n \rightarrow_{\mathcal{Q}} q_{n+1} \dots$$

(日)

The Models of LTL (II)

For the sake of giving a simpler LTL semantics (based only on infinite paths) we can extend any Kripke structure $\mathcal{Q} = (Q, \rightarrow_{\mathcal{Q}}, _{-\mathcal{Q}})$ to its deadlock-free extension $\mathcal{Q}^{\bullet} = (Q, \rightarrow_{\mathcal{Q}}^{\bullet}, _{-\mathcal{Q}})$, where

$$\rightarrow^{\bullet}_{\mathcal{Q}} =_{\mathit{def}} \rightarrow_{\mathcal{Q}} \uplus \{(q,q) \in Q^2 \mid \not\exists q' \in Q \; \textit{s.t.} \; q \rightarrow_{\mathcal{Q}} q' \}$$

That is, we add to $\rightarrow_{\mathcal{Q}}$ a loop transition $q \rightarrow q$ for each deadlock state q, thus making \mathcal{Q}^{\bullet} deadlock free. Therefore, all maximal computation paths in \mathcal{Q}^{\bullet} are infinite. By construction, the maximal paths of \mathcal{Q}^{\bullet} are the infinite paths of \mathcal{Q} plus the infinite paths of the form

$$q_1 \rightarrow_{\mathcal{Q}} q_2 \ldots q_{n-1} \rightarrow_{\mathcal{Q}} q_n \rightarrow q_n \rightarrow q_n \ldots$$

such that q_n is a deadlock state in Q. In this way, both maximal finite and infinite paths of Q become infinite paths of Q^{\bullet} .

Paths and Traces in a Kripke Structure

We can formalize the set of computation paths in a Kripke structure $Q = (Q, \rightarrow_Q, _{-Q})$ as the set of functions:

$$\textit{Paths}(\mathcal{Q}) =_{\textit{def}} \{ \pi : \mathbb{N} \to \mathcal{Q} \mid \forall n \in \mathbb{N}, \ \pi(n) \to_{\mathcal{Q}} \pi(n+1) \}$$

Likewise, the set of computation paths in Q starting at state $q \in Q$ is defined as the set $Paths(Q)_q =_{def} \{\pi \in Paths(Q) \mid \pi(0) = q\}.$

Given an alphabet Π of predicate symbols, the set $\mathcal{P}(\Pi)^{\omega}$ of all Π -traces is, by definition, the function set $\mathcal{P}(\Pi)^{\omega} =_{def} [\mathbb{N} \to \mathcal{P}(\Pi)].$

Consider the function preds : $Q \ni q \mapsto \{p \in \Pi \mid q \in p_Q\} \in \mathcal{P}(\Pi)$ maping each state q to the set of predicates holding in it. Define the set Tr(Q) of Π -traces of Q by $Tr(Q) =_{def} \{\pi; preds \mid \pi \in Paths(Q)\}$. Likewise, the set $Tr(Q)_q$ of Π -traces starting at q is defined as $Tr(Q)_q =_{def} \{\pi; preds \mid \pi \in Paths(Q)_q\}$.

The Semantics of $LTL(\Pi)$

As for modal logic, the semantics of $LTL(\Pi)$ in a Kripke structure $Q = (Q, \rightarrow_Q, \neg_Q)$ over predicates Π is defined by triples $Q, I \models_{LTL} \varphi$, with $I \subseteq Q$ and $\varphi \in LTL(\Pi)$. By definition,

$$\mathcal{Q}, I \models_{LTL} \varphi \Leftrightarrow_{def} \forall q \in I, \ \forall \tau \in Tr(\mathcal{Q}^{\bullet})_{q}, \ \tau \models_{LTL} \varphi.$$

Let us unpack this definition. Is says that $Q, I \models_{LTL} \varphi$ holds iff for each intial state $q \in I$ and each infinite computation path $\pi \in Paths(Q^{\bullet})_q$ starting at q in the deadlock-free extension Q^{\bullet} , the trace $\tau = \pi$; preds satisfies φ . Note, furthermore, that in the relation $\tau \models_{LTL} \varphi$ the Kripke structure Q has completely disappeared! Only traces are involved. The only remaining task is to define the trace satisfaction relation $\tau \models_{LTL} \varphi$ by induction on the structure of $\varphi \in LTL(\Pi)$:

• We always have $\tau \models_{LTL} \top$.

