
Program Verification: Lecture 20

Program Verification: Lecture 20

José Meseguer

University of Illinois at Urbana-Champaign

1/25

Program Verification: Lecture 20

LTL Verification of Concurrent Programs

Modal logic can express reachability properties. But concurrent
systems must also satisfy so-called liveness properties that involve
infinite computations such as, e.g., (i) infinite occurrence of
desired states, e.g., process non-starvation; (ii) fairness
assumptions, which are crucial in many communication protocols,
and (iii) infinite occurrence of desired communication patterns.

Various temporal logics extend modal logics so as to express such
infinite-behavior properties. We shall study linear temporal logic
(LTL), which is arguably the most user-friendly temporal logic,1 as
well as explicit-state and symbolic LTL verification methods for
both declarative and imperative concurrent programs.

1See M. Vardi, “Branching vs. Linear Time: Final Showdown,” Proc.
TACAS, 2001, 1-22, Springer LNCS 2031, 2001.

2/25

Program Verification: Lecture 20

The Syntax of LTL(Π)

Given a set Π of state predicates (also called “atomic
propositions”), we define the formulae of the propositional linear
temporal logic LTL(Π) inductively as follows:

True: ⊤ ∈ LTL(Π).

State predicates: If p ∈ Π, then p ∈ LTL(Π).

Next operator: If φ ∈ LTL(Π), then ⃝φ ∈ LTL(Π).

Until operator: If φ,ψ ∈ LTL(Π), then φ U ψ ∈ LTL(Π).

Boolean connectives: If φ,ψ ∈ LTL(Π), then the formulae
¬φ, and φ ∨ ψ are in LTL(Π).

3/25

Program Verification: Lecture 20

The Syntax of LTL(Π) (II)

Other LTL connectives can be defined as follows:

Other Boolean connectives:

False: ⊥ = ¬⊤
Conjunction: φ ∧ ψ = ¬((¬φ) ∨ (¬ψ))
Implication: φ→ ψ = (¬φ) ∨ ψ.

Other temporal operators:

Eventually: 3φ = ⊤ U φ
Always: 2φ = ¬3¬φ
Release: φ R ψ = ¬((¬φ) U (¬ψ))
Weak Until: φW ψ = (φ U ψ) ∨ (2φ)
Leads-to: φ; ψ = 2(φ→ (3ψ))
Strong implication: φ⇒ ψ = 2(φ→ ψ)
Strong equivalence: φ⇔ ψ = 2(φ↔ ψ).

4/25

Program Verification: Lecture 20

The Models of LTL

The models of LTL are exactly those of modal logic, namely,
Kripke structures over an alphabet Π of state predicate names.
Recall from Lecture 18 that they are just triples Q = (Q,→Q, Q)
with (Q,→Q) a transition system and Q : Π ∋ p 7→ pQ ∈ P(Q) a
meaning function interpreting each predicate name p as a subset of
states pQ ⊆ Q.

The semantics of LTL is defined over maximal computation paths;
that is, over sequences of state transitions that cannot be further
continued. In a Kripke structure Q = (Q,→Q, Q) there are two
kinds of such maximal computations paths namely, (1) finite
maximal paths of the form q0 →Q q1 →Q q2 . . . qn−1 →Q qn with
qn a deadlock state, and (2) infinite paths of the form:

q0 →Q q1 →Q q2 . . . qn →Q qn+1 . . .

5/25

Program Verification: Lecture 20

The Models of LTL (II)

For the sake of giving a simpler LTL semantics (based only on
infinite paths) we can extend any Kripke structure
Q = (Q,→Q, Q) to its deadlock-free extension
Q• = (Q,→•

Q, Q), where

→•
Q=def→Q ⊎{(q, q) ∈ Q2 |̸ ∃q′ ∈ Q s.t. q →Q q′}

That is, we add to →Q a loop transition q → q for each deadlock
state q, thus making Q• deadlock free. Therefore, all maximal
computation paths in Q• are infinite. By construction, the maximal
paths of Q• are the infinite paths of Q plus the infinite paths of
the form

q1 →Q q2 . . . qn−1 →Q qn → qn → qn . . .

such that qn is a deadlock state in Q. In this way, both maximal
finite and infinite paths of Q become infinite paths of Q•.

