
Program Verification: Lecture 18

Program Verification: Lecture 18

José Meseguer

University of Illinois at Urbana-Champaign

1/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory

I have been stating all along that Maude Programming is
Mathematical Modeling,

and that:

The meaning of a Maude program P is a mathematical model CP ,
called its canonical model.

For a functional module fmod (Σ,E ∪ B) endfm that is (1) ground
convergent and sufficiently complete for constructors Ω ⊆ Σ, the
canonical model is the canonical term algebra C

Σ/E⃗ ,B
. But what is

the model CP for P a system module mod (Σ,E ∪ B,R) endm?

Intuitively, it should be a transition system. Its functional part
(Σ,E ∪ B) should be an equational theory satisfying requirement
(1) . Therefore its states should the the elements of the canonical
term algebra C

Σ/E⃗ ,B
. What about its transition relation? They

should be transitions defined by the rules R.

2/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory

I have been stating all along that Maude Programming is
Mathematical Modeling, and that:

The meaning of a Maude program P is a mathematical model CP ,
called its canonical model.

For a functional module fmod (Σ,E ∪ B) endfm that is (1) ground
convergent and sufficiently complete for constructors Ω ⊆ Σ, the
canonical model is the canonical term algebra C

Σ/E⃗ ,B
. But what is

the model CP for P a system module mod (Σ,E ∪ B,R) endm?

Intuitively, it should be a transition system. Its functional part
(Σ,E ∪ B) should be an equational theory satisfying requirement
(1) . Therefore its states should the the elements of the canonical
term algebra C

Σ/E⃗ ,B
. What about its transition relation? They

should be transitions defined by the rules R.

2/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory

I have been stating all along that Maude Programming is
Mathematical Modeling, and that:

The meaning of a Maude program P is a mathematical model CP ,
called its canonical model.

For a functional module fmod (Σ,E ∪ B) endfm that is (1) ground
convergent and sufficiently complete for constructors Ω ⊆ Σ, the
canonical model is the canonical term algebra C

Σ/E⃗ ,B
. But what is

the model CP for P a system module mod (Σ,E ∪ B,R) endm?

Intuitively, it should be a transition system. Its functional part
(Σ,E ∪ B) should be an equational theory satisfying requirement
(1) . Therefore its states should the the elements of the canonical
term algebra C

Σ/E⃗ ,B
. What about its transition relation? They

should be transitions defined by the rules R.

2/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory

I have been stating all along that Maude Programming is
Mathematical Modeling, and that:

The meaning of a Maude program P is a mathematical model CP ,
called its canonical model.

For a functional module fmod (Σ,E ∪ B) endfm that is (1) ground
convergent and sufficiently complete for constructors Ω ⊆ Σ, the
canonical model is the canonical term algebra C

Σ/E⃗ ,B
.

But what is

the model CP for P a system module mod (Σ,E ∪ B,R) endm?

Intuitively, it should be a transition system. Its functional part
(Σ,E ∪ B) should be an equational theory satisfying requirement
(1) . Therefore its states should the the elements of the canonical
term algebra C

Σ/E⃗ ,B
. What about its transition relation? They

should be transitions defined by the rules R.

2/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory

I have been stating all along that Maude Programming is
Mathematical Modeling, and that:

The meaning of a Maude program P is a mathematical model CP ,
called its canonical model.

For a functional module fmod (Σ,E ∪ B) endfm that is (1) ground
convergent and sufficiently complete for constructors Ω ⊆ Σ, the
canonical model is the canonical term algebra C

Σ/E⃗ ,B
. But what is

the model CP for P a system module mod (Σ,E ∪ B,R) endm?

Intuitively, it should be a transition system. Its functional part
(Σ,E ∪ B) should be an equational theory satisfying requirement
(1) . Therefore its states should the the elements of the canonical
term algebra C

Σ/E⃗ ,B
. What about its transition relation? They

should be transitions defined by the rules R.

2/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory

I have been stating all along that Maude Programming is
Mathematical Modeling, and that:

The meaning of a Maude program P is a mathematical model CP ,
called its canonical model.

For a functional module fmod (Σ,E ∪ B) endfm that is (1) ground
convergent and sufficiently complete for constructors Ω ⊆ Σ, the
canonical model is the canonical term algebra C

Σ/E⃗ ,B
. But what is

the model CP for P a system module mod (Σ,E ∪ B,R) endm?

Intuitively, it should be a transition system. Its functional part
(Σ,E ∪ B) should be an equational theory satisfying requirement
(1) .

Therefore its states should the the elements of the canonical
term algebra C

Σ/E⃗ ,B
. What about its transition relation? They

should be transitions defined by the rules R.

2/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory

I have been stating all along that Maude Programming is
Mathematical Modeling, and that:

The meaning of a Maude program P is a mathematical model CP ,
called its canonical model.

For a functional module fmod (Σ,E ∪ B) endfm that is (1) ground
convergent and sufficiently complete for constructors Ω ⊆ Σ, the
canonical model is the canonical term algebra C

Σ/E⃗ ,B
. But what is

the model CP for P a system module mod (Σ,E ∪ B,R) endm?

Intuitively, it should be a transition system. Its functional part
(Σ,E ∪ B) should be an equational theory satisfying requirement
(1) . Therefore its states should the the elements of the canonical
term algebra C

Σ/E⃗ ,B
.

What about its transition relation? They

should be transitions defined by the rules R.

2/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory

I have been stating all along that Maude Programming is
Mathematical Modeling, and that:

The meaning of a Maude program P is a mathematical model CP ,
called its canonical model.

For a functional module fmod (Σ,E ∪ B) endfm that is (1) ground
convergent and sufficiently complete for constructors Ω ⊆ Σ, the
canonical model is the canonical term algebra C

Σ/E⃗ ,B
. But what is

the model CP for P a system module mod (Σ,E ∪ B,R) endm?

Intuitively, it should be a transition system. Its functional part
(Σ,E ∪ B) should be an equational theory satisfying requirement
(1) . Therefore its states should the the elements of the canonical
term algebra C

Σ/E⃗ ,B
. What about its transition relation?

They

should be transitions defined by the rules R.

2/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory

I have been stating all along that Maude Programming is
Mathematical Modeling, and that:

The meaning of a Maude program P is a mathematical model CP ,
called its canonical model.

For a functional module fmod (Σ,E ∪ B) endfm that is (1) ground
convergent and sufficiently complete for constructors Ω ⊆ Σ, the
canonical model is the canonical term algebra C

Σ/E⃗ ,B
. But what is

the model CP for P a system module mod (Σ,E ∪ B,R) endm?

Intuitively, it should be a transition system. Its functional part
(Σ,E ∪ B) should be an equational theory satisfying requirement
(1) . Therefore its states should the the elements of the canonical
term algebra C

Σ/E⃗ ,B
. What about its transition relation? They

should be transitions defined by the rules R.

2/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem.

Let
(Σ,E ,R) have Σ unsorted with just three constants a, b, c ,
E = {a = c}, and R = {a → b}, with Ω = {c , b}, so that
CΣ/E = {c , b} has just two states. The problem is that there is no
meaningful way to apply the rule a → b to obtain the transition
that should exist from state c to state b.

The mathematical model we want is called a Σ-transition system,
where the states have a Σ-algebra structure —in our case
C
Σ/E⃗ ,B

— and there is a transition relation between states. We just

need to have a suitable executability requirement (besides
requirement (1) for the equations) to properly define the state
transition relation in our desired canonical Σ-transition system.

3/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem. Let
(Σ,E ,R) have Σ unsorted with just three constants a, b, c ,
E = {a = c}, and R = {a → b}, with Ω = {c , b}, so that
CΣ/E = {c , b} has just two states.

The problem is that there is no
meaningful way to apply the rule a → b to obtain the transition
that should exist from state c to state b.

The mathematical model we want is called a Σ-transition system,
where the states have a Σ-algebra structure —in our case
C
Σ/E⃗ ,B

— and there is a transition relation between states. We just

need to have a suitable executability requirement (besides
requirement (1) for the equations) to properly define the state
transition relation in our desired canonical Σ-transition system.

3/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem. Let
(Σ,E ,R) have Σ unsorted with just three constants a, b, c ,
E = {a = c}, and R = {a → b}, with Ω = {c , b}, so that
CΣ/E = {c , b} has just two states. The problem is that there is no
meaningful way to apply the rule a → b to obtain the transition
that should exist from state c to state b.

The mathematical model we want is called a Σ-transition system,
where the states have a Σ-algebra structure —in our case
C
Σ/E⃗ ,B

— and there is a transition relation between states. We just

need to have a suitable executability requirement (besides
requirement (1) for the equations) to properly define the state
transition relation in our desired canonical Σ-transition system.