The Semantics of $LTL(\Pi)$ (II)

- For $p \in \Pi$, $\tau \models_{LTL} p \Leftrightarrow_{def} p \in \tau(0)$.
- For $\bigcirc \varphi \in LTL(\Pi)$, $\tau \models_{LTL} \bigcirc \varphi \Leftrightarrow_{def} s; \tau \models_{LTL} \varphi$, where $s : \mathbb{N} \longrightarrow \mathbb{N}$ is the successor function.

• For
$$\varphi \ \mathcal{U} \ \psi \in LTL(\Pi)$$
, $\tau \models_{LTL} \varphi \ \mathcal{U} \ \psi \quad \Leftrightarrow_{def}$
 $(\exists j \in \mathbb{N}) \ ((s^{j}; \tau \models_{LTL} \psi) \land ((\forall i \in \mathbb{N}) \ i < j \Rightarrow s^{i}; \tau \models_{LTL} \varphi))$.
where $s^{0} = id_{\mathbb{N}}$ and $s^{n+1} = s; s^{n}$. Therefore, $s^{0}; \tau = \tau$, and for $k > 0, \ s^{k}; \tau$ is the sequence: $\tau(k) \ \tau(k+1) \ \dots \ \tau(k+n) \ \dots$

• For $\neg \varphi \in LTL(\Pi)$, $\tau \models_{LTL} \neg \varphi \Leftrightarrow_{def} \tau \not\models_{LTL} \varphi$.

The Semantics of $LTL(\Pi)$ (III)

• For
$$\varphi \lor \psi \in LTL(\Pi)$$
, $\tau \models_{LTL} \varphi \lor \psi \Leftrightarrow_{def}$
 $\tau \models_{LTL} \varphi$ or $\tau \models_{LTL} \psi$.

Note that, since $Q^{\bullet} = (Q^{\bullet})^{\bullet}$, it follows immediately from this LTL semantics that for any Kripke structure Q on predicates Π , set of initial states $I \subseteq Q$ and formula $\varphi \in LTL(\Pi)$ we have the equivalence:

$$\mathcal{Q}, I \models_{LTL} \varphi \Leftrightarrow \mathcal{Q}^{\bullet}, I \models_{LTL} \varphi.$$

However, the Kripke structure we have in mind is the fully general Q, which need not be deadlock-free. Q^{\bullet} is just a technical device to make the definition of the \models_{LTL} relation easier.

A Puzzle: $LTL(\Pi)$ is not Semantically Closed under Negation

Call a logic \mathcal{L} with negation semantically closed under negation if for any model \mathbb{M} and sentence φ we have the equivalence:

$$\mathbb{M} \models \neg \varphi \; \Leftrightarrow \; \mathbb{M} \not\models \varphi$$

where a "sentence" is a formula with no unquantified variables. Since the formulas in $LTL(\Pi)$ have no variables at all, they can be called sentences. Yet, the above equivalence is violated. Indeed:

Consider a Kripke structure Q with states $Q = \{a, b, c\}$, transitions $a \to b$ and $a \to c$, $\Pi = \{p, q\}$ and with $preds(a) = preds(c) = \{p, q\}$ and $preds(b) = \{q\}$. Clearly, $Q, a \not\models_{LTL} \Box p$, so we would expect to have $Q, a \models_{LTL} \neg \Box p$, i.e., $Q, a \models_{LTL} \Diamond \neg p$. But this is false, since it does not hold in the infinite Q^{\bullet} path

A Puzzle: $LTL(\Pi)$ is not Semantically Closed under Negation (II)

The plot thickens if we consider the modal logic equivalence $Q, a \not\models_{54} \Box p \Leftrightarrow Q, a \models_{54} \Diamond \neg p$, plus the easy to check equivalence $Q, a \not\models_{54} \Box p \Leftrightarrow Q, a \not\models_{LTL} \Box p$. They imply that $Q, a \models_{54} \Diamond \neg p \Leftrightarrow Q, a \models_{LTL} \Diamond \neg p$, which clearly shows that there is something awry about the LTL meaning of $\Diamond \neg p$. What is it?