6/25

Program Verification: Lecture 20

Paths and Traces in a Kripke Structure

We can formalize the set of computation paths in a Kripke
structure Q = (Q,→Q, Q) as the set of functions:

Paths(Q) =def {π : N → Q | ∀n ∈ N, π(n) →Q π(n + 1)}
Likewise, the set of computation paths in Q starting at state q ∈ Q
is defined as the set Paths(Q)q =def {π ∈ Paths(Q) | π(0) = q}.
Given an alphabet Π of predicate symbols, the set P(Π)ω of all
Π-traces is, by definition, the function set
P(Π)ω =def [N → P(Π)].

Consider the function preds : Q ∋ q 7→ {p ∈ Π | q ∈ pQ} ∈ P(Π)
maping each state q to the set of predicates holding in it. Define
the set Tr(Q) of Π-traces of Q by
Tr(Q) =def {π; preds | π ∈ Paths(Q)}. Likewise, the set Tr(Q)q
of Π-traces starting at q is defined as
Tr(Q)q =def {π; preds | π ∈ Paths(Q)q}.

7/25

Program Verification: Lecture 20

The Semantics of LTL(Π)

As for modal logic, the semantics of LTL(Π) in a Kripke structure
Q = (Q,→Q, Q) over predicates Π is defined by triples
Q, I |=LTL φ, with I ⊆ Q and φ ∈ LTL(Π). By definition,

Q, I |=LTL φ⇔def ∀q ∈ I , ∀τ ∈ Tr(Q•)q, τ |=LTL φ.

Let us unpack this definition. Is says that Q, I |=LTL φ holds iff for
each intial state q ∈ I and each infinite computation path
π ∈ Paths(Q•)q starting at q in the deadlock-free extension Q•,
the trace τ = π; preds satisfies φ. Note, furthermore, that in the
relation τ |=LTL φ the Kripke structure Q has completely
disappeared! Only traces are involved. The only remaining task is
to define the trace satisfaction relation τ |=LTL φ by induction on
the structure of φ ∈ LTL(Π):

We always have τ |=LTL ⊤.

8/25

Program Verification: Lecture 20

The Semantics of LTL(Π) (II)

For p ∈ Π, τ |=LTL p ⇔def p ∈ τ(0).

For ⃝φ ∈ LTL(Π), τ |=LTL ⃝φ ⇔def s; τ |=LTL φ,

where s : N −→ N is the successor function.

For φ U ψ ∈ LTL(Π), τ |=LTL φ U ψ ⇔def

(∃j ∈ N) ((s j ; τ |=LTL ψ) ∧ ((∀i ∈ N) i < j ⇒ s i ; τ |=LTL φ)).

where s0 = idN and sn+1 = s; sn. Therefore, s0; τ = τ , and for
k > 0, sk ; τ is the sequence: τ(k) τ(k + 1) . . . τ(k + n) . . .

For ¬φ ∈ LTL(Π), τ |=LTL ¬φ ⇔def τ ̸|=LTL φ.

9/25

Program Verification: Lecture 20

The Semantics of LTL(Π) (III)

For φ ∨ ψ ∈ LTL(Π), τ |=LTL φ ∨ ψ ⇔def

τ |=LTL φ or τ |=LTL ψ.

Note that, since Q• = (Q•)•, it follows immediately from this LTL
semantics that for any Kripke structure Q on predicates Π, set of
initial states I ⊆ Q and formula φ ∈ LTL(Π) we have the
equivalence:

Q, I |=LTL φ ⇔ Q•, I |=LTL φ.

However, the Kripke structure we have in mind is the fully general
Q, which need not be deadlock-free. Q• is just a technical device
to make the definition of the |=LTL relation easier.

10/25

Program Verification: Lecture 20

A Puzzle: LTL(Π) is not Semantically Closed under
Negation

Call a logic L with negation semantically closed under negation if
for any model M and sentence φ we have the equivalence:

M |= ¬φ ⇔ M ̸|= φ

where a “sentence” is a formula with no unquantified variables.
Since the formulas in LTL(Π) have no variables at all, they can be
called sentences. Yet, the above equivalence is violated. Indeed:

Consider a Kripke structure Q with states Q = {a, b, c},
transitions a → b and a → c , Π = {p, q} and with
preds(a) = preds(c) = {p, q} and preds(b) = {q}. Clearly,
Q, a ̸|=LTL 2p, so we would expect to have Q, a |=LTL ¬2p, i.e.,
Q, a |=LTL 3¬p. But this is false, since it does not hold in the
infinite Q• path

a → c → c → c . . .
11/25

Program Verification: Lecture 20

A Puzzle: LTL(Π) is not Semantically Closed under
Negation (II)

The plot thickens if we consider the modal logic equivalence
Q, a ̸|=S4 2p ⇔ Q, a |=S4 3¬p, plus the easy to check
equivalence Q, a ̸|=S4 2p ⇔ Q, a ̸|=LTL 2p. They imply that
Q, a |=S4 3¬p ̸⇔ Q, a |=LTL 3¬p, which clearly shows that there
is something awry about the LTL meaning of 3¬p. What is it?

The puzzle’s solution is that, Q, a ̸|=LTL 2p exactly means
∃π ∈ Paths(Q•)a ∃n ∈ N s.t. p ̸∈ preds(π(n)), which exactly
means that Q, a |=S4 3¬p, whereas Q, a |=LTL 3¬p exactly means
that ∀π ∈ Paths(Q•)a ∃n ∈ N s.t. p ̸∈ preds(π(n)).

That is, all LTL formulas are universally path quantified in an
implicit manner, whereas 3¬p is existentially path quantified in
Q, a |=S4 3¬p. That’s why Q, a |=S4 3¬p ̸⇔ Q, a |=LTL 3¬p.

12/25

Program Verification: Lecture 20

The LTL+(Π) Temporal Logic

This puzzle offers an excellent opportunity, namely, to easily
extend LTL(Π) to a more expressive logic LTL+(Π), where both
universal and existential path quantifications are allowed. Indeed,
universal (A) and existential (E) path quantifiers are explicitly used
in other temporal logics such as CTL(Π) and CTL∗(Π).2 The
definition of LTL+(Π) is very simple:
LTL+(Π) =def LTL(Π) ⊎ {Eφ | φ ∈ LTL(Π)}. This makes clear
that φ abbreviates Aφ. LTL+(Π)’s extended semantics just adds:

Q, I |=LTL Eφ⇔def ∃q ∈ I , ∃τ ∈ Tr(Q•)q, τ |=LTL φ.

Ex.22.1. Prove that for B any Boolean combination of
Π-predicates, Q, I |=S4 2B ⇔ Q, I |=LTL 2B, and
Q, I |=S4 3B ⇔ Q, I |=LTL+ E3B.

2See, e.g., E.M. Clarke, O. Grumberg and D.A. Peled, “Model Checking,’
MIT Press, 2001.

13/25

Program Verification: Lecture 20

Rewriting Logic as a Semantic Framework for Kripke
Structures

The semantics of LTL and LTL+ still leave open the system
specification question: How can we conveniently specify Kripke
Structures? For finite Kripke structures the answer is trivial. But
the Kripke structures of most (idealized) concurrent systems are
infinite, and answering well this question is a non-trivial matter.

As shown by Meseguer, Palomino and Mart́ı-Oliet3 any computable
(in their terminology “recursive”) Kripke structure has a finite
specification as a computable Kripke structure CΠ

R associated to an
admissible rewrite theory R. Therefore, without loss of generality
we may focus on specifying Kripke structures of the form CΠ

R.

3In §4.2, Theorem 6, of “Algebraic Simulations,” J. Log. Alg. Prog. 79,
103–143 (2010).

14/25

Program Verification: Lecture 20

The Kripke Structure CΠ
R

For LTL verification, we will use pattern disjunctions
u1|φ1 ∨ . . . ∨ un|φn as state predicates. But we need to name them
by some symbol p ∈ Π, because such p’s must appear in LTL
formulas. Consequently, we will also make Π explicit in the Kripke
structure CΠ

R. The meaning function of CΠ
R will have the form:

CΠ
R
: Π ∋ p 7→ (u1|φ1∨. . .∨un|φn) 7→

⋃
1≤i≤n

Jui |φiK ∈ P(C
Σ/E⃗ ,B,State

)

and we will specify it equationally as explained below.

