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1 Getting started

1.1 Running NuITP

NuITP runs with the latest version of the Maude System (version 3.2.1)1, which you can download
from the Maude’s website at http://maude.cs.illinois.edu.

The current version of NuITP is distributed as a zip file consisting of two files, namely NuITP.maude
and aacrpo.maude. To run the tool simply load the NuITP.maude file by providing it as an ar-
gument when starting the Maude System or by loading it manually by means of Maude’s load

command. Once loaded, the tool will automatically start. To be able to read from and write into
files, Maude requires to be run with the allow-files or trust flags on (see the Maude manual
[2, Chapter 9]). After loading the NuITP.maude file you should see the tool’s prompt:

$ maude -allow-files NuITP.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 3.2.1 built: Feb 21 2022 18:24:38

Copyright 1997-2022 SRI International

Mon Oct 3 11:47:25 2022

==========================================

erewrite in NuITP : init .

NuITP

Inductive Theorem Prover

for Maude Equational Theories

alpha 12a

NuITP>

NuITP is an interactive tool, with a number of commands you will use to interact with it, by
typing them at the NuITP> prompt. The first two commands you must learn are:

quit (or q in its abbreviated form) to leave the tool, and

help to get a basic help on the syntax on available commands.2

Before we go with the commands, we will present some basic information on the tool and how
to interact with it. NuITP is written in Maude. Its top module is named NuITP. As any other
Maude program it needs to be started after it is loaded into the system. The NuITP.maude file
ends up with such a command so it is directly initiated. If the tool is stopped, for example using
control-C, you may be able to reinitiate it without leaving Maude. To start it you just need to
type

Maude> erew init .

with the NuITP module selected, or directly

Maude> erew in NuITP : init .

You will carry on your proofs on specifications that are assumed previously loaded in Maude.
Currently, there is no way to load files after the tool has been started. Therefore, you must either
load your modules before the NuITP.maude file, or stop the tool, load the files using the load

command, and then restart the tool — to restart the tool after loading some module, you must
set the NuITP module as current module and then initiate it with erew init as explained above.

For example, you can initiate Maude specifying the modules as arguments of the maude com-
mand

1Note that NuITP makes use of some functions declared in the file.maude, so you need to have the MAUDE LIB

environment variable declared and pointing to the folder where that file, together with the prelude and rest of
default Maude System files, are located. Alternatively, you can have these files where the Maude binary is located,
or load it manually like any other Maude file.

2Most of the NuITP’s commands follow the Maude convention of ending with a dot. In NuITP, like in Maude,
there are a few exceptions, including the q/quit, help, load/save, and export commands.
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$ maude -allow-files examples/peano+R.maude NuITP.maude

or start Maude and then load the files.

$ maude -allow-files

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 3.2.1 built: Feb 21 2022 18:24:38

Copyright 1997-2022 SRI International

Mon Oct 3 11:47:25 2022

Maude> load examples/peano+R.maude

Maude> load NuITP.maude

==========================================

erewrite in NuITP : init .

NuITP

Inductive Theorem Prover

for Maude Equational Theories

alpha 12a

NuITP>

Once your modules have been loaded into Maude, and the NuITP tool is ready to execute
commands, we can begin our interaction. We can carry out inductive proofs on any module loaded
in Maude, but we need to tell the theorem prover which of them is the chosen one. To select a
module we can use the set module command.

set module <module name> .

For example,

NuITP> set module PEANO+R .

Module PEANO+R is now active.

NuITP>

Any proof in the NuITP will have a top goal and a number of subgoals derived from it through
the successive application of different commands. At any time, a proof is either completed, if there
are no further goals to be proven, or open, if there are a number of open goals in what we call the
frontier of the proof.3 The following commands are useful to manage these goals:

set goal <goal> .: sets the specified goal as active top goal. There can only be one top goal,
therefore, setting a new top goal results in the deletion of the previous proof.

show module .: shows the currently active module.

show goals .: shows all goals, that is, the entire proof tree.

show goal <goal id> .: shows the goal with the specified identifier.

show frontier .: shows the goals in the frontier, that is, the goals pending to be proved to
complete the proof of the current top goal.

show log .: shows a raw log of the session.

