
Program Verification: Lecture 11

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1



Unsorted Homomorphisms

Given unsorted Σ-algebras A = (A,_A) and B = (B,_B), a
Σ-homomorphism h from A to B, written h : A → B, is a function
h : A → B that preserves the operations Σ, i.e.,

• for each constant a : ϵ → s in Σ, h(aA) = aB (preservation of
constants)

• for each f : s n. . . s → s in Σ, n ≥ 1, and each (a1, . . . , an) ∈ An,
we have h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)) (preservation
of (non-constant) operations).

2



Example of Unsorted Homomorphism

Ex.11.1. The natural numbers N, and the natural numbers modulo
k, Nk (for any k ≥ 1) are all ΣNAT-MIXFIX-algebras (Lecture 3, pages
3–4). Prove in detail that (for any k ≥ 1) we have a
ΣNAT-PREFIX-homomorphism:

resk : N −→ Nk

where resk sends each number to its residue after dividing by k.
For example, res7(23) = 2, and res5(23) = 3.

Note that ΣNAT-MIXFIX = {0, s,+, ∗}. So you have to prove the
ΣNAT-PREFIX-homomorphism property of resk for 0 and for the
operations {s,+, ∗}.

3



Examples of Unsorted Homomorphisms (II)

Ex.11.2. Recall (Lecture 3, pgs. 6–8) the powerset algebra
P(X) = (P(X),_P(X)) over the Boolean signature ΣBOOL. Let X

and Y be any sets, and let f : X −→ Y be any function. Prove in
detail that the function:

f−1[_] : P(Y ) → P(X)

defined for any A ⊆ Y by: f−1[A] = {x ∈ X | f(x) ∈ A}, is a
ΣBOOL-homomorphism f−1[_] : P(Y ) → P(X). Consider also a
function g : Y −→ Z. Prove that we have the identity
(f ; g)−1[_] = g−1[_]; f−1[_], and therefore that
g−1[_]; f−1[_] : P(Z) −→ P(X) is also a ΣBOOL-homomorphism
from P(Z) to P(X).

4



Many-Sorted Homomorphisms

Given (many-sorted) Σ-algebras A = (A,_A) and B = (B,_B), a
Σ-homomorphism h from A to B, written h : A −→ B, is an
S-indexed family of functions h = {hs : As → Bs}s∈S such that:

• for each constant a : ϵ → s, hs(a
nil,s
A ) = anil,sB (preservation of

constants)

• for each f : w → s with w = s1 . . . sn, n ≥ 1, and each
(a1, . . . , an) ∈ Aw, we have
hs(f

w,s
A (a1, . . . , an)) = fw,s

B (hs1(a1), . . . , hsn(an)) (preservation
of (non-constant) operations).

5



Examples of Many-Sorted Homomorphisms

Ex.11.3. Recall the module NAT-LIST in Lecture 2, and the two
ΣNAT-LIST-algebras, let us call them A and B, defined on pages 4–5
of Lecture 4, namely A = lists of natural numbers and B = (finite)
sets of natural numbers. Show that there cannot be any
ΣNAT-LIST-homomorphim h : A −→ B.

Ex.11.4. For Σ the signature in picture 4.1, consider the first family
of algebras for it described in point 1, pages 5–6 of Lecture 4,
namely n-dimensional vector spaces on the rational, the real, or the
complex numbers. Let us be specific and fix the reals. Let A be the
3-dimensional real vector space, and B the 2-dimensional real
vector space. What is then a Σ-homomorphism h : A −→ B? Prove
that any such homomorphism h can be completely described by a
2× 3 matrix Mh with real coefficients, so that applying to a

6



3-dimensionsl vector v⃗ the homomorphims h, that is, computing
h(v⃗) exactly corresponds to computing the matrix multiplication
v⃗ ◦Mh. Generalize this to A and B real vector spaces of arbitrary
finite dimensions n and m. Generalize it further to rational, resp.
complex, vector spaces of any pair of finite dimensions n and m.

Now generalize this even further to characterize by means of
matrices all Σ-homomorphims between Σ-algebras in cases 2–3 in
page 6 of Lecture 4. Give for each of these cases specific examples
of h : A −→ B showing how this works and how h is thus applied to
specific elements in the corresponding algebra A.

