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Soundness Theorem

SoundnessTheorem. For (Σ, E) an equational theory with Σ

sensible, kind-complete, and with nonempty sorts, for all
Σ-equations t = t′, we have the implication:

(Σ, E) ` t = t′ ⇒ (Σ, E) |= t = t′.

Proof : Note that, by definition, we have

(Σ, E) ` t = t′ ⇔ t =E t′ ⇔ (Σ,
−→
E ∪

←−
E ) ` t→∗ t′.

Therefore, what we have to prove is the implication

(Σ,
−→
E ∪

←−
E ) ` t→∗ t′ ⇒ (Σ, E) |= t = t′.

We can do so by induction on the length of the rewrite sequence
t→∗ t′.
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Soundness Theorem (II)

Base Case. If the length of t→∗ t′ is 0, then t′ is identical to t, so
we need to prove (Σ, E) |= t = t, which trivially holds, since for any
Σ-algebra A we have A |= t = t. In particular, if A |= E, then, of
course, A |= t = t.

Induction Step. Assume that if (Σ,−→E ∪←−E ) ` t→∗ w and the
sequence t→∗ w has length n, then the relation (Σ, E) |= t = w

holds, and consider an additional rewrite step w →−→
E∪
←−
E

t′. We then
need to prove that (Σ, E) |= t = t′. We will be done if we can prove:

Lemma. For all w, t′, if w →−→
E∪
←−
E

t′ then (Σ, E) |= w = t′.
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Soundness Theorem (III)

Indeed, if this Lemma holds, then for each Σ-algebra A such that
A |= E and each assignment a we have (A, a) |= t = w (by Ind.
Hyp.), and (A, a) |= w = t′ (by Lemma). That is,

t a = w a ∧ w a = t′′ a

and therefore (A, a) |= t = t′′, so that (Σ, E) |= t = t′.

Proof of the Lemma: We must prove the implication
w →−→

E∪
←−
E

t′ ⇒ (Σ, E) |= w = t′. But the rewrite w →−→
E∪
←−
E

t′ uses
an equation (u = v) ∈ E either from left to right or from right to
left at some position p in w and with some substitution
θ : X → TΣ(X), so that, if u = v is applied left-to-right, w = w[uθ]p

and t′ = w[vθ]p.
We prove the case where u = v is applied from left to right. The
right-to-left case is completely similar.
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Soundness Theorem (IV)

The proof is by induction of the length |p| of the position p.

Base Case. If |p| = 0, then p = ϵ is the empty string. Therefore
we have w = uθ and t′ = vθ, and we need to prove that for each A
such that A |= E and each assignment a we have (A, a) |= uθ = vθ,
that is, that u θ a = v θ a.

But, since _θ;_a is a Σ-homomorphism and ηX ;_θ;_a = θ;_a,
by the Freeness Theorem we have:

_θ ;_a = _(θ ;_a)

And since A |= E and (θ;_a) ∈ [X→A], in particular,
(A, (θ ;_a)) |= u = v, that is, u θ a = v θ a, as desired.
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Soundness Theorem (V)

Induction Step. We assume that the Lemma holds for |p| = n.
Consider now w = w[uθ]i.p and t′ = w[vθ]i.p, with |i.p| = n+ 1.
This means that, for some f , w = f(w1, . . . , wn), 1 ≤ i ≤ n,
w = f(w1, . . . , wi[uθ]p, . . . , wn) and t′ = f(w1, . . . , wi[vθ]p, . . . , wn).

But by the Ind. Hyp., if A |= E then A |= wi[uθ]p = wi[vθ]p.
Therefore, for any assignment a ∈ [X→A] we have:

w a =fA(w1a, . . . , wi[uθ]pa, . . . , wna)=fA(w1a, . . . , wi[vθ]pa, . . . , wna)= t′ a

as desired. q.e.d.