The puzzle's solution is that, $\mathcal{Q}, a \not\models_{LTL} \Box p$ exactly means $\exists \pi \in Paths(\mathcal{Q}^{\bullet})_a \exists n \in \mathbb{N} \text{ s.t. } p \notin preds(\pi(n))$, which exactly means that $\mathcal{Q}, a \models_{S4} \Diamond \neg p$, whereas $\mathcal{Q}, a \models_{LTL} \Diamond \neg p$ exactly means that $\forall \pi \in Paths(\mathcal{Q}^{\bullet})_a \exists n \in \mathbb{N} \text{ s.t. } p \notin preds(\pi(n)).$

That is, all LTL formulas are universally path quantified in an implicit manner, whereas $\Diamond \neg p$ is existentially path quantified in $Q, a \models_{S4} \Diamond \neg p$. That's why $Q, a \models_{S4} \Diamond \neg p \Leftrightarrow Q, a \models_{LTL} \Diamond \neg p$.

The $LTL^+(\Pi)$ Temporal Logic

This puzzle offers an excellent opportunity, namely, to easily extend $LTL(\Pi)$ to a more expressive logic $LTL^+(\Pi)$, where both universal and existential path quantifications are allowed. Indeed, universal (**A**) and existential (**E**) path quantifiers are explicitly used in other temporal logics such as $CTL(\Pi)$ and $CTL^*(\Pi)$.² The definition of $LTL^+(\Pi)$ is very simple:

 $LTL^+(\Pi) =_{def} LTL(\Pi) \uplus \{ \mathbf{E}\varphi \mid \varphi \in LTL(\Pi) \}$. This makes clear that φ abbreviates $\mathbf{A}\varphi$. $LTL^+(\Pi)$'s extended semantics just adds:

$$\mathcal{Q}, I \models_{LTL} \mathbf{E} \varphi \Leftrightarrow_{def} \exists q \in I, \ \exists \tau \in Tr(\mathcal{Q}^{\bullet})_q, \ \tau \models_{LTL} \varphi.$$

Ex.22.1. Prove that for *B* any Boolean combination of Π -predicates, $Q, I \models_{S4} \Box B \Leftrightarrow Q, I \models_{LTL} \Box B$, and $Q, I \models_{S4} \Diamond B \Leftrightarrow Q, I \models_{LTL^+} \mathbf{E} \Diamond B$.

²See, e.g., E.M. Clarke, O. Grumberg and D.A. Peled, "Model Checking,' MIT Press, 2001.

Rewriting Logic as a Semantic Framework for Kripke Structures

The semantics of LTL and LTL⁺ still leave open the system specification question: *How can we conveniently specify Kripke Structures*? For finite Kripke structures the answer is trivial. But the Kripke structures of most (idealized) concurrent systems are infinite, and answering well this question is a non-trivial matter.

As shown by Meseguer, Palomino and Martí-Oliet³ any computable (in their terminology "recursive") Kripke structure has a finite specification as a computable Kripke structure $\mathbb{C}_{\mathcal{R}}^{\Pi}$ associated to an admissible rewrite theory \mathcal{R} . Therefore, without loss of generality we may focus on specifying Kripke structures of the form $\mathbb{C}_{\mathcal{R}}^{\Pi}$.

³In §4.2, Theorem 6, of "Algebraic Simulations," *J. Log. Alg. Prog.* 79, 103–143 (2010).

The Kripke Structure $\mathbb{C}_{\mathcal{R}}^{\Pi}$

For LTL verification, we will use pattern disjunctions $u_1|\varphi_1 \vee \ldots \vee u_n|\varphi_n$ as state predicates. But we need to name them by some symbol $p \in \Pi$, because such p's must appear in LTL formulas. Consequently, we will also make Π explicit in the Kripke structure $\mathbb{C}_{\mathcal{R}}^{\Pi}$. The meaning function of $\mathbb{C}_{\mathcal{R}}^{\Pi}$ will have the form:

$$-\mathbb{C}_{\mathcal{R}}^{\Pi}:\Pi\ni p\mapsto (u_{1}|\varphi_{1}\vee\ldots\vee u_{n}|\varphi_{n})\mapsto \bigcup_{1\leq i\leq n}\llbracket u_{i}|\varphi_{i}\rrbracket\in \mathcal{P}(\mathcal{C}_{\Sigma/\vec{E},B,State})$$

and we will specify it equationally as explained below.

