
CS 476 Homework #5 Due 10:45am on Wednesday 11/6

Note: Answers to the exercises listed below and all Maude code should be emailed to meseguer@illinois.edu.

1. Consider the following functional module defining several functions on lists:

set include BOOL off .

fmod NATURAL-LIST is

sorts Boolean NzNatural Natural NeList List .

subsorts NzNatural < Natural < NeList < List .

op tt : -> Boolean [ctor] .

op ff : -> Boolean [ctor] .

op _&_ : Boolean Boolean -> Boolean . *** and

op 0 : -> Natural [ctor] .

op s : Natural -> NzNatural [ctor] .

op _+_ : Natural Natural -> Natural [assoc comm] .

op nil : -> List [ctor] .

op _;_ : Natural NeList -> NeList [ctor] .

op _;_ : NeList NeList -> NeList .

op _;_ : List List -> List .

op length : List -> Natural .

op rev : List -> List . *** list reverse

op _.=._ : List List -> Boolean . *** equality predicate

op pal : List -> Boolean . *** palindrome predicate

vars n m : Natural . vars L L1 L2 L3 : List . vars P Q : NeList .

vars A B : Boolean .

eq A & tt = A .

eq A & ff = ff .

eq n + 0 = n .

eq n + s(m) = s(n + m) .

eq L ; nil = L .

eq nil ; L = L .

eq (n ; L1) ; L2 = n ; (L1 ; L2) .

eq length(nil) = 0 .

eq length(n) = s(0) .

eq length(n ; L) = s(length(L)) .

eq rev(nil) = nil .

eq rev(n) = n .

eq rev(n ; L) = rev(L) ; n .

eq L .=. L = tt .
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eq 0 .=. s(n) = ff .

eq s(n) .=. 0 = ff .

eq s(n) .=. s(m) = n .=. m .

eq nil .=. Q = ff .

eq Q .=. nil = ff .

eq n .=. m ; Q = ff .

eq m ; Q .=. n = ff .

eq (n ; P) .=. (m ; Q) = (n .=. m) & (P .=. Q) .

eq pal(L) = L .=. rev(L) .

endfm

Something interesting about this module is that _;_ : Natural NeList -> NeList is a list constructor, but
_;_ : List List -> List is actually the so-called list append, or list concatenation operator, which is defined
by equations 5–7. This of course would be impossible in a many-sorted setting, were a differently named symbol
such as, e.g., _@_ : List List -> List would have to be used for list append.

In Exercise 2 you will be asked to prove some inductive properties about this module. Before you do so,
recall that the equations should be terminating, and that the NuITP expects users to: (1) Define a linear
order on the function symbols and constants declared with the op keyword, just as explained in the MTA tool
documentation available next to Lecture 10, i.e., you assign different numbers to different operators using the
metadata attribute, but warning: all subsort-overloaded operators should have the same number assigned to
them. For example, all the typings of the _;_ operator should be assigned the same number. For example, if
we wish to give them the value 4, you will add to each of them the attribute:

op _;_ : Natural NeList -> NeList [ctor metadata "4"] .

op _;_ : NeList NeList -> NeList [metadata "4"] .

op _;_ : List List -> List [metadata "4"] .

(2) Prove that the equations in the module are RPO-terminating according to the order that you have given
to the operators. (3) You can automatically check the modules’s RPO termination in the NuITP itself; that is,
there is no need for you to use the MTA tool, since the NuITP itself subsumes the RPO-termination checking
capabilities of MTA as explained below.

In this exercise you are asked to check the RPO termination of the above module in the NuITP by doing the
following:

(a) adding numbers to each operator using the metadata attribute as explained above (so that f > g iff the
number assigned to f is bigger than that assigned to g).

(b) enter the module list-functions.maude thus annotated with metadata information into Maude (please
use the latest Maude 3.5 version, available in the Maude web page).

(c) load into Maude the file NuITP.maude (alpha version 30) , which you get from https://nuitp.webs.upv.es/

together with its manual and examples. You will then be talking to the latest version of the NuITP tool.

(d) Give to the NuITP the commands:

set module NATURAL-LIST .

check rpo .

With a suitable order on operators, the module can be shown RPO-terminating. Here is the reply you get from
the NuITP with such an order:

Maude> load NuITP.maude

===================================
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NuITP

Inductive Theorem Prover

for Maude Equational Theories

(alpha 30 built May 6th 2024)

===================================

Copyright 2021-2024

Universitat Politècnica de València

===================================

NuITP> set module NATURAL-LIST .

Module NATURAL-LIST is now active.

NuITP> check rpo .

RPO order defined in module NATURAL-LIST appears to be consistent with the

equations.

NuITP>

The NuITP is then ready for you to enter goals that you wish to prove are inductive theorems of NATURAL-LIST.
This is what you will do in Exercise 2 below.

2. You are asked to verify some useful properties of NATURAL-LIST. But first, consider the following generator set
for NATURAL-LIST, which you can declare in the NuITP with the command:

genset LIND for List is nil ;; n:Natural ;; m:Natural ; Q:NeList .

