
Program Verification: Lecture 19

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1

Semantics of Concurrent Imperative Languages

An imperative programming language L can be either

deterministic (single-threaded) or concurrent

(multi-threaded). For example, Java is a concurrent

imperative language.

The Rewriting Logic Semantics Project approach can define

the semantics of any imperative language L, either

deterministic or concurrent, as a rewrite theory RL.

Given a deterministic or concurrent imperative language L,

RL specified as a Maude system module automatically gives

as a parser and an interpreter for L. But there is more:

2

Semantics of Concurrent Imperative Programs (II)

We can prove that an invariant Q, i.e., a “good” or “safe”

set of states, holds for a program P in L by entering the

specification RL in Maude and then giving the command:

search init-P =>* u s.t. ϕ .

where u | ϕ is a constrained constructor pattern s. t.

Q = Ju | ϕK.

We can illustrate this language-generic model checking

method by defining the rewriting logic semantics of a simple

concurrent imperative language called PARALLEL. The same

approach can be used to prove invariants of programs in

any other languages.

3

The Rewriting Semantics of PARALLEL

*** A simple parallel language and its rewriting logic semantics.

*** Memory model with locations named by Qids holding Ints.

fmod MEMORY is

protecting INT .

protecting QID .

sorts Memory Bool? .

subsorts Bool < Bool? .

op none : -> Memory .

op __ : Memory Memory -> Memory [assoc comm id: none] .

op [_,_] : Qid Int -> Memory .

op _in_ : Qid Memory -> Bool? . *** cell allocated for Q?

var Q : Qid . var M : Memory . var N : Int .

eq Q in [Q,N] M = true .

endfm

4

***(Test comparing the contents of a named memory location to

an integer. By default, value of non-allocated Qid is 0.)

fmod TESTS is

inc MEMORY .

sort Test .

op _=_ : Qid Int -> Test .

op _>’_ : Qid Int -> Test .

op _&_ : Test Test -> Test [assoc] .

op eval : Test Memory -> Bool .

var Q : Qid . var M : Memory .

var N N’ K : Int . vars T T’ : Test .

eq eval(Q = N, [Q, N’] M) = N == N’ .

ceq eval(Q = N, M) = N == 0 if Q in M =/= true .

eq eval(Q >’ N, [Q, K] M) = K > N .

ceq eval(Q >’ N, M) = 0 > N if Q in M =/= true .

eq eval(T & T’,M) = eval(T,M) and eval(T’,M) .

endfm

5

***(Syntax for arithmetic expressions, and their evaluation semantics.

To avoid evaluation of expressions by themselves, the operators

+ and * are specified as constructors with syntax +’ and *’)

fmod EXPRESSION is

inc MEMORY . sort Expression .

subsorts Qid Int < Expression .

op _+’_ : Expression Expression -> Expression [ctor] .

op _*’_ : Expression Expression -> Expression [ctor] .

op _-’_ : Expression Expression -> Expression [ctor] .

op eval : Expression Memory -> Int .

var Q : Qid . var M : Memory . vars N N’ : Int . vars E E’ : Expression .

eq eval(N, M) = N .

eq eval(Q, [Q, N] M) = N .

ceq eval(Q,M) = 0 if Q in M =/= true .

eq eval(E +’ E’, M) = eval(E,M) + eval(E’,M) .

eq eval(E *’ E’, M) = eval(E,M) * eval(E’,M) .

eq eval(E -’ E’, M) = eval(E,M) - eval(E’,M) .

endfm

6

***(

Syntax for a trival sequential programming language. We allow abstracting

out program fragments as elements of sorts LoopingUserStatement and

UserStatement. LoopingUserStatements abstract out potentially

nonterminating program fragments. UserStatements which are not

LoopingUserStatements abstract out terminating program fragments.

)

fmod SEQUENTIAL is

inc TESTS .

inc EXPRESSION .

sorts UserStatement LoopingUserStatement Program .

subsort LoopingUserStatement < UserStatement < Program .

op skip : -> Program .

op _;_ : Program Program -> Program [prec 61 assoc id: skip] .

op _:=_ : Qid Expression -> Program .

op if_then_fi : Test Program -> Program .

op while_do_od : Test Program -> Program .

op repeat_forever : Program -> Program .

endfm

7

The Rewriting Semantics of PARALLEL (II)

Using the above functional modules, we can then define our

simple parallel language in a system module PARALLEL. The

global state is a pair consisting of:

1. a “soup” (set) of processes; and

2. the shared memory.