This also concludes the proof of the Soundness Theorem. q.e.d.
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Construction of the Initial Algebra TΣ/E

TΣ is initial in the class AlgΣ of all Σ-algebras. To give a
mathematical, initial algebra semantics to Maude functional
modules of the form fmod(Σ, E)endfm we need an initial algebra in
the class Alg(Σ,E) of all (Σ, E)-algebras, with Σ sensible, kind
complete, and with nonempty sorts, denoted TΣ/E .

We shall define TΣ/E and show that it is initial in Alg(Σ,E), i.e., (i)
TΣ/E |= E, and (ii) for any (Σ, E)-algebra A there is a unique
Σ-homomorphism _E

A : TΣ/E −→ A.

If the equations E are sort-decreasing, confluent, terminating and
sufficiently complete, will also show that there is an isomorphism
TΣ/E

∼= CΣ/E . That is, the mathematical semantics of
fmod(Σ, E)endfm (TΣ/E) and its operational semantics (CΣ/E)
coincide.
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Construction of TΣ/E (II)

We construct TΣ/E out of the provability relation (Σ, E) ` t = t′;
that is, out of the E-equality relation t =E t′. But, by definition
t =E t′ ⇔ (Σ,

−→
E ∪

←−
E ) ` t→∗ t′. Therefore, =E , besides being

reflexive and transitive is symmetric, and therefore is an
equivalence relation on terms. But since if t =E t′, then there is a
connected component [s] such that t, t′ ∈ TΣ,[s], in particular =E is
also an equivalence relation on TΣ,[s]. Therefore, we have a quotient
set TΣ/E,[s] = TΣ,[s]/=E .

We can then define the S-indexed family of sets
TΣ/E = {TΣ/E,s}s∈S , where, by definition,

TΣ/E,s = {[t] ∈ TΣ/E,[s] | (∃t′) t′ ∈ [t] ∧ t′ ∈ TΣ,s},

where [t], or [t]E , abbreviate [t]=E
.
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Construction of TΣ/E (III)

To make TΣ/E into a Σ-algebra TΣ/E = (TΣ/E ,_TΣ/E
), interpret a

constant a : nil −→ s in Σ by its equivalence class [a].

Similarly, given f : s1 . . . sn → s in Σ, and given [ti] ∈ TΣ/E,si ,
1 ≤ i ≤ n, define

fs1...sn,s
TΣ/E

([t1], . . . , [tn]) = [f(t′1, . . . , t
′
n)],

where t′i ∈ [ti] ∧ t′i ∈ TΣ,si , 1 ≤ i ≤ n.

Checking that the above definition does not depend on either: (1)
the choice of the t′i ∈ [ti], or (2) the choice of the subsort-overloaded
operator f : s1 . . . sn → s in Σ, so that it is well-defined and indeed
defines an order-sorted Σ-algebra is left as an easy exercise.
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Initiality Theorem for TΣ/E

Theorem: For (Σ, E) with Σ sensible, kind complete, and with
nonempty sorts, TΣ/E |= E. Furthermore, TΣ/E is initial in the
class Alg(Σ,E). That is, for any A ∈ Alg(Σ,E) there is a unique
Σ-homomorphism _E

A : TΣ/E −→ A.

Proof: We first need to show that TΣ/E |= E, i.e., that
TΣ/E |= t = t′ for each (t = t′) ∈ E. That is, for each assignment
a : X −→ TΣ/E we must show that t a = t′ a.

But (see Ex.13.1) the unique Σ-homomorphism
_TΣ/E

: TΣ −→ TΣ/E guaranteed by TΣ initial is just the passage
to equivalence classes: [_]E : TΣ 3 t 7→ [t]E ∈ TΣ/E and is therefore
surjective.
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Initiality Theorem for TΣ/E (II)

Therefore, since by the Axiom of Choice any surjective function is a
right inverse (STACS, Ch. 10, Thm. 9, pg. 80), we can always
choose a substitution θ : X −→ TΣ such that a = θ;_TΣ/E

.
Therefore, by the Freeness Corollary we have _a = _θ;_TΣ/E

(see
diagram next page).