3/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem. Let
(Σ,E ,R) have Σ unsorted with just three constants a, b, c ,
E = {a = c}, and R = {a → b}, with Ω = {c , b}, so that
CΣ/E = {c , b} has just two states. The problem is that there is no
meaningful way to apply the rule a → b to obtain the transition
that should exist from state c to state b.

The mathematical model we want is called a Σ-transition system,

where the states have a Σ-algebra structure —in our case
C
Σ/E⃗ ,B

— and there is a transition relation between states. We just

need to have a suitable executability requirement (besides
requirement (1) for the equations) to properly define the state
transition relation in our desired canonical Σ-transition system.

3/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem. Let
(Σ,E ,R) have Σ unsorted with just three constants a, b, c ,
E = {a = c}, and R = {a → b}, with Ω = {c , b}, so that
CΣ/E = {c , b} has just two states. The problem is that there is no
meaningful way to apply the rule a → b to obtain the transition
that should exist from state c to state b.

The mathematical model we want is called a Σ-transition system,
where the states have a Σ-algebra structure

—in our case
C
Σ/E⃗ ,B

— and there is a transition relation between states. We just

need to have a suitable executability requirement (besides
requirement (1) for the equations) to properly define the state
transition relation in our desired canonical Σ-transition system.

3/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem. Let
(Σ,E ,R) have Σ unsorted with just three constants a, b, c ,
E = {a = c}, and R = {a → b}, with Ω = {c , b}, so that
CΣ/E = {c , b} has just two states. The problem is that there is no
meaningful way to apply the rule a → b to obtain the transition
that should exist from state c to state b.

The mathematical model we want is called a Σ-transition system,
where the states have a Σ-algebra structure —in our case
C
Σ/E⃗ ,B

—

and there is a transition relation between states. We just

need to have a suitable executability requirement (besides
requirement (1) for the equations) to properly define the state
transition relation in our desired canonical Σ-transition system.

3/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem. Let
(Σ,E ,R) have Σ unsorted with just three constants a, b, c ,
E = {a = c}, and R = {a → b}, with Ω = {c , b}, so that
CΣ/E = {c , b} has just two states. The problem is that there is no
meaningful way to apply the rule a → b to obtain the transition
that should exist from state c to state b.

The mathematical model we want is called a Σ-transition system,
where the states have a Σ-algebra structure —in our case
C
Σ/E⃗ ,B

— and there is a transition relation between states.

We just

need to have a suitable executability requirement (besides
requirement (1) for the equations) to properly define the state
transition relation in our desired canonical Σ-transition system.

3/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem. Let
(Σ,E ,R) have Σ unsorted with just three constants a, b, c ,
E = {a = c}, and R = {a → b}, with Ω = {c , b}, so that
CΣ/E = {c , b} has just two states. The problem is that there is no
meaningful way to apply the rule a → b to obtain the transition
that should exist from state c to state b.

The mathematical model we want is called a Σ-transition system,
where the states have a Σ-algebra structure —in our case
C
Σ/E⃗ ,B

— and there is a transition relation between states. We just

need to have a suitable executability requirement

(besides
requirement (1) for the equations) to properly define the state
transition relation in our desired canonical Σ-transition system.

3/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem. Let
(Σ,E ,R) have Σ unsorted with just three constants a, b, c ,
E = {a = c}, and R = {a → b}, with Ω = {c , b}, so that
CΣ/E = {c , b} has just two states. The problem is that there is no
meaningful way to apply the rule a → b to obtain the transition
that should exist from state c to state b.

The mathematical model we want is called a Σ-transition system,
where the states have a Σ-algebra structure —in our case
C
Σ/E⃗ ,B

— and there is a transition relation between states. We just

need to have a suitable executability requirement (besides
requirement (1) for the equations)

to properly define the state
transition relation in our desired canonical Σ-transition system.

3/1

Program Verification: Lecture 18

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem. Let
(Σ,E ,R) have Σ unsorted with just three constants a, b, c ,
E = {a = c}, and R = {a → b}, with Ω = {c , b}, so that
CΣ/E = {c , b} has just two states. The problem is that there is no
meaningful way to apply the rule a → b to obtain the transition
that should exist from state c to state b.

The mathematical model we want is called a Σ-transition system,
where the states have a Σ-algebra structure —in our case
C
Σ/E⃗ ,B

— and there is a transition relation between states. We just

need to have a suitable executability requirement (besides
requirement (1) for the equations) to properly define the state
transition relation in our desired canonical Σ-transition system.

3/1

Program Verification: Lecture 18

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ,E ∪ B,R) executable?

(Σ,E ∪ B) with constructors Ω should satisfy the requirement (1)
of functional modules. But this is not enough. We also need that:
(2) the rules R are ground coherent with E modulo the axioms B
(in our example, we just need to add rule c → b). This
requirement is captured by the diagram (dotted arrows existential):

t
R/B
//

!E/B ��

t ′

!E/B!!
w

u
R/B
// u′

!E/B

==

Maude’s Coherence Checker tool checks this property.

4/1

Program Verification: Lecture 18

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ,E ∪ B,R) executable?
(Σ,E ∪ B) with constructors Ω should satisfy the requirement (1)
of functional modules.

But this is not enough. We also need that:
(2) the rules R are ground coherent with E modulo the axioms B
(in our example, we just need to add rule c → b). This
requirement is captured by the diagram (dotted arrows existential):

t
R/B
//

!E/B ��

t ′

!E/B!!
w

u
R/B
// u′

!E/B

==

Maude’s Coherence Checker tool checks this property.

4/1

Program Verification: Lecture 18

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ,E ∪ B,R) executable?
(Σ,E ∪ B) with constructors Ω should satisfy the requirement (1)
of functional modules. But this is not enough.

We also need that:
(2) the rules R are ground coherent with E modulo the axioms B
(in our example, we just need to add rule c → b). This
requirement is captured by the diagram (dotted arrows existential):

t
R/B
//

!E/B ��

t ′

!E/B!!
w

u
R/B
// u′

!E/B

==

Maude’s Coherence Checker tool checks this property.

4/1

Program Verification: Lecture 18

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ,E ∪ B,R) executable?
(Σ,E ∪ B) with constructors Ω should satisfy the requirement (1)
of functional modules. But this is not enough. We also need that:

(2) the rules R are ground coherent with E modulo the axioms B
(in our example, we just need to add rule c → b). This
requirement is captured by the diagram (dotted arrows existential):

t
R/B
//

!E/B ��

t ′

!E/B!!
w

u
R/B
// u′

!E/B

==

Maude’s Coherence Checker tool checks this property.

4/1

Program Verification: Lecture 18

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ,E ∪ B,R) executable?
(Σ,E ∪ B) with constructors Ω should satisfy the requirement (1)
of functional modules. But this is not enough. We also need that:
(2) the rules R are ground coherent with E modulo the axioms B

(in our example, we just need to add rule c → b). This
requirement is captured by the diagram (dotted arrows existential):

t
R/B
//

!E/B ��

t ′

!E/B!!
w

u
R/B
// u′

!E/B

==

Maude’s Coherence Checker tool checks this property.

4/1

Program Verification: Lecture 18

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ,E ∪ B,R) executable?
(Σ,E ∪ B) with constructors Ω should satisfy the requirement (1)
of functional modules. But this is not enough. We also need that:
(2) the rules R are ground coherent with E modulo the axioms B
(in our example, we just need to add rule c → b).

This
requirement is captured by the diagram (dotted arrows existential):

t
R/B
//

!E/B ��

t ′

!E/B!!
w

u
R/B
// u′

!E/B

==

Maude’s Coherence Checker tool checks this property.

4/1

Program Verification: Lecture 18

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ,E ∪ B,R) executable?
(Σ,E ∪ B) with constructors Ω should satisfy the requirement (1)
of functional modules. But this is not enough. We also need that:
(2) the rules R are ground coherent with E modulo the axioms B
(in our example, we just need to add rule c → b). This
requirement is captured by the diagram (dotted arrows existential):

t
R/B
//

!E/B ��

t ′

!E/B!!
w

u
R/B
// u′

!E/B

==

Maude’s Coherence Checker tool checks this property.

4/1

Program Verification: Lecture 18

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ,E ∪ B,R) executable?
(Σ,E ∪ B) with constructors Ω should satisfy the requirement (1)
of functional modules. But this is not enough. We also need that:
(2) the rules R are ground coherent with E modulo the axioms B
(in our example, we just need to add rule c → b). This
requirement is captured by the diagram (dotted arrows existential):

t
R/B
//

!E/B ��

t ′

!E/B!!
w

u
R/B
// u′

!E/B

==

Maude’s Coherence Checker tool checks this property.