Processes themselves are pairs having a process identifier

and a program.

8

The Rewriting Semantics of PARALLEL (III)

mod PARALLEL is

inc SEQUENTIAL .

inc TESTS .

sorts Pid Process Soup MachineState .

subsort Process < Soup .

subsort Int < Pid .

op [_,_] : Pid Program -> Process .

op empty : -> Soup .

op _|_ : Soup Soup -> Soup [prec 61 assoc comm id: empty] .

op {_,_} : Soup Memory -> MachineState .

vars P R : Program . var S : Soup .

var U : UserStatement . var L : LoopingUserStatement .

vars I J : Pid . var M : Memory .

var Q : Qid . vars N X : Int .

var T : Test . var E : Expression .

9

rl {[I, U ; R] | S, M} => {[I, R] | S, M} .

rl {[I, L ; R] | S, M} => {[I, L ; R] | S, M} .

rl {[I, (Q := E) ; R] | S, [Q, X] M} =>

{[I, R] | S, [Q,eval(E,[Q, X] M)] M} .

crl {[I, (Q := E) ; R] | S, M} =>

{[I, R] | S, [Q,eval(E,M)] M} if Q in M =/= true .

rl {[I, if T then P fi ; R] | S, M} =>

{[I, if eval(T, M) then P else skip fi ; R] | S, M} .

rl {[I, while T do P od ; R] | S, M} =>

{[I, if eval(T, M) then (P ; while T do P od) else skip fi ; R]

| S, M} .

rl {[I, repeat P forever ; R] | S, M} =>

{[I, P ; repeat P forever ; R] | S, M} .

endm

10

Dekker’s Mutex Algorithm

One of the earliest correct solutions to the mutual exclusion

problem was given by Dekker with his algorithm. The

algorithm assumes processes that execute concurrently on a

shared memory machine and communicate with each other

through shared variables.

There are two processes, p1 and p2. Process 1 sets a

Boolean variable c1 to 1 to indicate that it wishes to enter

its critical section. Process p2 does the same with variable

c2. If one process, after setting its variable to 1 finds that

the variable of its competitor is 0, then it enters its critical

section rightaway. In case of a tie (both variables set to 1)

the tie is broken using a variable turn that takes values in

{1, 2}.

11

Dekker’s Mutex Algorithm (II)

The code of process 1 in PARALLEL is as follows,

repeat

’c1 := 1 ;

while ’c2 = 1 do

if ’turn = 2 then

’c1 := 0 ;

while ’turn = 2 do skip od ;

’c1 := 1

fi

od ;

crit1 ;

’turn := 2 ;

’c1 := 0 ;

rem1

forever

12

Dekker’s Mutex Algorithm (III)

The code of process 2 is entirely symmetric:

repeat

’c2 := 1 ;

while ’c1 = 1 do

if ’turn = 1 then

’c2 := 0 ;

while ’turn = 1 do skip od ;

’c2 := 1

fi

od ;

crit2 ;

’turn := 1 ;

’c2 := 0 ;

rem2

13

Dekker’s Mutex Algorithm (IV)

We can then define the two processes for Dekker’s

algorithm and the desired initial state in the following

module extending PARALLEL. Note that we assume that

crit1 and crit1 terminate, whereas rem1 rem2 may not.

mod DEKKER is

inc PARALLEL .

subsort Int < Pid .

ops crit1 crit2 : -> UserStatement .

ops rem1 rem2 : -> LoopingUserStatement .

ops p1 p2 : -> Program .

op initialMem : -> Memory .

op initial : -> MachineState .

var M : Memory .

vars P R : Program .

var S : Soup . var I : Pid .

14

eq p1 =

repeat

’c1 := 1 ;

while ’c2 = 1 do

if ’turn = 2 then

’c1 := 0 ;

while ’turn = 2 do skip od ;

’c1 := 1

fi

od ;

crit1 ;

’turn := 2 ;

’c1 := 0 ;

rem1

forever .