Therefore, t a = t′ a is just the equality [tθ]E = [t′θ]E , which holds
iff tθ =E t′θ, which itself holds by (t = t′) ∈ E and the Lemma in
the proof of the Soundness Theorem. Therefore, TΣ/E |= E.
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Lifting of a to a Substitution θ
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Initiality Theorem for TΣ/E (III)

Let us now show that for each A ∈ Alg(Σ,E) there is a unique
Σ-homomorphism _E

A : TΣ/E −→ A.

We first prove uniqueness. Suppose that we have two
homomorphisms h, h′ : TΣ/E −→ A. Then, composing with
_TΣ/E

: TΣ −→ TΣ/E on the left we get,
_TΣ/E

;h,_TΣ/E
;h′ : TΣ −→ A, and by the initiality of TΣ we must

have, _TΣ/E
;h = _TΣ/E

;h′ = _A. But recall that
_TΣ/E

: TΣ −→ TΣ/E is surjective, and therefore (Ex.11.9) epi,
which forces h = h′, as desired.
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Initiality Theorem for TΣ/E (IV)

To show existence of _E
A : TΣ/E −→ A, given [t] ∈ TΣ/E,s, define

[t]EA,s = t′A,s, where t′ ∈ [t] ∧ t′ ∈ TΣ,s. Then show (exercise) that:

• [t]EA,s is independent of the choice of t′ because of the
hypothesis A |= E and the Soundness Theorem; and

• the family of functions _E
A = {_E

A,s}s∈S thus defined is indeed
a Σ-homomorphism.

q.e.d.
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The Mathematical and Operational Semantics Coincide

As stated in pg. 2, the semantics of a Maude functional module
fmod(Σ, E)endfm is an initial algebra semantics, given by TΣ/E .
Let us call TΣ/E the module’s mathematical semantics. This
sematics does not depend on any executability assumptions about
fmod(Σ, E)endfm: it can be defined for any equational theory
(Σ, E).

Call fmod(Σ, E)endfm admissible if the equations E are (ground)
confluent, sort-decreasing and terminating and sufficiently complete
w.r.t. constructors Ω. Under these executabilty requirements we
have another semantics for fmod(Σ, E)endfm: the canonical term
algebra CΣ/E defined in Lecture 4. This is the most intuitive
computational model for fmod(Σ, E)endfm. Call it its operational
semantics, since CΣ/E is defined by the reduce command. But
both semantics coincide!
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The Canonical Term Algebra is Initial

Theorem: If the rules E⃗ are sort-decreasing, confluent and
terminating, then, CΣ/E is isomorphic to TΣ/E and is therefore
initial in Alg(Σ,E).

Proof: A slight extension of the proof of Ex.11.11 shows that if I is
initial for a given class of algebras closed under isomorphisms and J
is isomorphic to I, then J is also initial for that class. Since by
(Ex.12.2) Alg(Σ,E) is closed under isomorphisms, we just have to
show TΣ/E

∼= CΣ/E .

Define _!E = {_!E,s : TΣ/E,s −→ CΣ/E,s}s∈S by, [t]!E,s = t!E . This
is independent of the choice of t, since t =E t′ iff E ` t = t′ iff (by E

confluent) t ↓E t′, iff t!E = t′!E . _!E,s is surjective by construction
and injective by these equivalences; therefore _!E is bijective.
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The Canonical Term Algebra is Initial (II)

Let us see that _!E : TΣ/E −→ CΣ/E is a Σ-homomorphism.
Preservation of constants is trivial. Let f : s1 . . . sn → s in Σ, and
[ti] ∈ TΣ/E,si , 1 ≤ i ≤ n. We must show,

fs1...sn,s
TΣ/E

([t1], . . . , [tn])!E,s = fs1...sn,s
CΣ/E

(t1!E , . . . , tn!E).