15/25

Program Verification: Lecture 20

Equationally Specifying the Meaning Function CΠ
R

Suppose that CΠ
R

maps p ∈ Π to⋃
1≤i≤nJui |φiK ∈ P(C

Σ/E⃗ ,B,State
). This is typically an infinite set;

but to use it in practice we need a finite descrition of it. How can
we get it? By an admissible functional module extending the
underlying equational theory (Σ,E ∪ B) of R = (Σ,E ∪ B,R) into
an admissible equational theory (Σ,E ∪ B) ⊆ (ΣΠ,E ∪ EΠ ∪ B)
that protects (Σ,E ∪ B) and is defined as follows. W.L.O.G. we
may assume that the functional module defined by (Σ,E ∪ B)
itself protects BOOL. (ΣΠ,E ∪ EΠ ∪ B) is obtained by adding:

A sort Prop of state predicates, whose constants are the
p ∈ Π.
An operator |= : State Prop → [Bool] which will be used
to define the meaning function CΠ

R
. Note that its result sort is

the kind [Bool] (we assume that Σ is kind-complete). The
reason (protecting the Booleans) will become clear below.

16/25

Program Verification: Lecture 20

Equationally Specifying the Meaning Function CΠ
R
(II)

For each p ∈ P such that pCΠ
R
=

⋃
1≤i≤nJui |φiK we add the

conditional equations:
u1 |= p = true if φ1

. . .
un |= p = true if φn.
Such equations for all p ∈ Π are denoted EΠ.

If (Σ,E ∪ B) is admissible, so is (ΣΠ,E ∪ EΠ ∪ B), since: (i) the
rules E⃗Π are sort-decreasing and terminating in one step; (ii) the
(conditional) critical pairs of the rules E⃗Π with themselves are all
joinable (all rewrite to true), and generate no critical pairs when
compared to those in E⃗ ; and (iii) they are sufficiently complete by
construction, since they never add junk to the sort Bool . This is
remarkable, since E⃗Π only defines u |= p in the positive (true) case.

17/25

Program Verification: Lecture 20

Equationally Specifying the Meaning Function CΠ
R
(III)

How does (ΣΠ,E ∪ EΠ ∪ B) define the meaning function CΠ
R
? It

does so because, by construction, for each [u] ∈ C
Σ/E⃗ ,B,State

and

each p ∈ P we have the equivalences:

[u] ∈ pCΠ
R

⇔def [u] ∈
⋃

1≤i≤n

Jui |φiK ⇔ (u |= p)!
E⃗∪E⃗Π/B

= true.

In many applications, even this very general end expressive method
of defining the state predicates Π is not expressive enough. This is
because, to express some useful properties, we want Π not to
consists only of a finite set of constants p1, . . . , pn, but to allow
also for parametric state predicates. For example, we may need a
predicate p parametric on n ∈ N, i.e., to have the infinite set of
predicates {p(n) | n ∈ N}. We can easily extend (ΣΠ,E ∪ EΠ ∪ B)
for this purpose by:

18/25

Program Verification: Lecture 20

Equationally Specifying the Meaning Function CΠ
R
(IV)

Adding an operator p : s1 . . . sm → Prop for each predicate p
parametric on data elements of sorts s1, . . . , sm.

Defining the meaning function for such a parametric p by
equations:
u1 |= p(v⃗1) = true if φ1

. . .
un |= p(v⃗n) = true if φn.
where EΠ now contains also such equations.

A comon case will have p(v⃗1) = . . . = p(v⃗n) = p(x⃗), where x⃗ is a
list of variables of sorts s1, . . . , sm, which may also appear in the
patterns u1, . . . , un. But the above format is more flexible. For
example, we may define the meaning of the {p(n) | n ∈ N} by two
equations: one for n = 0, and another for n = s(k). Let us
illustrate parametric predicates with Lecture 18’s COMM protocol.

19/25

Program Verification: Lecture 20

The COMM Protocol

fmod NAT-LIST is

protecting NAT .

sort List .

subsorts Nat < List .

op nil : -> List .

op _;_ : List List -> List [assoc id: nil] .

op |_| : List -> Nat . *** length function

var N : Nat . var L : List .

eq | nil | = 0 .

eq | N ; L | = s(| L |) .

endfm

omod COMM is protecting NAT-LIST .

protecting QID .

subsort Qid < Oid .

class Sender | buff : List, rec : Oid, cnt : Nat, ack-w : Bool .

class Receiver | buff : List, snd : Oid, cnt : Nat .

msg to_from_val_cnt_ : Oid Oid Nat Nat -> Msg .

msg to_from_ack_ : Oid Oid Nat -> Msg .

op init : Oid Oid List -> Configuration .