15

eq p2 =

repeat

’c2 := 1 ;

while ’c1 = 1 do

if ’turn = 1 then

’c2 := 0 ;

while ’turn = 1 do skip od ;

’c2 := 1

fi

od ;

crit2 ;

’turn := 1 ;

’c2 := 0 ;

rem2

forever .

eq initialMem = [’c1, 0] [’c2, 0] [’turn, 1] .

eq initial = { [1, p1] | [2, p2], initialMem} .

endm

16

Verifying Mutual Exclusion for Dekker’s Algorithm

Mutual exclusion for Dekker’s algorithm of course means

that p1 and p2 can never both be in their critical sections at

the same time.

We can define the failure of our mutex predicate by a simple

pattern and search for it as follows:

search initial =>* {S | [1,crit1 ; R] | [2,crit2 ; P],M} .

No solution.

17

Verifying Deadlock Freedom for Dekker’s Algorithm

Deadlock freedom for Dekker’s algorithm means the

obvious: the algorithm should go on forever without ever

getting stuck.

We can pove this property by using the =>! option in

search:

search initial =>! MS:MachineState .

No solution.

18

Specifying Java and JVM

PARALLEL is a toy language. Can the rewriting logic

approach scale up to real concurrent languages? The

answer is “yes.” For example, to Java and the JVM.

Java was defined at UIUC by Feng Chen, using a CPS

semantics as above, with 600 equations and 15 rewrite

rules. Azadeh Farzan developed a more direct specification

for the JVM, not based on continuations, with around 300

equations and 40 rewrite rules.

Both the Java and the JVM specifications include

multithreading, inheritance, polymorphism, object

references, and dynamic object allocation. Native methods

and most Java libraries are not supported at present.

19

JavaFAN Project

Based on Maude rewriting logic specifications of Java and

JVM, the JavaFAN (Java Formal ANalyzer), a tool in which

Java and JVM code can be executed and analyzed, was

developed.

Since the Maude rewriting logic specifications of Java and

the JVM could be used to verify programs we compared the

performance of our specifications with two verification

tools, one at Stanford and another at NASA (JPF).

20

Performance of JavaFAN

Tests JVM Java Other

Remote Agent (s) 0.3 0.1 2 (Stanford)

2-stage Pipeline 17m — 100m+ (Stanford)

DinPhil (4) 0.64 1.2 —

DinPhil (6) 33.3 81.7 —

DinPhil (8) 13.7m 98m —

DinPhil (9) 803.2m — —

Deadlock-free DinPhil (5) 3.2m 19.2 ∞ (JPF)

Deadlock-free DinPhil (7) 686.4m 27m ∞ (JPF)

Thread Game (100) (s) 17.1 6.6 —

Thread Game (1000) (s) 10.1m 5.1m —

21

Performance of JavaFAN: Some discussion

There are essentially two reasons for JavaFAN to compare

favorably with more conventional Java analysis tools: (1)

the high performance of Maude for execution, search, and

model checking; and (2) optimized equational and rule

definitions.

The second reason is the use of performance-enhancing

specification techniques at the Maude level, including:

• expressing as equations E the semantics of all

deterministic computations, and as rules R only

concurrent computations.

• favoring unconditional equations and rules over less

efficient conditional versions.

• using a continuation passing style in semantic

equations.

22

Other Language Case Studies

Similar positive experience in using rewriting logic and

Maude to give semantics definitions of concurrent

programming languages and getting interpreters and

program analysis tools for free for those languages is

reported in several papers, including the surveys by

Meseguer and Roşu in: (i) Theor. Comp. Sci. (373)

213–237 (2007); (iii) (with Serbanuta) Info. & Comp.

(207) 305–340 (2009); (iii) Info. & Comp. (231) 338–69

(2013).

In particular, semantic definitions have already been given in

Maude for substantial subsets of the following languages:

ABEL, bc, Beta, CCS, CIAO, CML, Creol, ELOTOS,

Haskell, Lisp, LLVM, MSR, Pi-Calculus, Pict, PLAN,

23

Python, Ruby, SIMPLE, Verilog, and Smalltalk. And full

definitions have been given in K-Maude to C and Scheme.

24