7



Order-Sorted Homomorphisms

For Σ = ((S,<), F,G) an order-sorted signature, and A and B
order-sorted Σ-algebras, a Σ-homomorphism h from A to B,
written h : A → B, is an S-indexed family of functions
h = {hs : As → Bs}s∈S such that:

• h : A → B is a many-sorted (S, F,G)-homomorphism; and

• if [s] = [s′] and a ∈ As ∩As′ , then hs(a) = hs′(a) (agreement
on data in the same connected component)

8



Examples of Order-Sorted Homomorphisms

Ex.11.5. Consider the order-sorted signature Σ of the NAT-LIST-II
exampe in Lecture 2, the two algebras on such a signature, let us
call them A and B, defined on page 8 of Lecture 4, with A case (1),
and B case (2). Show that there is exactly one order-sorted
Σ-homomorphim h : A → B. Describe such a homomorphism h in
complete detail. Show that there cannot be any other
Σ-homomorphims h′ : A → B with h ̸= h′.

9



What is a Pocket Calculator?

Consider a pocket calculator for expressions on the signature
Σ = {0, 1,_ + _,_ ∗ _}, evaluated on the integers Z = (Z,_Z).

Q: What is a pocket calculator as a computable function?

A: A function, say, _Z : TΣ → Z. Call it evaluation in Z.

Q: What is the recursive definition of _Z : TΣ → Z?

A: It is defined by the recursive equations: 0Z = 0, 1Z = 1,
(t+ t′)Z = tZ +Z t′Z, (t ∗ t′)Z = tZ ∗Z t′Z.

Q: What is the essential property of the function _Z : TΣ → Z?

A: It is a Σ-homomorphism _Z : TΣ → Z because, for example,

(0TΣ)Z = (0)Z = 0Z = 0, (t+TΣ t′)Z = (t+ t′)Z = tZ +Z t′Z.

10



What is a Pocket Calculator? (II)

In the same way we also have pocket calculators for the ground
terms of Σ = {0, 1,_+_,_ ∗_}, evaluated on the natural numbers
N = (N,_N), the natural numbers modulo k ≥ 1, Nk = (Nk,_Nk

),
or the rational numbers Q = (Q,_Q).

More generally, we shall see shortly, that for Σ a sensible
order-sorted signature and any order-sorted Σ-algebra A = (A,_A)
there is a unique pocket calculator evaluating the terms TΣ in A,
that is, a unique Σ-homomorphism _A : TΣ → A, defined by the
recursive equations:

• (a)A = aA for each constant a in Σ, and

• f(t1, . . . , tn)A = fA(t1A, . . . , tnA) for each f : s1 . . . sn → s in Σ.

11



Term Algebras on Sensible Signatures

If a signature is sensible, then different terms denote different
things. In the argot of algebraic specifications, this is expressed by
saying that the term algebra TΣ has no confusion.

Furthermore, the term algebra TΣ is in some sense minimal, since
it has only the elements it needs to have in order to be an algebra:
the constants, and the terms needed so that the operations can
yield a result; that is why this minimality is expressed saying that
it has no junk.

The key intuition of why there is a unique pocket calculator
_A : TΣ → A for any Σ-algebra A, is that: (i) no junk ensures
uniqueness of _A, and (ii) no confusion ensures the existence of _A.

12



No Pocket Calculators for Term Algebras on Non-sensible Signatures

The intuition that no confusion ensures the existence of
_A : TΣ → A suggests that confusion/ambiguity in TΣ, i.e., Σ
non-sensible, will prevent/block the existence of _A : TΣ → A. Let
us see an example.

For example, _K : TΣ → K cannot be defined for Σ the non-sensible
signature we showed in pg. 16 of Lecture 4 and the Σ-algebra
K = (K,_K) with: KA = {a}, KB = {b}, KC = {c}, KD = {d, d′},
and with fA,B

K (a) = b, fA,C
K (a) = c, gB,D

K (b) = d, and gC,D
K (c) = d′.

Indeed, there in no Σ-homomorphism h : TΣ −→ K at all, since
hD(g(f(a)) must be either d or d′. But if hD(g(f(a)) = d, then h

fails to preserve the operation g : C −→ D, and if hD(g(f(a)) = d′,
then h fails to preserve the operation g : B −→ D.