The key observation is that ti!E ∈ TΣ,si , 1 ≤ i ≤ n. This is because:

• by definition of [ti] there must be a t′i =E ti with t′i ∈ TΣ,si ,
1 ≤ i ≤ n; and

• by the sort-decreasingness assumption for E, since
t′i

∗−→E t′i!E = ti!E , if t′i ∈ TΣ,si , 1 ≤ i ≤ n, then ti!E ∈ TΣ,si ,
1 ≤ i ≤ n.
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The Canonical Term Algebra is Initial (III)

Therefore, we have:
fs1...sn,s
TΣ/E

([t1], . . . , [tn])!E = [f(t1!E , . . . , tn!E)]!E

(by definition of fs1...sn,s
TΣ/E

)

= f(t1!E , . . . , tn!E)!E (by definition of _!E)

= fs1...sn,s
CΣ/E

(t1!E , . . . , tn!E)

(by definition of fs1...sn,s
CΣ/E

)

as desired.

All now reduces to proving the following easy lemma, which is left
as an exercise:
Lemma. The bijective S-sorted map
{_!−1E,s : CΣ/E,s 3 u 7→ [u] ∈ TΣ/E,s}s∈S is a Σ-homomorphism
_!−1E : CΣ/E → TΣ/E .
q.e.d
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Math. Sems. = Operatl. Sems.: An Example

The canonical term algebra CΣ/E is in some sense the most
intuitive representation of the initial algebra from a computational
point of view. Let us see in a simple example what the coincidence
beteen mathematical and operational semantics means.

For example, the equations ENATURAL in the NATURAL module are
confluent and terminating. Its canonical forms are the natural
numbers in Peano notation. And its operations are the successor
and addition functions.

Indeed, given two Peano natural numbers n,m the general
definition of fs1...sn,s

CΣ/E
specializes for f = _ + _ to the definition of

addition, n+CNATURAL m = (n+m)!ENATURAL , so that _ +CNATURAL _ is the
addition function.
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Math. Sems. = Operatl. Sems.: An Example (II)

TΣNATURAL/ENATURAL

�

�

�

… … … …
ppss0 s0 + 0 ss0 + 0

0 + 0 0 + s0 s0 + s0

ps0 pss0 psss0

0 s0 ss0 …
���� CΣNATURAL/ENATURAL
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All Generalizes Modulo Axioms B

More generally, we are interested in the agreement between the
mathematical and operational semantics of an admissible Maude
module of the form fmod(Σ, E ∪B)endfm, with B a (possibly
empty) set of associativity, commutativity, and identity axioms.
The, following, easy but nontrivial, generalization of the above
theorem is left as an exercise.

Theorem: Let the equations E in (Σ, E ∪B) be sort-decreasing,
confluent, terminating and sufficiently complete modulo B; and let
Σ be preregular modulo B. Then, CΣ,E/B is isomorphic to TΣ/E∪B

and is therefore initial in Alg(Σ,E∪B).
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The Completeness Theorem for Equational Logic

The construction of the initial algebra TΣ/E together with the
Freeness Theorem proved in Lecture 12 are the two ingredients
allowing a very short (less than one page) proof of The
Completeness Theorem:

Teorem (Completeness). For any equational theory (Σ, E) and
Σ-equation u = v, the following implication holds:

E |= u = v ⇒ E ` u = v

That is, any theorem of (Σ, E) is provable in equational logic.

The short proof of this important theorem can be found in an
Appendix to this lecture.
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Exercises

Ex.13.1. Prove that for any equational theory (Σ, E) with Σ

sensible and having (S,<) as poset of sorts, the unique
Σ-homomorphism _TΣ/E

: TΣ −→ TΣ/E is exactly the S-sorted
function of passage to equivalence classes:
{[_]E,s : TΣ,s 3 t 7→ [t]E ∈ TΣ/E,s}s∈S .
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