Equationally Specifying the Meaning Function $_{-\mathbb{C}_{p}^{n}}$

Suppose that ${}_{-\mathbb{C}_{\mathcal{R}}^{\Pi}}$ maps $p \in \Pi$ to $\bigcup_{1 \leq i \leq n} \llbracket u_i | \varphi_i \rrbracket \in \mathcal{P}(C_{\Sigma/\vec{E},B,State})$. This is typically an infinite set; but to use it in practice we need a finite descrition of it. How can we get it? By an admissible functional module extending the underlying equational theory $(\Sigma, E \cup B)$ of $\mathcal{R} = (\Sigma, E \cup B, R)$ into an admissible equational theory $(\Sigma, E \cup B) \subseteq (\Sigma^{\Pi}, E \cup E^{\Pi} \cup B)$ that protects $(\Sigma, E \cup B)$ and is defined as follows. W.L.O.G. we may assume that the functional module defined by $(\Sigma, E \cup B)$ itself protects BOOL. $(\Sigma^{\Pi}, E \cup E^{\Pi} \cup B)$ is obtained by adding:

- A sort *Prop* of state predicates, whose constants are the $p \in \Pi$.
- An operator _ ⊨ _: State Prop → [Bool] which will be used to define the meaning function _{-C^Π_R}. Note that its result sort is the kind [Bool] (we assume that Σ is kind-complete). The reason (protecting the Booleans) will become clear below.

. . .

Equationally Specifying the Meaning Function $_{-\mathbb{C}_{\mathcal{P}}^{\Pi}}$ (II)

- For each p∈ P such that p_{C_R} = U_{1≤i≤n} [[u_i|φ_i]] we add the conditional equations:
 u_i ⊨ p = true if φ_i
 - $u_1 \models p = true \ if \ \varphi_1$

 $u_n \models p = true \ if \ \varphi_n.$

Such equations for all $p \in \Pi$ are denoted E^{Π} .

If $(\Sigma, E \cup B)$ is admissible, so is $(\Sigma^{\Pi}, E \cup E^{\Pi} \cup B)$, since: (i) the rules \vec{E}^{Π} are sort-decreasing and terminating in one step; (ii) the (conditional) critical pairs of the rules \vec{E}^{Π} with themselves are all joinable (all rewrite to *true*), and generate no critical pairs when compared to those in \vec{E} ; and (iii) they are sufficiently complete by construction, since they never add junk to the sort *Bool*. This is remarkable, since \vec{E}^{Π} only defines $u \models p$ in the positive (*true*) case.

Equationally Specifying the Meaning Function $_{-\mathbb{C}_{p}^{\Pi}}$ (III)

How does $(\Sigma^{\Pi}, E \cup E^{\Pi} \cup B)$ define the meaning function ${}_{-\mathbb{C}_{\mathcal{R}}^{\Pi}}$? It does so because, by construction, for each $[u] \in C_{\Sigma/\vec{E},B,State}$ and each $p \in P$ we have the equivalences:

$$[u] \in p_{\mathbb{C}_{\mathcal{R}}^{\Pi}} \Leftrightarrow_{def} [u] \in \bigcup_{1 \le i \le n} \llbracket u_i | \varphi_i \rrbracket \Leftrightarrow (u \models p)!_{\vec{E} \cup \vec{E}^{\Pi}/B} = true.$$

In many applications, even this very general end expressive method of defining the state predicates Π is not expressive enough. This is because, to express some useful properties, we want Π not to consists only of a finite set of constants p_1, \ldots, p_n , but to allow also for parametric state predicates. For example, we may need a predicate p parametric on $n \in \mathbb{N}$, i.e., to have the infinite set of predicates $\{p(n) \mid n \in \mathbb{N}\}$. We can easily extend $(\Sigma^{\Pi}, E \cup E^{\Pi} \cup B)$ for this purpose by:

. . .

Equationally Specifying the Meaning Function $_{-\mathbb{C}_{\mathcal{D}}^{\Pi}}$ (IV)

- Adding an operator p : s₁...s_m → Prop for each predicate p parametric on data elements of sorts s₁,..., s_m.
- Defining the meaning function for such a parametric *p* by equations:

$$u_1 \models p(\vec{v_1}) = true \ if \ arphi_1$$

$$u_n \models p(\vec{v}_n) = true \quad if \quad \varphi_n.$$

where E^{Π} now contains also such equations.

A comon case will have $p(\vec{v}_1) = \ldots = p(\vec{v}_n) = p(\vec{x})$, where \vec{x} is a list of variables of sorts s_1, \ldots, s_m , which may also appear in the patterns u_1, \ldots, u_n . But the above format is more flexible. For example, we may define the meaning of the $\{p(n) \mid n \in \mathbb{N}\}$ by two equations: one for n = 0, and another for n = s(k). Let us illustrate parametric predicates with Lecture 18's COMM protocol.