13



Initiality of the Term Algebra TΣ when Σ Sensible

In summary, the claim is that, if Σ is sensible, then for any
Σ-algebra A there is a unique pocket calculator for A, i.e., a unique
Σ-homomorphism _A : TΣ −→ A. This is called the initiality
property of TΣ. This unique Σ-homomorphism _A is the obvious
evaluation function, mapping each term t to the result of evaluating
it in A. As already mentioned, _A is defined inductively as follows:

• for a constant a we define (a)A = aA, and

• for a term f(t1, . . . , tn) we define
(f(t1, . . . , tn))A = fA((t1)A, . . . , (tn)A).

Let us prove it in detail.

Theorem. If Σ is a sensible order-sorted signature, then TΣ

satisfies the initiality property.

14



Proof of the Initiality Theorem

Proof: For A any Σ-algebra Let us first prove the uniqueness of _A,
and then its existence.

Proof of uniqueness. Let us suppose that we have two different
homomorphisms h, h′ : TΣ → A. We can prove that h = h′ by
induction on the depth of the terms.

For terms of depth 0 let a be a constant in TΣ,s. That means that
there is a sort s′ ≤ s with an operator declaration a : nil −→ s′ and
therefore, by h and h′ being Σ-homomorphisms we must have
hs(a) = h′

s(a) = anil,s
′

A .

15



Proof of the Initiality Theorem (II)

Assume that the equality h = h′ holds for terms of depth less or
equal to n, and let f(t1, . . . , tn) ∈ TΣ,s have depth n+ 1. That
means that there is an operator declaration f : s1 . . . sn → s′ with
s′ ≤ s and ti ∈ TΣ,si , 1 ≤ i ≤ n. Again, by h and h′ being
Σ-homomorphisms we must have:

hs(f(t1, . . . , tn)) =

= fs1...sn,s
′

A (hs1(t1), . . . , hsn(tn)) (h homomorphism and s′ ≤ s)

= fs1...sn,s
′

A (h′
s1(t1), . . . , h

′
sn(tn)) (induction hypothesis)

= h′
s(f(t1, . . . , tn)) (h′ homomorphism and s′ ≤ s).

16



Proof of the Initiality Theorem (III)

Proof of Existence. We can both define _A and show that it is a
Σ-homomorphism by induction on the (tree) depth of ground
terms. For terms of depth 0, let a ∈ TΣ,s be a constant. That
means that there is a sort s′ ≤ s with an operator declaration
a : nil −→ s′; we then define (a)As = anil,s

′

A .

Note that the constant a could be subsort-overloaded (cannot be
ad-hoc overloaded, since this is ruled out by Σ being sensible) but
the above assignment is well-defined (does not depend on the
particular declaration a : ϵ → s′ chosen), because by our definition
of order-sorted Σ-algebra the interpretations of all subsort
overloaded versions of a constant a must coincide in the algebra A.
Furthermore, _A preserves constants, so it is a Σ-homomorphism
for ground terms of depth 0.

17



Proof of the Initiality Theorem (IV)

Assume that _A has already been defined and is a
Σ-homomorphism for ground terms of depth less or equal to n, and
let f(t1, . . . , tn) ∈ TΣ,s be a term of depth n+ 1. That means that
there is an operator declaration f : s1 . . . sn → s′ with s′ ≤ s and
ti ∈ TΣ,si , 1 ≤ i ≤ n. We define
(f(t1, . . . , tn))A = fs1...sn,s

′

A ((t1)A, . . . , (tn)A).

Note that, by the induction hypothesis, _A has already been
defined for terms of depth less or equal to n and is an order-sorted
Σ-homomorphism on those terms.

Note also that, by the Proof of the Lemma on sensible signatures,
for any other f : s′1 . . . s

′
n → s′′ such that ti ∈ TΣ,s′i

, 1 ≤ i ≤ n, we
must have, [si] = [s′i], 1 ≤ i ≤ n, and [s′] = [s′′].

18



Proof of the Initiality Theorem (V)

Since we have [si] = [s′i], 1 ≤ i ≤ n, by definition of order-sorted
Σ-homomorphism this then forces, _Asi

(ti) = _As′
i
(ti), 1 ≤ i ≤ n.