4/1

Program Verification: Lecture 18

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ,E ∪ B,R) executable?
(Σ,E ∪ B) with constructors Ω should satisfy the requirement (1)
of functional modules. But this is not enough. We also need that:
(2) the rules R are ground coherent with E modulo the axioms B
(in our example, we just need to add rule c → b). This
requirement is captured by the diagram (dotted arrows existential):

t
R/B
//

!E/B ��

t ′

!E/B!!
w

u
R/B
// u′

!E/B

==

Maude’s Coherence Checker tool checks this property.
4/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B),

and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR),

were C
Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra;

and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff

there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B].

I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and

transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B ,

denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v],

are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition

are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ,E ∪ B,R),
Maude assumes executability requirement (1) for (Σ,E ∪ B), and
(2) ground coherence of R w.r.t. E modulo B.

Assuming (1)–(2), the mathematical model of mod R endm is the
canonical Σ-transition system CR = (C

Σ/E⃗ ,B
,→CR), were C

Σ/E⃗ ,B

is the canonical term algebra; and given [u], [v] ∈ C
Σ/E⃗ ,B,[s]

,

[u] →CR [v] holds iff there exists v ′ such that u →R/B v ′ and
[v] = [v ′!E/B]. I.e., states are elements of CΣ/E ,B ; and transitions
from [u] ∈ CΣ/E ,B , denoted [u] →CR [v], are those such that there
exists a one-step rewrite u →R/B v ′ s.t. [v] = [v ′!E/B].

That is, the states reachable from state [u] by a →CR-transition
are the normal forms of its 1-step →R/B -rewrites from [u].

5/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ?

It should exactly mean that CR |= φ.
The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic
2 Temporal Logic
3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.
Symbolic model checking.
Symbolic model checking + Theorem proving.

6/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ? It should exactly mean that CR |= φ.

The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic
2 Temporal Logic
3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.
Symbolic model checking.
Symbolic model checking + Theorem proving.

6/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ? It should exactly mean that CR |= φ.
The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic
2 Temporal Logic
3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.
Symbolic model checking.
Symbolic model checking + Theorem proving.

6/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ? It should exactly mean that CR |= φ.
The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic

2 Temporal Logic
3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.
Symbolic model checking.
Symbolic model checking + Theorem proving.

6/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ? It should exactly mean that CR |= φ.
The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic
2 Temporal Logic

3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.
Symbolic model checking.
Symbolic model checking + Theorem proving.

6/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ? It should exactly mean that CR |= φ.
The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic
2 Temporal Logic
3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.
Symbolic model checking.
Symbolic model checking + Theorem proving.

6/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ? It should exactly mean that CR |= φ.
The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic
2 Temporal Logic
3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.
Symbolic model checking.
Symbolic model checking + Theorem proving.

6/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ? It should exactly mean that CR |= φ.
The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic
2 Temporal Logic
3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.
Symbolic model checking.
Symbolic model checking + Theorem proving.

6/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ? It should exactly mean that CR |= φ.
The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic
2 Temporal Logic
3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.

Symbolic model checking.
Symbolic model checking + Theorem proving.

6/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ? It should exactly mean that CR |= φ.
The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic
2 Temporal Logic
3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.
Symbolic model checking.

Symbolic model checking + Theorem proving.

6/1

Program Verification: Lecture 18

Specifying and Verifying Properties of Concurrent
Systems

For a concurrent system specified by a rewrite theory R enjoying
properties (1)–(2), what does it mean to assert that it satisfies
some formal property φ? It should exactly mean that CR |= φ.
The property φ in question can be specified in some property
specification logic of our choice such as, for example,

1 Modal Logic
2 Temporal Logic
3 Reachability Logic (which includes Hoare Logic)

Maude tools can be used to verify that CR |= φ in logics (1)–(3).

In this course we shall verify properties of CR in both modal logic
and (linear time) temporal logic (LTL) by:

Explicit-state model checking.
Symbolic model checking.
Symbolic model checking + Theorem proving.6/1

Program Verification: Lecture 18

Modal Logic

Modal logic is a logic to reason about necessity and possibility of
future events that goes back to Aristotle.

As an example of modal
logic reasoning, Aristotle poses the question:

Will there be a sea battle tomorrow?

Such an event is a property P about some future state of the
“world,” and there are two so-called modalities about property P:

1 2P, read, necessarily P, or always P, means that P will
always be the case in the future. For example, 2 2 + 2 = 4.

2 3P, read, possibly P, means that there is some possible
future state of the world in which P holds. For example, a
possible state of the world tomorrow in which there will be a
sea battle.

Following Saul Kripke, analytic philosophers model this with a
so-called possible worlds semantics.

7/1

Program Verification: Lecture 18

Modal Logic

Modal logic is a logic to reason about necessity and possibility of
future events that goes back to Aristotle. As an example of modal
logic reasoning, Aristotle poses the question:

Will there be a sea battle tomorrow?

Such an event is a property P about some future state of the
“world,” and there are two so-called modalities about property P:

1 2P, read, necessarily P, or always P, means that P will
always be the case in the future. For example, 2 2 + 2 = 4.

2 3P, read, possibly P, means that there is some possible
future state of the world in which P holds. For example, a
possible state of the world tomorrow in which there will be a
sea battle.

Following Saul Kripke, analytic philosophers model this with a
so-called possible worlds semantics.

7/1

Program Verification: Lecture 18

Modal Logic

Modal logic is a logic to reason about necessity and possibility of
future events that goes back to Aristotle. As an example of modal
logic reasoning, Aristotle poses the question:

Will there be a sea battle tomorrow?

Such an event is a property P about some future state of the
“world,” and there are two so-called modalities about property P:

1 2P, read, necessarily P, or always P, means that P will
always be the case in the future. For example, 2 2 + 2 = 4.

2 3P, read, possibly P, means that there is some possible
future state of the world in which P holds. For example, a
possible state of the world tomorrow in which there will be a
sea battle.

Following Saul Kripke, analytic philosophers model this with a
so-called possible worlds semantics.

7/1

Program Verification: Lecture 18

Modal Logic

Modal logic is a logic to reason about necessity and possibility of
future events that goes back to Aristotle. As an example of modal
logic reasoning, Aristotle poses the question:

Will there be a sea battle tomorrow?

Such an event is a property P about some future state of the
“world,”

and there are two so-called modalities about property P:

1 2P, read, necessarily P, or always P, means that P will
always be the case in the future. For example, 2 2 + 2 = 4.

2 3P, read, possibly P, means that there is some possible
future state of the world in which P holds. For example, a
possible state of the world tomorrow in which there will be a
sea battle.

Following Saul Kripke, analytic philosophers model this with a
so-called possible worlds semantics.

7/1

Program Verification: Lecture 18

Modal Logic

Modal logic is a logic to reason about necessity and possibility of
future events that goes back to Aristotle. As an example of modal
logic reasoning, Aristotle poses the question:

Will there be a sea battle tomorrow?

Such an event is a property P about some future state of the
“world,” and there are two so-called modalities about property P:

1 2P, read, necessarily P, or always P, means that P will
always be the case in the future. For example, 2 2 + 2 = 4.

2 3P, read, possibly P, means that there is some possible
future state of the world in which P holds. For example, a
possible state of the world tomorrow in which there will be a
sea battle.

Following Saul Kripke, analytic philosophers model this with a
so-called possible worlds semantics.

7/1

Program Verification: Lecture 18

Modal Logic

Modal logic is a logic to reason about necessity and possibility of
future events that goes back to Aristotle. As an example of modal
logic reasoning, Aristotle poses the question:

Will there be a sea battle tomorrow?

Such an event is a property P about some future state of the
“world,” and there are two so-called modalities about property P:

1 2P, read, necessarily P, or always P, means that P will
always be the case in the future.

For example, 2 2 + 2 = 4.

2 3P, read, possibly P, means that there is some possible
future state of the world in which P holds. For example, a
possible state of the world tomorrow in which there will be a
sea battle.

Following Saul Kripke, analytic philosophers model this with a
so-called possible worlds semantics.

7/1

Program Verification: Lecture 18

Modal Logic

Modal logic is a logic to reason about necessity and possibility of
future events that goes back to Aristotle. As an example of modal
logic reasoning, Aristotle poses the question:

Will there be a sea battle tomorrow?

Such an event is a property P about some future state of the
“world,” and there are two so-called modalities about property P:

1 2P, read, necessarily P, or always P, means that P will
always be the case in the future. For example, 2 2 + 2 = 4.

