
CS 476 Homework #2 Due 10:45am on 9/24

Note: Answers to the exercises listed below should be emailed as a pdf file to the instructor at the following address:
meseguer@illinois.edu by the (hard) deadline mentioned above. They should be in pdf and in typewritten form
(latex formatting preferred). For exercises 1 and 2 you should include your code and the results of evaluating your
test cases in the pdf text of your homework. Furthermore, you should also attach (as separate files) the Maude files
for Problems 1 and 2 to the email containing your answers to the homework.

Note: Each exercise is evaluated from 0 to 10. If you do the three of them perfectly you get a 30 mark in the
homework. Furthermore, as explained below, you can get some extra credit for Exercise 3.

1. Consider the following skeleton of a Maude functional module defining the integers and several functions on
them:

fmod INTEGER is protecting BOOL .

sorts Zero NzNat Nat NzNeg Neg Int .

subsorts Zero NzNat < Nat < Int .

subsorts Zero NzNeg < Neg < Int .

op 0 : -> Zero [ctor] .

op s : Nat -> NzNat [ctor] .

op p : Neg -> NzNeg [ctor] .

ops s p : Int -> Int .

op - : Int -> Int .

op _+_ : Int Int -> Int .

op _*_ : Int Int -> Int .

op _>_ : Int Int -> Bool .

vars i j : Int . vars n m : Nat . vars n’ m’ : NzNat .

vars q r : Neg . vars q’ r’ : NzNeg .

*** add here your equations defining s, p, -, _+_, _*_ and _>_

endfm

Note the very “symmetric” nature of the integers in this order-sorted definition. The sort Zero with constructor
constant 0 is both a subsort of Nat and of the negative numbers Neg. The strictly positive (resp. strictly
negative) numbers are in the subsort NzNat (resp. NzNeg). The successor s (resp. predecessor p) constructors
build the data elements in NzNat (resp. NzNeg) in a completely “symmetric” way: each constructor is the
“mirror image” of the other, and so are the sorts NzNat and NzNeg and, likewise, Nat and Neg. A quite
interesting fact is that s and p are also overloaded as defined functions on the integers, which are defined by
corresponding equations (that you are asked to give) defining their meaning for any integers of sort Int. All
the other functions are as you would expect: -(i) is the unary minus operator for integer i. We do not need
a binary minus, since we could define i - j = i + -(j). The operations _+_ and _*_ are of course integer
addition and multiplication, and _>_ is the strict order on integers.

You shoud test your module using a collection of test cases. For your convenience, several test cases are given
below with the red command, as well as the answers that you should get. The test cases are:
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red s(p(p(0))) .

red p(s(s(0))) .

red -(s(s(s(0)))) .

red -(p(p(p(0)))) .

red s(s(s(0))) + s(s(0)) .

red s(s(s(0))) + p(p(0)) .

red p(p(p(0))) + s(s(0)) .

red p(p(p(0))) + p(p(0)) .

red s(s(s(0))) * s(s(0)) .

red s(s(s(0))) * p(p(0)) .

red p(p(p(0))) * s(s(0)) .

red p(p(p(0))) * p(p(0)) .

red s(s(s(0))) > s(s(0)) .

red s(s(s(0))) > p(p(0)) .

red p(p(p(0))) > s(s(0)) .

red p(p(p(0))) > p(p(0)) .

and the corresponding evaluations are:

==========================================

reduce in INTEGER : s(p(p(0))) .

rewrites: 1 in 0ms cpu (0ms real) (1000000 rewrites/second)

result NzNeg: p(0)

==========================================

reduce in INTEGER : p(s(s(0))) .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNat: s(0)

==========================================

reduce in INTEGER : -(s(s(s(0)))) .

rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNeg: p(p(p(0)))

==========================================

reduce in INTEGER : -(p(p(p(0)))) .

rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNat: s(s(s(0)))

==========================================

reduce in INTEGER : s(s(s(0))) + s(s(0)) .

rewrites: 3 in 0ms cpu (0ms real) (1000000 rewrites/second)

result NzNat: s(s(s(s(s(0)))))

==========================================

reduce in INTEGER : s(s(s(0))) + p(p(0)) .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNat: s(0)

==========================================

reduce in INTEGER : p(p(p(0))) + s(s(0)) .

rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNeg: p(0)

==========================================

reduce in INTEGER : p(p(p(0))) + p(p(0)) .

rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNeg: p(p(p(p(p(0)))))

==========================================

reduce in INTEGER : s(s(s(0))) * s(s(0)) .

rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNat: s(s(s(s(s(s(0))))))

==========================================
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reduce in INTEGER : s(s(s(0))) * p(p(0)) .

rewrites: 16 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNeg: p(p(p(p(p(p(0))))))

==========================================

reduce in INTEGER : p(p(p(0))) * s(s(0)) .

rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNeg: p(p(p(p(p(p(0))))))

==========================================

reduce in INTEGER : p(p(p(0))) * p(p(0)) .

rewrites: 16 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNat: s(s(s(s(s(s(0))))))

==========================================

reduce in INTEGER : s(s(s(0))) > s(s(0)) .

rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==========================================

reduce in INTEGER : s(s(s(0))) > p(p(0)) .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==========================================

reduce in INTEGER : p(p(p(0))) > s(s(0)) .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: false

==========================================

reduce in INTEGER : p(p(p(0))) > p(p(0)) .

rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: false

2. Consider the following skeleton of a functional module defining several functions on lists of natural numbers:

fmod LIST-FUNCTIONS is protecting NAT .

sort NeList List .

subsort Nat < NeList < List .

op nil : -> List [ctor] .

op _ _ : List List -> List [ctor assoc id: nil] .

op _ _ : NeList NeList -> NeList [ctor assoc id: nil] .

op rev : List -> List .

op remove_from_ : Nat List -> Nat .

op no-reps : List -> List .

op pal : List -> Bool .

op prefix : List List -> Bool .

vars n m : Nat . vars L L1 L2 : List . vars P Q : NeList .