But since A is a Σ-algebra, all its subsort overloaded operators
must agree on common data, we must have,

fs1...sn,s′

A ((t1)A, . . . , (tn)A) = f
s′1...s

′
n,s′′

A ((t1)A, . . . , (tn)A).

Therefore, the definition of
(f(t1, . . . , tn))A = fs1...sn,s

′

A ((t1)A, . . . , (tn)A) does not depend on
the choice of the subsort overloaded operator f . As a consequence,
the extension of _A to the step n+ 1 is well-defined and, by
construction, it is a Σ-homorphism for ground terms of depth less
or equal to n+ 1. Therefore, we have inductively proved the
existence of the Σ-homomorphism _A. q.e.d.

19



The Pocket Calculator of a Canonical Term Algebra

Ex.11.6. Recall the canonical term algebra
CΣ/E,B = (CΣ/E,B ,_CΣ/E,B

), defined in page 17 of Lecture 6 for a
functional fmod (Σ, E ∪B) endfm, where Σ is B-preregular and
satisfies the Unique Termination, Sufficient Completeness and Sort
Preservation requirements.a What is the pocket calculator of
CΣ/E,B?

By the Initiality Theorem, it is the unique Σ-homomorphism
_CΣ/E,B

: TΣ −→ CΣ/E,B . Prove that, as an S-sorted function on
S-sorted sets, _CΣ/E,B

: TΣ → CΣ/E,B is exactly the S-sorted
function: {TΣ,s ∋ t 7→ [t!E/B ] ∈ CΣ/E,B,s}s∈S (what Maude’s red
command implements!!), which we used in defining CΣ/E,B .

aWhich of course can be checked by checking sort-decreasingness, local con-
fluence and termination of E⃗ modulo B, and sufficient completeness w.r.t. the
constructors Ω.

20



More on Homomorphisms

Ex.11.7. Prove that homomorphisms compose. That is, if
h : A → B and g : B → C are Σ-homomorphisms, then
h; g = {hs; gs}s∈S is a Σ-homomorphism h; g : A → C.

Ex.11.8. Prove that identities are homomorphisms. That is, given a
Σ-algebra A = (A,_A), the family of identity functions
idA = {idAs

} is a Σ-homomorphim idA : A → A.

21



More on Homomorphisms (II)

A Σ-homomorphim h : A → B is called an isomorphim if there is
another Σ-homomorphism g : B → A such that h; g = idA and
g;h = idB . We then may use the notation g = h−1 and h = g−1.

We call a Σ-homomorphism h : A → B

• injective (resp. surjective) if for each sort s ∈ S the function hs

is injective (resp. surjective)

• a monomorphism if for any pair of Σ-homomorphisms
g, q : C → A, if g;h = q;h then g = q

• an epimorphism if for any pair of Σ-homomorphisms
g, q : B → C, if h; g = h; q then g = q.

22



More on Homomorphisms (III)

For example, if Nbin, resp. Ndec, denote the natural numbers with
0, successor, and addition in binary, resp. decimal, representation,
we have an obvious binary-to-decimal isomorphism
b2d : Nbin → Ndec preserving all operations, whose inverse is the
decimal-to-binary isomorphism, d2b : Nbin → Ndec. Of course,
d2b; b2d = idNdec

, and b2d; d2b = idNbin
.

For Nn the residue classes modulo n, the reminder function
N remn−→ Nn is a surjective homomorphism for Σ containing, say, 0, 1,
+, ×.

Similarly, for Zdec the integers in decimal notation, the inclusion
j : Ndec ↪→ Zdec is an injective homomorphism preserving all shared
operations: 0, 1, +, ×, etc.

23



Theorem: All Initial Algebras Are Isomorphic

Proof: Suppose I and J are Σ-algebras and both satisfy the
initiality property of having a unique Σ-homomorphism to any
other Σ-algebra. In particular, we have unique homomorphisms,

h : I −→ J g : J −→ I

and therefore a composed homomorphism

I h−→ J g−→ I

but we also have the identity homomorphism id I, which by
uniqeness forces h; g = id I. Interchanging the role of I and J we
also get, g;h = idJ. q.e.d.

24



Evaluating Program Expressions

Q1: Can we model the evaluation of expressions in a programming
language using initial algebras?