2 3P, read, possibly P, means that there is some possible
future state of the world in which P holds. For example, a
possible state of the world tomorrow in which there will be a
sea battle.

Following Saul Kripke, analytic philosophers model this with a
so-called possible worlds semantics.

7/1

Program Verification: Lecture 18

Modal Logic

Modal logic is a logic to reason about necessity and possibility of
future events that goes back to Aristotle. As an example of modal
logic reasoning, Aristotle poses the question:

Will there be a sea battle tomorrow?

Such an event is a property P about some future state of the
“world,” and there are two so-called modalities about property P:

1 2P, read, necessarily P, or always P, means that P will
always be the case in the future. For example, 2 2 + 2 = 4.

2 3P, read, possibly P, means that there is some possible
future state of the world in which P holds.

For example, a
possible state of the world tomorrow in which there will be a
sea battle.

Following Saul Kripke, analytic philosophers model this with a
so-called possible worlds semantics.

7/1

Program Verification: Lecture 18

Modal Logic

Modal logic is a logic to reason about necessity and possibility of
future events that goes back to Aristotle. As an example of modal
logic reasoning, Aristotle poses the question:

Will there be a sea battle tomorrow?

Such an event is a property P about some future state of the
“world,” and there are two so-called modalities about property P:

1 2P, read, necessarily P, or always P, means that P will
always be the case in the future. For example, 2 2 + 2 = 4.

2 3P, read, possibly P, means that there is some possible
future state of the world in which P holds. For example, a
possible state of the world tomorrow in which there will be a
sea battle.

Following Saul Kripke, analytic philosophers model this with a
so-called possible worlds semantics.

7/1

Program Verification: Lecture 18

Modal Logic

Modal logic is a logic to reason about necessity and possibility of
future events that goes back to Aristotle. As an example of modal
logic reasoning, Aristotle poses the question:

Will there be a sea battle tomorrow?

Such an event is a property P about some future state of the
“world,” and there are two so-called modalities about property P:

1 2P, read, necessarily P, or always P, means that P will
always be the case in the future. For example, 2 2 + 2 = 4.

2 3P, read, possibly P, means that there is some possible
future state of the world in which P holds. For example, a
possible state of the world tomorrow in which there will be a
sea battle.

Following Saul Kripke, analytic philosophers model this with a
so-called possible worlds semantics.

7/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q),

where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation.

Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q),

with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q.

It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows

(I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B,

with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π,

whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by:

(¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,

(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and

(A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic

The late Saul Kripke proposed a simple mathematical semantics
for modal logic in which the “states of the world” are the states of
a transition system (Q,→Q), where Q is a set of states and
→Q⊆ Q × Q is a state transition relation. Then, given a set Π of
property names, the meaning of each name p ∈ Π in (Q,→Q) is
given by a property meaning function Q : Π ∋ p 7→ pQ ∈ P(Q).

A Kripke structure is just a triple Q = (Q,→Q, Q), with Q
interpreting the names Π in the transition system (Q,→Q).

The S4-meaning in Q of a modal logic formula φ is relative to a
chosen set of initial states I ⊆ Q. It is defined by a semantic
relation of the form: Q, I |=S4 φ as follows (I will only focus on
formulas φ = 2B or φ = 3B, with B a Boolean combination of
names pi ∈ Π, whose meaning is defined by: (¬B)Q =def Q \ BQ,
(A ∨ B)Q =def AQ ∪ BQ, and (A ∧ B)Q =def AQ ∩ BQ):

8/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3, namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B ⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences: 2 ≡ ¬3¬ and 3 ≡ ¬2¬,
like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3, namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B ⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences: 2 ≡ ¬3¬ and 3 ≡ ¬2¬,
like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3,

namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B ⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences: 2 ≡ ¬3¬ and 3 ≡ ¬2¬,
like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3, namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B ⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences: 2 ≡ ¬3¬ and 3 ≡ ¬2¬,
like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3, namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B ⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences: 2 ≡ ¬3¬ and 3 ≡ ¬2¬,
like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3, namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B

⇔ Q, I ̸|=S4 3¬ B ⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences: 2 ≡ ¬3¬ and 3 ≡ ¬2¬,
like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3, namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences: 2 ≡ ¬3¬ and 3 ≡ ¬2¬,
like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3, namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B ⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences: 2 ≡ ¬3¬ and 3 ≡ ¬2¬,
like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3, namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B ⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences:

2 ≡ ¬3¬ and 3 ≡ ¬2¬,
like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3, namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B ⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences: 2 ≡ ¬3¬ and 3 ≡ ¬2¬,

like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

Kripke Semantics of Modal Logic (II)

Q, I |=S4 2B ⇔def ∀q0 ∈ I , ∀q ∈ Q, q0 →∗
Q q ⇒ q ∈ BQ

Q, I |=S4 3B ⇔def ∃q0 ∈ I , ∃q ∈ Q, q0 →∗
Q q ∧ q ∈ BQ

Note the striking duality between 2 and 3, namely,

(†) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B

That is, B is necessary iff ¬ B is impossible, and therefore,

(‡) Q, I |=S4 2B ⇔ Q, I ̸|=S4 3¬ B ⇔ Q, I |=S4 ¬3¬ B

That is, we have duality equivalences: 2 ≡ ¬3¬ and 3 ≡ ¬2¬,
like the duality equivalences defining ∀ in terms of ∃ or viceversa.

9/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.

Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St ,

we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def

CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def

(C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR),

where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π,

with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
,

i.e., a subset pCR ⊆ C
Σ/E⃗ ,B,St

such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

,

we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .

10/1

Program Verification: Lecture 18

A Modal Logic for Rewrite Theories

Consider a rewrite theory R = (Σ,E ∪ B,R) satisfying
requirements (1)–(2), and a distinguished sort, say St, of states.
Then, if φ is a modal logic formula, and I is a set of initial states
I ⊆ CΣ/E ,B,St , we define R, I |= φ by the following chain of
defining equivalences:

R, I |= φ ⇔def CR, I |= φ ⇔def (C
Σ/E⃗ ,B,St

,→CR , CR), I |=S4 φ.

That is, the transition system on which we give a Kripke semantics
to φ is (C

Σ/E⃗ ,B,St
,→CR), where φ will mention some property

names pi ∈ Π, with the meaning function CR interpreting each pi
as a subset pCR ⊆ C

Σ/E⃗ ,B,St
.

In practice we shall want to interpret each p ∈ Π as a computable
subset pCR ⊆ C

Σ/E⃗ ,B,St
, i.e., a subset pCR ⊆ C

Σ/E⃗ ,B,St
such that,

given any [u] ∈ C
Σ/E⃗ ,B,St

, we can effectively decide whether

[u] ∈ pCR or [u] ̸∈ pCR .10/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy.

Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold. Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope: Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q. Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,
for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ . If no such states
exist we will have verified Q. But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy. Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold. Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope: Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q. Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,
for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ . If no such states
exist we will have verified Q. But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy. Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold. Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope: Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q. Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,
for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ . If no such states
exist we will have verified Q. But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy. Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold.

Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope: Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q. Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,
for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ . If no such states
exist we will have verified Q. But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy. Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold. Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope: Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q. Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,
for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ . If no such states
exist we will have verified Q. But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy. Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold. Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope:

Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q. Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,
for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ . If no such states
exist we will have verified Q. But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy. Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold. Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope: Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q.

Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,
for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ . If no such states
exist we will have verified Q. But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy. Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold. Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope: Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q. Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,

for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ . If no such states
exist we will have verified Q. But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy. Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold. Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope: Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q. Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,
for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ .

If no such states
exist we will have verified Q. But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy. Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold. Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope: Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q. Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,
for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ . If no such states
exist we will have verified Q.

But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Invariants

Invariants are the most basic safety properties that a concurrent
system specified by a rewrite theory R can satisfy. Given a chosen
sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called an invariant of R from initial states I iff

R, I |= 2pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

An invariant Q describes a “good” or “safe” state property that
should always hold. Instead, its complement Q describes a set of
“bad” or “unsafe” states that the system should never be in.

Q is a safety envelope: Q is an invariant from I iff any state
reachable for the set I of initial states is within the safety envelope
Q. Thanks to the equivalence (†), R, I |= 2pQ ⇔ R, I ̸|= 3¬pQ ,
for I a single initial state init, this suggest using Maude’s search
command to search for states satisfying ¬pQ . If no such states
exist we will have verified Q. But how can we specify ¬pQ?

11/1

Program Verification: Lecture 18

Reachable Sets of States

We are also interested in verifying that a certain set of states Q is
reachable in a concurrent system specified by a rewrite theory R.