The COMM Protocol

```
fmod NAT-LIST is
 protecting NAT .
 sort List .
 subsorts Nat < List .
 op nil : -> List .
 op _;_ : List List -> List [assoc id: nil] .
 op |_| : List -> Nat .
                                                 *** length function
 var N : Nat . var L : List .
 eq | nil | = 0.
 eq | N ; L | = s(| L |).
 endfm
omod COMM is protecting NAT-LIST .
 protecting QID .
 subsort Qid < Oid .
 class Sender | buff : List, rec : Oid, cnt : Nat, ack-w : Bool .
 class Receiver | buff : List, snd : Oid, cnt : Nat .
 msg to_from_val_cnt_ : Oid Oid Nat Nat -> Msg .
msg to_from_ack_ : Oid Oid Nat -> Msg .
 op init : Oid Oid List -> Configuration .
                                                 ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @
```

The COMM Protocol (II)

vars N M : Nat . vars L Q : List . vars A B : Oid . var TV : Bool .

rl [snd] : < A : Sender | buff : (N ; L), rec : B, cnt : M, ack-w : false > => (to B from A val N cnt M) < A : Sender | buff : L, cnt : M, ack-w : true > .

rl [rec] : < B : Receiver | buff : L, snd : A, cnt : M >
(to B from A val N cnt M) => (to A from B ack M)
< B : Receiver | buff : (L ; N), snd : A, cnt : s(M) >.

Parametric Properties and Formulas

We have a parametric family of initial states init(A,B,L) about which we would like to verify the following requirement:

Any initial state init(A,B,L) should always terminate in a state where there are no pending messages, L is held by B, A's buffer is empty, and A's and B's counters equal the length of L.

Since this property is parametric on A, B and L, the LTL formula expressing it should also be parametric on A, B and L. Here is a formalization of the above requirement as a parametric formula:

 $(\neg enabled) \land no.msgs \land holds(B, L) \land holds(A, nil) \land$

 $(\neg waits.ack(A)) \land cnt(A, |L|) \land cnt(B, |L|)).$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

We just need to specify the formula's predicate meanings.

Specifying State Predicates in Maude

State predicates can be equationally specified by importing the following SATISFACTION module (in model-checker.maude):

fmod SATISFACTION is
 protecting BOOL .
 sorts State Prop .
 op _|=_ : State Prop ~> Bool [frozen] .
endfm

We can add it to the COMM module and equationally specify all our predicates as follows:

```
in model-checker
omod COMM-PREDS is
protecting COMM . extending SATISFACTION .
subsort Configuration < State .</pre>
```

vars N M : Nat . vars L L1 L2 Q : List . vars A B : Oid . var TV : Bool . var Atts : AttributeSet . var C : Configuration .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Specifying State Predicates in Maude (II)

```
*** no-messages for sender-receiver configurations and enabled predicates
ops no-msgs enabled : -> Prop [ctor] .
eq < A : Sender | buff : L, rec : 'b, cnt : N, ack-w : TV >
< B : Receiver | buff : Q, snd : 'a, cnt : M > |= no-msgs = true .
eq < A : Sender | buff : (N ; L), rec : B, cnt : M, ack-w : false > C
  | = enabled = true.
eq < B : Receiver | buff : L, snd : A, cnt : M >
   (to B from A val N cnt M) C
  | = enabled = true.
eq C (to A from B ack M)
  < A : Sender | buff : L, rec : B, cnt : M, ack-w : true >
  | = enabled = true.
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Specifying State Predicates in Maude (III)

```
*** parametric predicate: object A holds list L in its buffer
```

```
op holds : Qid List -> Prop [ctor] .
```

```
eq < A : Sender | buff : L , Atts > C |= holds(A,L) = true .
eq < B : Receiver | buff : L , Atts > C |= holds(B,L) = true .
```

*** parametric predicate: sender A waits for ack

```
op waits-ack : Qid -> Prop [ctor] .
```

*** parametric predicate: counter's value is N in object O

```
op cnt : Oid Nat -> Prop [ctor] .
```

```
eq < A : Sender | cnt : N , Atts > C |= cnt(A,N) = true . eq < B : Receiver | cnt : N , Atts > C |= cnt(B,N) = true . endom
```

^{25/25} In Lecture 23 we shall model check our parametric formula.

► < = ► < = ► < = < < <</p>