A1: We first of all need a signature Σ of operations.

For example, Σ could be a signature for integer operations, and/or
Boolean operations, and/or real number operations (typically using
a floating point representation).

Assume, for example, a programming language in which we only
have integers and integer operations (note that we can encode true
and false as, respectively, 0 and 1). In this case Σ can be unsorted
and have two constants, 0 and 1, and three binary function
symbols: _ + _, _ − _, and _ ∗ _.

25



Evaluating Program Expressions (II)

Q2: What else do we need?

A2: We need a set X of variables appearing on our expressions.
This means that we need to extend Σ to Σ(X), so that our
program expressions will be terms t ∈ TΣ(X).

Q3: And what else do we need if we want to evaluate such
expressions?

A3: We of course need a Σ-algebra in which they will be evaluated.
For integers expressions the most natural choice is the algebra
Z = (Z,_Z) of the integers, with the standard interpretation _Z for
+, ∗,−, 0, 1.

26



Evaluating Program Expressions (III)

Q4: And what else do we need?

A4: Since expression evaluation depends on the memory state, we
need to model mathematically memory states.

Q5: And how can we model memory states?

A5: Assuming programs with just global variables, a memory state
for arithmetic expressions is just a function m : X → Z. This is a
special instance of the general notions of an assignment of values to
variables in an algebra.

27



Assignments

Given variables in X = {Xs} we will often be interested in
assignments (also called valuations) of data elements in a given
Σ-algebra A = (A,_A) to those variables. Of course, if x ∈ Xs then
the value, say a(x), assigned to x should be an element of As. That
is, the assignments should be well-sorted. This can be made precise
by defining an assignment to the variables X in a Σ-algebra
A = (A,_A) to be an S-indexed family of functions,
a = {as : Xs −→ As}s∈S , denoted a : X −→ A.

Often what we want to do with such assignments is to extend them
from variables to terms on such variables in the obvious,
homomorphic way. This is what expression evaluation is all about.

28



Evaluating Program Expressions (VI)

Q6: Now that we have everything we need, how can evaluation of
arithmetic expressions be precisely defined relative to a memory
(state) m : X → Z?

A6: As a function _(Z,m) : TΣ(X) → Z defined inductively by:

1. x(Z,m) = m(x) for x ∈ X

2. 0(Z,m) = 0 ∈ Z, 1(Z,m) = 1 ∈ Z

3. f(t, t′)(Z,m) = fZ(t(Z,m), t
′
(Z,m)) for f ∈ {+, ∗,−}.

29



Evaluating Program Expressions (VII)

Q7: Conditions (2)–(3) show that _(Z,m) is a Σ-homomorphism.
What about condition (1)?

A7: Condition (1) plus (2)–(3) show that it is a
Σ(X)-homomorphism, when we extend the algebra Z of the integers
with the additional constants X, where each x ∈ X is interpreted in
Z as m(x). Therefore, the extension of Z to a Σ(X)-algebra is just
(Z,_Z⊎m), which we abbreviate to: (Z,m). Then the evaluation of
arithmetic expressions is the unique Σ(X)-homomorphism:

_(Z,m) : TΣ(X) → (Z,m)

to the Σ(X)-algebra (Z,m) (extending the Σ-algebra Z with
memory m) ensured by the initiality of TΣ(X).

30



Exercises

Ex.11.9. Show that a homomorphism is injective iff it is a
monomorphism. Prove that every surjective homomorphism is an
epimorphism. Construct an epimorphism that is not surjective.

Ex.11.10. Show that any many-sorted Σ-homomorphism that is
surjective and injective is an isomorphism.

Construct an order-sorted homomorphism that is surjective and
injective but is not an isomorphism. Give a sufficient condition on
the poset (S,≤) (more general of course than being a discrete
poset, since that is the many-sorted case) so that h is an
isomorphism iff h is surjective and injective.

31



Exercises (II)

Ex.11.11. Prove that if an algebra J is isomorphic to an initial
algebra I, then J itself is initial.

Ex.11.12. Show that the natural numbers in Peano notation (zero
and successor) and in base 2 are isomorphic Σ-algebras (both
initial) for Σ the signature with one sort Natural and zero and
successor operations.

32