That is, we would like to check that some q ∈ Q can be reached
from some initial state along some computation path. Given a
chosen sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called a reachable in R from initial states I iff

R, I |= 3pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

Note the duality between invariants and reachable states: thanks to
the equivalence (†) in page 9, Q is a invariant from initial states I
iff its complement Q \ C

Σ/E⃗ ,B,St
is unreachable from I .

for I a single initial state init we can use Maude’s search
command to verify that Q is reachable from init by searching for
states in Q, where Q is specified by some state predicate pQ . But
how can we specify pQ?

12/1

Program Verification: Lecture 18

Reachable Sets of States

We are also interested in verifying that a certain set of states Q is
reachable in a concurrent system specified by a rewrite theory R.
That is, we would like to check that some q ∈ Q can be reached
from some initial state along some computation path.

Given a
chosen sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called a reachable in R from initial states I iff

R, I |= 3pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

Note the duality between invariants and reachable states: thanks to
the equivalence (†) in page 9, Q is a invariant from initial states I
iff its complement Q \ C

Σ/E⃗ ,B,St
is unreachable from I .

for I a single initial state init we can use Maude’s search
command to verify that Q is reachable from init by searching for
states in Q, where Q is specified by some state predicate pQ . But
how can we specify pQ?

12/1

Program Verification: Lecture 18

Reachable Sets of States

We are also interested in verifying that a certain set of states Q is
reachable in a concurrent system specified by a rewrite theory R.
That is, we would like to check that some q ∈ Q can be reached
from some initial state along some computation path. Given a
chosen sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called a reachable in R from initial states I iff

R, I |= 3pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

Note the duality between invariants and reachable states: thanks to
the equivalence (†) in page 9, Q is a invariant from initial states I
iff its complement Q \ C

Σ/E⃗ ,B,St
is unreachable from I .

for I a single initial state init we can use Maude’s search
command to verify that Q is reachable from init by searching for
states in Q, where Q is specified by some state predicate pQ . But
how can we specify pQ?

12/1

Program Verification: Lecture 18

Reachable Sets of States

We are also interested in verifying that a certain set of states Q is
reachable in a concurrent system specified by a rewrite theory R.
That is, we would like to check that some q ∈ Q can be reached
from some initial state along some computation path. Given a
chosen sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called a reachable in R from initial states I iff

R, I |= 3pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

Note the duality between invariants and reachable states: thanks to
the equivalence (†) in page 9, Q is a invariant from initial states I
iff its complement Q \ C

Σ/E⃗ ,B,St
is unreachable from I .

for I a single initial state init we can use Maude’s search
command to verify that Q is reachable from init by searching for
states in Q, where Q is specified by some state predicate pQ . But
how can we specify pQ?

12/1

Program Verification: Lecture 18

Reachable Sets of States

We are also interested in verifying that a certain set of states Q is
reachable in a concurrent system specified by a rewrite theory R.
That is, we would like to check that some q ∈ Q can be reached
from some initial state along some computation path. Given a
chosen sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called a reachable in R from initial states I iff

R, I |= 3pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

Note the duality between invariants and reachable states:

thanks to
the equivalence (†) in page 9, Q is a invariant from initial states I
iff its complement Q \ C

Σ/E⃗ ,B,St
is unreachable from I .

for I a single initial state init we can use Maude’s search
command to verify that Q is reachable from init by searching for
states in Q, where Q is specified by some state predicate pQ . But
how can we specify pQ?

12/1

Program Verification: Lecture 18

Reachable Sets of States

We are also interested in verifying that a certain set of states Q is
reachable in a concurrent system specified by a rewrite theory R.
That is, we would like to check that some q ∈ Q can be reached
from some initial state along some computation path. Given a
chosen sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called a reachable in R from initial states I iff

R, I |= 3pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

Note the duality between invariants and reachable states: thanks to
the equivalence (†) in page 9,

Q is a invariant from initial states I
iff its complement Q \ C

Σ/E⃗ ,B,St
is unreachable from I .

for I a single initial state init we can use Maude’s search
command to verify that Q is reachable from init by searching for
states in Q, where Q is specified by some state predicate pQ . But
how can we specify pQ?

12/1

Program Verification: Lecture 18

Reachable Sets of States

We are also interested in verifying that a certain set of states Q is
reachable in a concurrent system specified by a rewrite theory R.
That is, we would like to check that some q ∈ Q can be reached
from some initial state along some computation path. Given a
chosen sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called a reachable in R from initial states I iff

R, I |= 3pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

Note the duality between invariants and reachable states: thanks to
the equivalence (†) in page 9, Q is a invariant from initial states I
iff its complement Q \ C

Σ/E⃗ ,B,St
is unreachable from I .

for I a single initial state init we can use Maude’s search
command to verify that Q is reachable from init by searching for
states in Q, where Q is specified by some state predicate pQ . But
how can we specify pQ?

12/1

Program Verification: Lecture 18

Reachable Sets of States

We are also interested in verifying that a certain set of states Q is
reachable in a concurrent system specified by a rewrite theory R.
That is, we would like to check that some q ∈ Q can be reached
from some initial state along some computation path. Given a
chosen sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called a reachable in R from initial states I iff

R, I |= 3pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

Note the duality between invariants and reachable states: thanks to
the equivalence (†) in page 9, Q is a invariant from initial states I
iff its complement Q \ C

Σ/E⃗ ,B,St
is unreachable from I .

for I a single initial state init we can use Maude’s search
command to verify that Q is reachable from init by searching for
states in Q, where Q is specified by some state predicate pQ .

But
how can we specify pQ?

12/1

Program Verification: Lecture 18

Reachable Sets of States

We are also interested in verifying that a certain set of states Q is
reachable in a concurrent system specified by a rewrite theory R.
That is, we would like to check that some q ∈ Q can be reached
from some initial state along some computation path. Given a
chosen sort St of states and a set I ⊆ C

Σ/E⃗ ,B,St
of initial states,

Q ⊆ C
Σ/E⃗ ,B,St

is called a reachable in R from initial states I iff

R, I |= 3pQ for some property name pQ ∈ Π s.t. pQCR
= Q.

Note the duality between invariants and reachable states: thanks to
the equivalence (†) in page 9, Q is a invariant from initial states I
iff its complement Q \ C

Σ/E⃗ ,B,St
is unreachable from I .

for I a single initial state init we can use Maude’s search
command to verify that Q is reachable from init by searching for
states in Q, where Q is specified by some state predicate pQ . But
how can we specify pQ?

12/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR?

An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns

of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ,

with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ ,

and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .

The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,

where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users:

in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

An Expressive Language Π for Modal Properties of CR

What should we choose as our property names p ∈ Π for CR? An
expressive property language already available to Maude users
allows defining properties with constrained constructor patterns of
the form u|φ, with u a constructor Ω-term of sort St with
vars(u) = x⃗ , and φ a conjunction of Σ-equalities1 on variables x⃗ .
The meaning function CR has the form: CR : (u|φ) 7→ Ju | φK,
where, by definition, Ju | φK is the computable subset:

Ju | φK = {[v] ∈ CΣ/E⃗ ,B,St | ∃ρ s.t. v =B uρ ∧ E ∪ B ⊢ φρ} ⊆ CΣ/E⃗ ,B,St

That is, Ju | φK is the set of ground instances of u that satisfy φ.

Property u|φ is available to Maude users: in Maude’s search
command u|φ is specified as the target pattern with syntax:

u such that φ .

1φ could be allowed to be a Σ ∪ Σaux -formula with Σaux auxiliary functions.
13/1

Program Verification: Lecture 18

Verifying Invariants and Reachability by Model Checking

We can apply all this to verify invariants R, init |= 2pQ (resp.
reachable sets, R, init |= 3pQ) by verifying through explicit-state
model checking that R, init ̸|= 3¬pQ (resp. R, init |= 3¬pQ)
using Maude’s search command.

We just need to specify ¬pQ
(resp. pQ) as a disjunction of constrained constructor patterns:

u1 | φ1 ∨ . . . ∨ un | φn

R, init |= 2pQ (resp. R, init |= 3pQ) will hold iff, for 1 ≤ i ≤ n
(resp. some i , 1 ≤ i ≤ n) the n Maude commands:

search init =>* ui such that φi .

return the answer: No solution . (resp. one returns a solution).

Let us illustrate this explicit-state model checking method with
QLOCK, a mutual exclusion protocol proposed by K. Futatsugi,
where the number of processes is unbounded.