20/25

Program Verification: Lecture 20

The COMM Protocol (II)

vars N M : Nat . vars L Q : List . vars A B : Oid . var TV : Bool .

eq init(A,B,L) = < A : Sender | buff : L, rec : B, cnt : 0, ack-w : false >

< B : Receiver | buff : nil, snd : A, cnt : 0 > .

rl [snd] : < A : Sender | buff : (N ; L), rec : B, cnt : M, ack-w : false > =>

(to B from A val N cnt M) < A : Sender | buff : L, cnt : M, ack-w : true > .

rl [rec] : < B : Receiver | buff : L, snd : A, cnt : M >

(to B from A val N cnt M) => (to A from B ack M)

< B : Receiver | buff : (L ; N), snd : A, cnt : s(M) > .

rl [ack-rec] : (to A from B ack M)

< A : Sender | buff : L, rec : B, cnt : M, ack-w : true >

=> < A : Sender | buff : L, rec : B, cnt : s(M), ack-w : false > .

endom

21/25

Program Verification: Lecture 20

Parametric Properties and Formulas

We have a parametric family of initial states init(A,B,L) about
which we would like to verify the following requirement:

Any initial state init(A,B,L) should always terminate in a state
where there are no pending messages, L is held by B, A’s buffer is
empty, and A’s and B’s counters equal the length of L.

Since this property is parametric on A, B and L, the LTL formula
expressing it should also be parametric on A, B and L. Here is a
formalization of the above requirement as a parametric formula:

3((¬enabled) ∧ no.msgs ∧ holds(B, L) ∧ holds(A, nil)∧

(¬waits.ack(A)) ∧ cnt(A, |L|) ∧ cnt(B, |L|)).

We just need to specify the formula’s predicate meanings.

22/25

Program Verification: Lecture 20

Specifying State Predicates in Maude

State predicates can be equationally specified by importing the
following SATISFACTION module (in model-checker.maude):
fmod SATISFACTION is

protecting BOOL .

sorts State Prop .

op _|=_ : State Prop ~> Bool [frozen] .

endfm

We can add it to the COMM module and equationally specify all our
predicates as follows:

in model-checker

omod COMM-PREDS is

protecting COMM . extending SATISFACTION .

subsort Configuration < State .

vars N M : Nat . vars L L1 L2 Q : List . vars A B : Oid . var TV : Bool .

var Atts : AttributeSet . var C : Configuration .

23/25

Program Verification: Lecture 20

Specifying State Predicates in Maude (II)

*** no-messages for sender-receiver configurations and enabled predicates

ops no-msgs enabled : -> Prop [ctor] .

eq < A : Sender | buff : L, rec : ’b, cnt : N, ack-w : TV >

< B : Receiver | buff : Q, snd : ’a, cnt : M > |= no-msgs = true .

eq < A : Sender | buff : (N ; L), rec : B, cnt : M, ack-w : false > C

|= enabled = true .

eq < B : Receiver | buff : L, snd : A, cnt : M >

(to B from A val N cnt M) C

|= enabled = true .

eq C (to A from B ack M)

< A : Sender | buff : L, rec : B, cnt : M, ack-w : true >

|= enabled = true .

24/25

Program Verification: Lecture 20

Specifying State Predicates in Maude (III)

*** parametric predicate: object A holds list L in its buffer

op holds : Qid List -> Prop [ctor] .

eq < A : Sender | buff : L , Atts > C |= holds(A,L) = true .

eq < B : Receiver | buff : L , Atts > C |= holds(B,L) = true .

*** parametric predicate: sender A waits for ack

op waits-ack : Qid -> Prop [ctor] .

eq < A : Sender | buff : L, rec : B, cnt : N, ack-w : TV > C

|= waits-ack(A) = TV .

*** parametric predicate: counter’s value is N in object O

op cnt : Oid Nat -> Prop [ctor] .

eq < A : Sender | cnt : N , Atts > C |= cnt(A,N) = true .

eq < B : Receiver | cnt : N , Atts > C |= cnt(B,N) = true .

endom

In Lecture 23 we shall model check our parametric formula.25/25