After such a declaration you are then ready to prove the following five inductive theorems about the functions
defined in NATURAL-LIST, listed in no particular order:

set goal pal(L:List ; rev(L:List)) = tt .

set goal length(L1:List ; L2:List) = length(L1:List) + length(L2:List) .

set goal rev(rev(L:List)) = L:List .

set goal (L1:List ; L2:List) ; L3:List = L1:List ; (L2:List ; L3:List) .

set goal rev(L1:List ; L2:List) = rev(L2:List) ; rev(L1:List) .

For Extra Credit. You can earn 5 more points (that is, you can get a total of 15 points) for this problem
if you manage to prove each of these theorems by a single application of the gsi! command followed by
the internalize . command. That is, if you manage to take advantage of the internalize and conquer
methodology explained in Lecture 16.

Warning: The current alpha 30 version of the NuITP has a known, not yet corrected bug, which can sometimes
leave the NuITP in a strange state after given the command:

internalize as assoc .

It would for example be natural to give such a command after proving the above goal:

(L1:List ; L2:List) ; L3:List = L1:List ; (L2:List ; L3:List) .
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However, due to this known bug, after proving that goal you should instead give the command:

internalize .

This in no way impairs the possibility of proving each of the above goals by a single application of the gsi!

command, if proved in a judicious order and internalized.

3. Consider the following dining philosophers example, that you can retrieve from the course web page:

fmod NAT/4 is

protecting NAT .

sort Nat/4 .

op [_] : Nat -> Nat/4 .

op _+_ : Nat/4 Nat/4 -> Nat/4 .

op _*_ : Nat/4 Nat/4 -> Nat/4 .

op p : Nat/4 -> Nat/4 .

vars N M : Nat .

ceq [N] = [N rem 4] if N >= 4 .

eq [N] + [M] = [N + M] .

eq [N] * [M] = [N * M] .

ceq p([0]) = [N] if s(N) := 4 .

ceq p([s(N)]) = [N] if N < 4 .

endfm

mod DIN-PHIL is

protecting NAT/4 .

sorts Oid Cid Attribute AttributeSet Configuration Object Msg .

sorts Phil Mode .

subsort Nat/4 < Oid .

subsort Attribute < AttributeSet .

subsort Object < Configuration .

subsort Msg < Configuration .

subsort Phil < Cid .

op __ : Configuration Configuration -> Configuration

[ assoc comm id: none ] .

op _‘,_ : AttributeSet AttributeSet -> AttributeSet

[ assoc comm id: null ] .

op null : -> AttributeSet .

op none : -> Configuration .

op mode‘:_ : Mode -> Attribute [ gather ( & ) ] .

op holds‘:_ : Configuration -> Attribute [ gather ( & ) ] .

op <_:_|_> : Oid Cid AttributeSet -> Object .

op Phil : -> Phil .

ops t h e : -> Mode .

op chop : Nat/4 Nat/4 -> Msg [comm] .

op init : -> Configuration .

op make-init : Nat/4 -> Configuration .

vars N M K : Nat .

var C : Configuration .

ceq init = make-init([N]) if s(N) := 4 .

ceq make-init([s(N)])
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= < [s(N)] : Phil | mode : t , holds : none > make-init([N]) (chop([s(N)],[N]))

if N < 4 .

ceq make-init([0]) =

< [0] : Phil | mode : t , holds : none > chop([0],[N]) if s(N) := 4 .

rl [t2h] : < [N] : Phil | mode : t , holds : none > =>

< [N] : Phil | mode : h , holds : none > .

crl [pickl] : < [N] : Phil | mode : h , holds : none > chop([N],[M])

=> < [N] : Phil | mode : h , holds : chop([N],[M]) > if [M] = [s(N)] .

rl [pickr] : < [N] : Phil | mode : h , holds : chop([N],[M]) >

chop([N],[K]) =>

< [N] : Phil | mode : h , holds : chop([N],[M]) chop([N],[K]) > .

rl [h2e] : < [N] : Phil | mode : h , holds : chop([N],[M])

chop([N],[K]) > => < [N] : Phil | mode : e ,

holds : chop([N],[M]) chop([N],[K]) > .

rl [e2t] : < [N] : Phil | mode : e , holds : chop([N],[M])

chop([N],[K]) > => chop([N],[M]) chop([N],[K])

< [N] : Phil | mode : t , holds : none > .

endm

There are four philosophers, that you can imagine eating in a circular table. Initially they are all in thinking
mode (t), but they can go into hungry mode (h), and after picking the left and right chopsticks (they eat
Chinese food) into eating mode (e), and then can return to thinking.

The identities of the philosophers are naturals modulo 4, with contiguous philosophers arranged in increasing
order from left to right (but wrapping around to 0 at 4). The chopsticks are numbered, with each chopstick
indicating the two philosophers next to it.

Prove, by giving appropriate search commands from the initial state init, the following properties:

• (contiguous mutual exclusion): it is never the case that two contiguous philosophers are eating simulta-
neously.

• (mutual non-exclusion): it is however possible for two philosophers to eat simultaneously.

• (three exclusion): it is impossible for three philosophers to eat simultaneously.

• (deadlock) the system can deadlock (this of course is a bad property: the violation of so-called deadlock
freedom).
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