14/1

Program Verification: Lecture 18

Verifying Invariants and Reachability by Model Checking

We can apply all this to verify invariants R, init |= 2pQ (resp.
reachable sets, R, init |= 3pQ) by verifying through explicit-state
model checking that R, init ̸|= 3¬pQ (resp. R, init |= 3¬pQ)
using Maude’s search command. We just need to specify ¬pQ
(resp. pQ) as a disjunction of constrained constructor patterns:

u1 | φ1 ∨ . . . ∨ un | φn

R, init |= 2pQ (resp. R, init |= 3pQ) will hold iff, for 1 ≤ i ≤ n
(resp. some i , 1 ≤ i ≤ n) the n Maude commands:

search init =>* ui such that φi .

return the answer: No solution . (resp. one returns a solution).

Let us illustrate this explicit-state model checking method with
QLOCK, a mutual exclusion protocol proposed by K. Futatsugi,
where the number of processes is unbounded.

14/1

Program Verification: Lecture 18

Verifying Invariants and Reachability by Model Checking

We can apply all this to verify invariants R, init |= 2pQ (resp.
reachable sets, R, init |= 3pQ) by verifying through explicit-state
model checking that R, init ̸|= 3¬pQ (resp. R, init |= 3¬pQ)
using Maude’s search command. We just need to specify ¬pQ
(resp. pQ) as a disjunction of constrained constructor patterns:

u1 | φ1 ∨ . . . ∨ un | φn

R, init |= 2pQ (resp. R, init |= 3pQ) will hold iff, for 1 ≤ i ≤ n
(resp. some i , 1 ≤ i ≤ n) the n Maude commands:

search init =>* ui such that φi .

return the answer: No solution . (resp. one returns a solution).

Let us illustrate this explicit-state model checking method with
QLOCK, a mutual exclusion protocol proposed by K. Futatsugi,
where the number of processes is unbounded.

14/1

Program Verification: Lecture 18

Verifying Invariants and Reachability by Model Checking

We can apply all this to verify invariants R, init |= 2pQ (resp.
reachable sets, R, init |= 3pQ) by verifying through explicit-state
model checking that R, init ̸|= 3¬pQ (resp. R, init |= 3¬pQ)
using Maude’s search command. We just need to specify ¬pQ
(resp. pQ) as a disjunction of constrained constructor patterns:

u1 | φ1 ∨ . . . ∨ un | φn

R, init |= 2pQ (resp. R, init |= 3pQ) will hold iff, for 1 ≤ i ≤ n
(resp. some i , 1 ≤ i ≤ n) the n Maude commands:

search init =>* ui such that φi .

return the answer: No solution . (resp. one returns a solution).

Let us illustrate this explicit-state model checking method with
QLOCK, a mutual exclusion protocol proposed by K. Futatsugi,
where the number of processes is unbounded.

14/1

Program Verification: Lecture 18

Verifying Invariants and Reachability by Model Checking

We can apply all this to verify invariants R, init |= 2pQ (resp.
reachable sets, R, init |= 3pQ) by verifying through explicit-state
model checking that R, init ̸|= 3¬pQ (resp. R, init |= 3¬pQ)
using Maude’s search command. We just need to specify ¬pQ
(resp. pQ) as a disjunction of constrained constructor patterns:

u1 | φ1 ∨ . . . ∨ un | φn

R, init |= 2pQ (resp. R, init |= 3pQ) will hold iff, for 1 ≤ i ≤ n
(resp. some i , 1 ≤ i ≤ n) the n Maude commands:

search init =>* ui such that φi .

return the answer: No solution . (resp. one returns a solution).

Let us illustrate this explicit-state model checking method with
QLOCK, a mutual exclusion protocol proposed by K. Futatsugi,
where the number of processes is unbounded.

14/1

Program Verification: Lecture 18

Verifying Invariants and Reachability by Model Checking

We can apply all this to verify invariants R, init |= 2pQ (resp.
reachable sets, R, init |= 3pQ) by verifying through explicit-state
model checking that R, init ̸|= 3¬pQ (resp. R, init |= 3¬pQ)
using Maude’s search command. We just need to specify ¬pQ
(resp. pQ) as a disjunction of constrained constructor patterns:

u1 | φ1 ∨ . . . ∨ un | φn

R, init |= 2pQ (resp. R, init |= 3pQ) will hold iff, for 1 ≤ i ≤ n
(resp. some i , 1 ≤ i ≤ n) the n Maude commands:

search init =>* ui such that φi .

return the answer: No solution . (resp. one returns a solution).

Let us illustrate this explicit-state model checking method with
QLOCK, a mutual exclusion protocol proposed by K. Futatsugi,
where the number of processes is unbounded.

14/1

Program Verification: Lecture 18

Verifying Invariants and Reachability by Model Checking

We can apply all this to verify invariants R, init |= 2pQ (resp.
reachable sets, R, init |= 3pQ) by verifying through explicit-state
model checking that R, init ̸|= 3¬pQ (resp. R, init |= 3¬pQ)
using Maude’s search command. We just need to specify ¬pQ
(resp. pQ) as a disjunction of constrained constructor patterns:

u1 | φ1 ∨ . . . ∨ un | φn

R, init |= 2pQ (resp. R, init |= 3pQ) will hold iff, for 1 ≤ i ≤ n
(resp. some i , 1 ≤ i ≤ n) the n Maude commands:

search init =>* ui such that φi .

return the answer: No solution . (resp. one returns a solution).

Let us illustrate this explicit-state model checking method with
QLOCK, a mutual exclusion protocol proposed by K. Futatsugi,
where the number of processes is unbounded.

14/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol

mod QLOCK is protecting NAT .

sorts NatMSet NatList State .

subsorts Nat < NatMSet NatList .

op mt : -> NatMSet [ctor] .

op _ _ : NatMSet NatMSet -> NatMSet [ctor assoc comm id: mt] .

op nil : -> NatList [ctor] .

op _;_ : NatList NatList -> NatList [ctor assoc id: nil] .

op {_<_|_|_|_>} : NatMSet NatMSet NatMSet NatMSet NatList -> State [ctor] .

op [_] : Nat -> NatMSet . *** set of first n numbers

op init : Nat -> State . *** initial state, parametric on n

vars n i j : Nat . vars S U W C : NatMSet . var Q : NatList .

eq [0] = mt .

eq [s(n)] = n [n] .

eq init(n) = {[n] < mt | mt | mt | nil >} .

rl [join] : {S i < U | W | C | Q >} => {S < U i | W | C | Q >} .

rl [n2w] : {S < U i | W | C | Q >} => {S < U | W i | C | Q ; i >} .

rl [w2c] : {S < U | W i | C | i ; Q >} => {S < U | W | C i | i ; Q >} .

rl [c2n] : {S < U | W | C i | i ; Q >} => {S < U i | W | C | Q >} .

rl [exit] : {S < U i | W | C | Q >} => {S i < U | W | C | Q >} .

endm
15/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers.

There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets).

Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]).

The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]).

When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]).

When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]).

Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.

16/1

Program Verification: Lecture 18

The QLOCK Mutual Exclusion Protocol (II)

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

We can verify two important invariants of QLOCK, namey,

Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

Deadlock Freedom, i.e., the protocol never stops.

from, e.g., the initial state init(7) with seven processes.
16/1

Program Verification: Lecture 18

Verifying Mutual Exclusion and Deadlock Freedom for
QLOCK

We can specify the violation of mutual exclusion in QLOCK by the
constructor pattern:

{S < U | W | C i j | Q >}

Note that, by ACU, C could be mt. We can then verify mutual
exclusion with the search command:

Maude> search init(7) =>* {S < U | W | C i j | Q >} .

No solution.

Verifying deadlock freedom is even easier:

Maude> search init(7) =>! X:State .

No solution.

17/1

Program Verification: Lecture 18

Verifying Mutual Exclusion and Deadlock Freedom for
QLOCK

We can specify the violation of mutual exclusion in QLOCK by the
constructor pattern:

{S < U | W | C i j | Q >}

Note that, by ACU, C could be mt.

We can then verify mutual
exclusion with the search command:

Maude> search init(7) =>* {S < U | W | C i j | Q >} .

No solution.

Verifying deadlock freedom is even easier:

Maude> search init(7) =>! X:State .

No solution.

17/1

Program Verification: Lecture 18

Verifying Mutual Exclusion and Deadlock Freedom for
QLOCK

We can specify the violation of mutual exclusion in QLOCK by the
constructor pattern:

{S < U | W | C i j | Q >}

Note that, by ACU, C could be mt. We can then verify mutual
exclusion with the search command:

Maude> search init(7) =>* {S < U | W | C i j | Q >} .

No solution.

Verifying deadlock freedom is even easier:

Maude> search init(7) =>! X:State .

No solution.