*** add here your equations defining rev, remove_from_, no-reps

*** pal, and prefix

endfm

To make your life easier, the Maude built-in module NAT is included, so that you can use a shorter, more
readable representation of lists of numbers in decimal notation, such as, e.g., a list of seven numbers of the
form 1 2 3 4 5 13 271. NAT includes the BOOL submodule (with constants true and false) as well. Both
are described in All About Maude and in the Maude Manual; but all you may need to use are the following two
built-in functions provided by NAT, which can be helpful for you to define some of the above functions, namely:
(i) an “if-then-else” function with syntax if_then_else_fi and an equality predicate on natural numbers with
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syntax _==_ so that n == m evaluates to true when numbers n and m are equal, and to false when they are
different.

The functions that you are asked to define are as follows: rev reverses a list; remove n from L removes all
occurrences of number n from list L; no-reps(L) is the list obtained by keeping the first occurrence of each
number n appearing in the list and removing all other subsequent occurrences of n (if any); in particular, the
list no-reps(L) will never have repeated elements; pal(L) is true if L is a palindrome, i.e., if it reads the same
forwards and backwards, or, equivalently, if L satisfies the equation L = rev(L); otherwise, pal(L) is false.
The predicate prefix(L,L1) is true if L1 can be decomposed as a list concatenation L1 = L L2, where L2

could be nil; and is false otherwise.

You shoud test your module using a collection of test cases. For your convenience, several test cases are given
below with the red command, as well as the answers that you should get. The test cases are:

red rev(1 2 3 4) .

red rev(1) .

red remove 3 from 1 2 3 1 3 2 3 .

red no-reps(1 2 1 3 2 3 4 3 1) .

red pal(1 2 3 4 3 2 1) .

red 1 2 3 4 3 2 1 == rev(1 2 3 4 3 2 1) .

red pal(1 2 3 4 2 1) .

red 1 2 3 4 2 1 == rev(1 2 3 4 2 1) .

red prefix(1 2,1 2 3) .

red prefix(1 2 3,1 2 3) .

red prefix(1 2 3 4,1 3 4 4) .

and the corresponding evaluations are:

==========================================

reduce in LIST-FUNCTIONS : rev(1 2 3 4) .

rewrites: 5 in 0ms cpu (0ms real) (5000000 rewrites/second)

result NeList: 4 3 2 1

==========================================

reduce in LIST-FUNCTIONS : rev(1) .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNat: 1

==========================================

reduce in LIST-FUNCTIONS : remove 3 from 1 2 3 1 3 2 3 .

rewrites: 22 in 0ms cpu (0ms real) (~ rewrites/second)

result NeList: 1 2 1 2

==========================================

reduce in LIST-FUNCTIONS : no-reps(1 2 1 3 2 3 4 3 1) .

rewrites: 57 in 0ms cpu (0ms real) (2850000 rewrites/second)

result NeList: 1 2 3 4

==========================================

reduce in LIST-FUNCTIONS : pal(1 2 3 4 3 2 1) .

rewrites: 10 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==========================================

reduce in LIST-FUNCTIONS : 1 2 3 4 3 2 1 == rev(1 2 3 4 3 2 1) .

rewrites: 9 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==========================================

reduce in LIST-FUNCTIONS : pal(1 2 3 4 2 1) .

rewrites: 9 in 0ms cpu (0ms real) (~ rewrites/second)
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result Bool: false

==========================================

reduce in LIST-FUNCTIONS : 1 2 3 4 2 1 == rev(1 2 3 4 2 1) .

rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: false

==========================================

reduce in LIST-FUNCTIONS : prefix(1 2, 1 2 3) .

rewrites: 7 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==========================================

reduce in LIST-FUNCTIONS : prefix(1 2 3, 1 2 3) .

rewrites: 10 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: true

==========================================

reduce in LIST-FUNCTIONS : prefix(1 2 3 4, 1 3 4 4) .

rewrites: 6 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: false

3. A finite, unsorted signature Σ can be represented as a family of finite sets Σ = {Fn}0≤n≤k for some k ≥ 0,
where F0 is the set of constant symbols, F1 is the set of unary function symbols, and Fn the set of function
symbols of n ≤ k arguments. This problem has two parts.

(a) (You can get up to 5 points for this part). For the Peano signature ΣPeano = {Fn}0≤n≤1 with constant
F0 = {0} and unary symbol F1 = {s}, given the set A = {a, b, c}, how many different ΣPeano-algebras
A = (A, A) can be defined on the set A?

(b) Extra Credit (You can get up to 10 points for this part). Given a finite signature Σ = {Fn}0≤n≤k for
some k ≥ 0, and a finite set A of m elements, written |A| = m, give a formula dependent on m and on
the numbers |Fn| = opsn, 0 ≤ n ≤ k, computing the number of different Σ-algebras A = (A, A) that can
be defined on the set A.
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