17/1

Program Verification: Lecture 18

Verifying Mutual Exclusion and Deadlock Freedom for
QLOCK

We can specify the violation of mutual exclusion in QLOCK by the
constructor pattern:

{S < U | W | C i j | Q >}

Note that, by ACU, C could be mt. We can then verify mutual
exclusion with the search command:

Maude> search init(7) =>* {S < U | W | C i j | Q >} .

No solution.

Verifying deadlock freedom is even easier:

Maude> search init(7) =>! X:State .

No solution.

17/1

Program Verification: Lecture 18

Verifying Mutual Exclusion and Deadlock Freedom for
QLOCK

We can specify the violation of mutual exclusion in QLOCK by the
constructor pattern:

{S < U | W | C i j | Q >}

Note that, by ACU, C could be mt. We can then verify mutual
exclusion with the search command:

Maude> search init(7) =>* {S < U | W | C i j | Q >} .

No solution.

Verifying deadlock freedom is even easier:

Maude> search init(7) =>! X:State .

No solution.

17/1

Program Verification: Lecture 18

Verifying Mutual Exclusion and Deadlock Freedom for
QLOCK

We can specify the violation of mutual exclusion in QLOCK by the
constructor pattern:

{S < U | W | C i j | Q >}

Note that, by ACU, C could be mt. We can then verify mutual
exclusion with the search command:

Maude> search init(7) =>* {S < U | W | C i j | Q >} .

No solution.

Verifying deadlock freedom is even easier:

Maude> search init(7) =>! X:State .

No solution.

17/1

Program Verification: Lecture 18

Verifying Mutual Exclusion and Deadlock Freedom for
QLOCK

We can specify the violation of mutual exclusion in QLOCK by the
constructor pattern:

{S < U | W | C i j | Q >}

Note that, by ACU, C could be mt. We can then verify mutual
exclusion with the search command:

Maude> search init(7) =>* {S < U | W | C i j | Q >} .

No solution.

Verifying deadlock freedom is even easier:

Maude> search init(7) =>! X:State .

No solution.

17/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives: (1) Search states only up to a given
depth bound. (2) Explore an infinite set of states by symbolic
model checking. (3) Use an equational abstraction to make the set
of reachable states finite. (4) Use methods that combine symbolic
model checking and theorem proving. In this lecture I will explore
alternative (1). Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives: (1) Search states only up to a given
depth bound. (2) Explore an infinite set of states by symbolic
model checking. (3) Use an equational abstraction to make the set
of reachable states finite. (4) Use methods that combine symbolic
model checking and theorem proving. In this lecture I will explore
alternative (1). Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives: (1) Search states only up to a given
depth bound. (2) Explore an infinite set of states by symbolic
model checking. (3) Use an equational abstraction to make the set
of reachable states finite. (4) Use methods that combine symbolic
model checking and theorem proving. In this lecture I will explore
alternative (1). Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives: (1) Search states only up to a given
depth bound. (2) Explore an infinite set of states by symbolic
model checking. (3) Use an equational abstraction to make the set
of reachable states finite. (4) Use methods that combine symbolic
model checking and theorem proving. In this lecture I will explore
alternative (1). Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives:

(1) Search states only up to a given
depth bound. (2) Explore an infinite set of states by symbolic
model checking. (3) Use an equational abstraction to make the set
of reachable states finite. (4) Use methods that combine symbolic
model checking and theorem proving. In this lecture I will explore
alternative (1). Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives: (1) Search states only up to a given
depth bound.

(2) Explore an infinite set of states by symbolic
model checking. (3) Use an equational abstraction to make the set
of reachable states finite. (4) Use methods that combine symbolic
model checking and theorem proving. In this lecture I will explore
alternative (1). Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives: (1) Search states only up to a given
depth bound. (2) Explore an infinite set of states by symbolic
model checking.

(3) Use an equational abstraction to make the set
of reachable states finite. (4) Use methods that combine symbolic
model checking and theorem proving. In this lecture I will explore
alternative (1). Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives: (1) Search states only up to a given
depth bound. (2) Explore an infinite set of states by symbolic
model checking. (3) Use an equational abstraction to make the set
of reachable states finite.

(4) Use methods that combine symbolic
model checking and theorem proving. In this lecture I will explore
alternative (1). Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives: (1) Search states only up to a given
depth bound. (2) Explore an infinite set of states by symbolic
model checking. (3) Use an equational abstraction to make the set
of reachable states finite. (4) Use methods that combine symbolic
model checking and theorem proving.

In this lecture I will explore
alternative (1). Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives: (1) Search states only up to a given
depth bound. (2) Explore an infinite set of states by symbolic
model checking. (3) Use an equational abstraction to make the set
of reachable states finite. (4) Use methods that combine symbolic
model checking and theorem proving. In this lecture I will explore
alternative (1).

Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants

Although explicit state search can be a quite effective model
checking technique for invariants, it has some limitations:

if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

it can only explore a finite set of initial states (one at a time);
but the set of initial states may be infinite (e.g, as in QLOCK);

even if the number of reachable states is finite, it may be too
large to be explored due to time and memory limitations.

There are several alternatives: (1) Search states only up to a given
depth bound. (2) Explore an infinite set of states by symbolic
model checking. (3) Use an equational abstraction to make the set
of reachable states finite. (4) Use methods that combine symbolic
model checking and theorem proving. In this lecture I will explore
alternative (1). Alternatives (2)–(3) will be explored later.

18/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used formal
analysis method for two reasons:

(1) the number of reachable
states may be infinite; or (2) it may be finite but too large (e.g.,
for a complex microprocessor design). Bounded model checking
cannot guarantee that an invariant holds everywhere; but it can
either: (i) find very useful and often subtle counterexamples; or (ii)
guarantee that, up to a certain search depth, the invariant holds.

Bounded model checking of invariants is supported by Maude’s
bounded depth breadth first search command.

Consider the following specification of a readers-writers system.

19/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used formal
analysis method for two reasons: (1) the number of reachable
states may be infinite; or

(2) it may be finite but too large (e.g.,
for a complex microprocessor design). Bounded model checking
cannot guarantee that an invariant holds everywhere; but it can
either: (i) find very useful and often subtle counterexamples; or (ii)
guarantee that, up to a certain search depth, the invariant holds.

Bounded model checking of invariants is supported by Maude’s
bounded depth breadth first search command.

Consider the following specification of a readers-writers system.

19/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used formal
analysis method for two reasons: (1) the number of reachable
states may be infinite; or (2) it may be finite but too large (e.g.,
for a complex microprocessor design).

Bounded model checking
cannot guarantee that an invariant holds everywhere; but it can
either: (i) find very useful and often subtle counterexamples; or (ii)
guarantee that, up to a certain search depth, the invariant holds.

Bounded model checking of invariants is supported by Maude’s
bounded depth breadth first search command.

Consider the following specification of a readers-writers system.

19/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used formal
analysis method for two reasons: (1) the number of reachable
states may be infinite; or (2) it may be finite but too large (e.g.,
for a complex microprocessor design). Bounded model checking
cannot guarantee that an invariant holds everywhere; but it can
either:

(i) find very useful and often subtle counterexamples; or (ii)
guarantee that, up to a certain search depth, the invariant holds.

Bounded model checking of invariants is supported by Maude’s
bounded depth breadth first search command.

Consider the following specification of a readers-writers system.

19/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used formal
analysis method for two reasons: (1) the number of reachable
states may be infinite; or (2) it may be finite but too large (e.g.,
for a complex microprocessor design). Bounded model checking
cannot guarantee that an invariant holds everywhere; but it can
either: (i) find very useful and often subtle counterexamples; or

(ii)
guarantee that, up to a certain search depth, the invariant holds.

Bounded model checking of invariants is supported by Maude’s
bounded depth breadth first search command.

Consider the following specification of a readers-writers system.

19/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used formal
analysis method for two reasons: (1) the number of reachable
states may be infinite; or (2) it may be finite but too large (e.g.,
for a complex microprocessor design). Bounded model checking
cannot guarantee that an invariant holds everywhere; but it can
either: (i) find very useful and often subtle counterexamples; or (ii)
guarantee that, up to a certain search depth, the invariant holds.

Bounded model checking of invariants is supported by Maude’s
bounded depth breadth first search command.

Consider the following specification of a readers-writers system.

19/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used formal
analysis method for two reasons: (1) the number of reachable
states may be infinite; or (2) it may be finite but too large (e.g.,
for a complex microprocessor design). Bounded model checking
cannot guarantee that an invariant holds everywhere; but it can
either: (i) find very useful and often subtle counterexamples; or (ii)
guarantee that, up to a certain search depth, the invariant holds.

Bounded model checking of invariants is supported by Maude’s
bounded depth breadth first search command.

Consider the following specification of a readers-writers system.

19/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used formal
analysis method for two reasons: (1) the number of reachable
states may be infinite; or (2) it may be finite but too large (e.g.,
for a complex microprocessor design). Bounded model checking
cannot guarantee that an invariant holds everywhere; but it can
either: (i) find very useful and often subtle counterexamples; or (ii)
guarantee that, up to a certain search depth, the invariant holds.

Bounded model checking of invariants is supported by Maude’s
bounded depth breadth first search command.

Consider the following specification of a readers-writers system.

19/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (III)

mod R&W is

protecting NAT .

sort Config .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

A state is represented by a tuple < R, W > indicating the number
R of readers and the number W of writers accessing a critical
resource. Readers and writers can leave the resource at any time;
but writers can only gain access to it if no other process is using it,
and readers only if there are no writers.

20/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (III)

mod R&W is

protecting NAT .

sort Config .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

A state is represented by a tuple < R, W > indicating the number
R of readers and the number W of writers accessing a critical
resource.

Readers and writers can leave the resource at any time;
but writers can only gain access to it if no other process is using it,
and readers only if there are no writers.

20/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (III)

mod R&W is

protecting NAT .

sort Config .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

A state is represented by a tuple < R, W > indicating the number
R of readers and the number W of writers accessing a critical
resource. Readers and writers can leave the resource at any time;

but writers can only gain access to it if no other process is using it,
and readers only if there are no writers.

20/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (III)

mod R&W is

protecting NAT .

sort Config .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

A state is represented by a tuple < R, W > indicating the number
R of readers and the number W of writers accessing a critical
resource. Readers and writers can leave the resource at any time;
but writers can only gain access to it if no other process is using it,

and readers only if there are no writers.

20/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (III)

mod R&W is

protecting NAT .

sort Config .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

A state is represented by a tuple < R, W > indicating the number
R of readers and the number W of writers accessing a critical
resource. Readers and writers can leave the resource at any time;
but writers can only gain access to it if no other process is using it,
and readers only if there are no writers.

20/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (IV)

From initial state < 0, 0 > we want to verify three invariants:

mutual exclusion: readers and writers never access the
resource simultaneously: only readers or only writers can do so
at any given time.

one writer: at most one writer will be able to access the
resource at any given time.

deadlock freedom: there are no deadlocks.

Violation of mutual exclusion can be specified with the pattern:

< s(N:Nat), s(M:Nat) >

And violation of one writer with the pattern:

< N:Nat, s(s(M:Nat)) >

However, since the number of readers can grow unboundedly,
Maude’s search commands to find counterexamples instantiating
either of these two patterns from < 0, 0 > search forever.

21/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (IV)

From initial state < 0, 0 > we want to verify three invariants:

mutual exclusion: readers and writers never access the
resource simultaneously: only readers or only writers can do so
at any given time.

one writer: at most one writer will be able to access the
resource at any given time.

deadlock freedom: there are no deadlocks.

Violation of mutual exclusion can be specified with the pattern:

< s(N:Nat), s(M:Nat) >

And violation of one writer with the pattern:

< N:Nat, s(s(M:Nat)) >

However, since the number of readers can grow unboundedly,
Maude’s search commands to find counterexamples instantiating
either of these two patterns from < 0, 0 > search forever.

21/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (IV)

From initial state < 0, 0 > we want to verify three invariants:

mutual exclusion: readers and writers never access the
resource simultaneously: only readers or only writers can do so
at any given time.

one writer: at most one writer will be able to access the
resource at any given time.

deadlock freedom: there are no deadlocks.

Violation of mutual exclusion can be specified with the pattern:

< s(N:Nat), s(M:Nat) >

And violation of one writer with the pattern:

< N:Nat, s(s(M:Nat)) >

However, since the number of readers can grow unboundedly,
Maude’s search commands to find counterexamples instantiating
either of these two patterns from < 0, 0 > search forever.

21/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (IV)

From initial state < 0, 0 > we want to verify three invariants:

mutual exclusion: readers and writers never access the
resource simultaneously: only readers or only writers can do so
at any given time.

one writer: at most one writer will be able to access the
resource at any given time.

deadlock freedom: there are no deadlocks.

Violation of mutual exclusion can be specified with the pattern:

< s(N:Nat), s(M:Nat) >

And violation of one writer with the pattern:

< N:Nat, s(s(M:Nat)) >

However, since the number of readers can grow unboundedly,
Maude’s search commands to find counterexamples instantiating
either of these two patterns from < 0, 0 > search forever.

21/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (IV)

From initial state < 0, 0 > we want to verify three invariants:

mutual exclusion: readers and writers never access the
resource simultaneously: only readers or only writers can do so
at any given time.

one writer: at most one writer will be able to access the
resource at any given time.

deadlock freedom: there are no deadlocks.

Violation of mutual exclusion can be specified with the pattern:

< s(N:Nat), s(M:Nat) >

And violation of one writer with the pattern:

< N:Nat, s(s(M:Nat)) >

However, since the number of readers can grow unboundedly,
Maude’s search commands to find counterexamples instantiating
either of these two patterns from < 0, 0 > search forever.

21/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (IV)

From initial state < 0, 0 > we want to verify three invariants:

mutual exclusion: readers and writers never access the
resource simultaneously: only readers or only writers can do so
at any given time.

one writer: at most one writer will be able to access the
resource at any given time.

deadlock freedom: there are no deadlocks.

Violation of mutual exclusion can be specified with the pattern:

< s(N:Nat), s(M:Nat) >

And violation of one writer with the pattern:

< N:Nat, s(s(M:Nat)) >

However, since the number of readers can grow unboundedly,
Maude’s search commands to find counterexamples instantiating
either of these two patterns from < 0, 0 > search forever.

21/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (IV)

From initial state < 0, 0 > we want to verify three invariants:

mutual exclusion: readers and writers never access the
resource simultaneously: only readers or only writers can do so
at any given time.

one writer: at most one writer will be able to access the
resource at any given time.

deadlock freedom: there are no deadlocks.

Violation of mutual exclusion can be specified with the pattern:

< s(N:Nat), s(M:Nat) >

And violation of one writer with the pattern:

< N:Nat, s(s(M:Nat)) >

However, since the number of readers can grow unboundedly,
Maude’s search commands to find counterexamples instantiating
either of these two patterns from < 0, 0 > search forever.

21/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (V)

We can however perform bounded model checking of these three
invariants by giving a 106 depth bound:

Maude> search [1, 1000000] < 0,0 > =>* < s(N:Nat), s(M:Nat) > .

No solution.

states: 1000002 rewrites: 2000001 in 36480ms cpu (50317ms real)

Maude> search [1, 1000000] < 0,0 > =>* < N:Nat, s(s(M:Nat)) > .

No solution.

states: 1000002 rewrites: 2000001 in 38910ms cpu (41650ms real)

Maude> search [1, 1000000] < 0,0 > =>! C:Config .

No solution.

states: 1000003 rewrites: 2000002 in 5752ms cpu (5821ms real)

Thus verifying these three invariants up to depth 106.

22/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (V)

We can however perform bounded model checking of these three
invariants by giving a 106 depth bound:

Maude> search [1, 1000000] < 0,0 > =>* < s(N:Nat), s(M:Nat) > .

No solution.

states: 1000002 rewrites: 2000001 in 36480ms cpu (50317ms real)

Maude> search [1, 1000000] < 0,0 > =>* < N:Nat, s(s(M:Nat)) > .

No solution.

states: 1000002 rewrites: 2000001 in 38910ms cpu (41650ms real)

Maude> search [1, 1000000] < 0,0 > =>! C:Config .

No solution.

states: 1000003 rewrites: 2000002 in 5752ms cpu (5821ms real)

Thus verifying these three invariants up to depth 106.

22/1

Program Verification: Lecture 18

Bounded Model Checking of Invariants (V)

We can however perform bounded model checking of these three
invariants by giving a 106 depth bound:

Maude> search [1, 1000000] < 0,0 > =>* < s(N:Nat), s(M:Nat) > .

No solution.

states: 1000002 rewrites: 2000001 in 36480ms cpu (50317ms real)

Maude> search [1, 1000000] < 0,0 > =>* < N:Nat, s(s(M:Nat)) > .

No solution.

states: 1000002 rewrites: 2000001 in 38910ms cpu (41650ms real)

Maude> search [1, 1000000] < 0,0 > =>! C:Config .

No solution.

states: 1000003 rewrites: 2000002 in 5752ms cpu (5821ms real)

Thus verifying these three invariants up to depth 106.

22/1