The following commands are also available to load and save proof scripts and proof trees (note
that these commands do not have a final dot):

load <file-name> : loads (and executes) a proof script.

save <file-name> : saves the current proof script in the specified file.

export <file-name> : saves a report on the current proof in the specified file.
3If we view the goal-subgoal relation as a binary tree rooted at the top goal, the “frontier” corresponds to the

leaves of that tree, i.e., to the set of currently unproved (sub)goals, whose proof will prove the top goal.
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1.2 Preliminaries and Assumptions

NuITP makes use of state-of-the-art advances in fields such as variant unification, narrowing,
rewriting with strategies, and meta-interpreters, all of which have been gradually incorporated
into the Maude system. Therefore, for a full compatibility, it is recommended to run NuITP in the
last available version of the Maude interpreter (i.e., version 3.2.1). Otherwise, the requirements
are those of the Maude’s interpreter itself.

The Maude specifications currently handled by NuITP are functional modules of the form
fmod (Σ, E ∪ B) endfm, with E a set of ground convergent equations modulo B, where B a
set of axioms, which can be any combination of associativity (A), commutativity (C) or identity
(U) axioms. Furthermore, the module is sufficiently complete with respect to a subsignature of
constructors Ω, and, except for some axioms BΩ ⊆ B among such constructors, there are no
equations in E identifying constructor terms. That is, constructors are free modulo BΩ.

1.3 The ctor and variant attributes

NuITP implements the theory described in [5], which, among other things, assumes an order-sorted
equational theory E = (Σ, B,E) that can be decomposed by subtheory inclusions:

(Ω, BΩ,Ø) ⊆ (Σ1, B1, E1) ⊆ (Σ, B,E),

which, from left to right, respectively correspond to the constructor subtheory, the subtheory that
has the Finite Variant Property (FVP) [3], and the original theory itself. Establishing whether
a theory has the FVP or not is a semi-decidable problem which, in case it holds, can be easily
checked using Maude. The NuITP relies on the user to clearly specify these two subtheories by
means of Maude’s ctor declarations and variant equation attributes (for more info, see Section
4.4.3 and [2, Chapter 14]). Specifically, all constructor symbols need to be declared with the ctor
attribute and equations in E1 should be unconditional and must be declared with the variant

attribute iif E1 has the FVP modulo B1. The remaining equations in E \ E1, which do not have
the FVP, should not use the variant attribute. Equations in E \E1 can be conditional; but they
should not use any built-in features such as the == equality predicate or the owise attribute (see
[2] for more info on Maude’s variant equations requirements).

1.4 RPO termination order specified with the metadata attribute

By assumption, the equations E of an input module fmod (Σ, E∪B) endfm are ground convergent
and therefore terminating modulo B. However, in the process of developing an inductive proof
of some property about such a module, new induction hypotheses are often added to the module.
Some of these hypotheses may be executable as, perhaps conditional, rewrite rules, say, H⃗exec .
However, if the combined set of rules E⃗ ∪ H⃗exec is non-terminating the NuITP could loop, a trap
that should be avoided in automated reasoning and, in particular, in inductive theorem proving.
This trap can be avoided by making explicit a suitable reduction path order (RPO) relation ≺
[1] under which the module’s original equations E are terminating (modulo the axioms4B). The
NuITP can then use this RPO order ≺ to automatically identify and orient a rules a subset of
executable hypotheses H⃗exec that are also RPO-terminating under the same order, thus avoiding
non-termination. Furthermore, by making ≺ a total order on function symbols, two ground terms
that are different modulo B can always be compared under the ≺ order, which is very useful for
some of the NuITP inference rules. To achieve these termination properties, NuITP requires that
the user specifies a suitable RPO order modulo axioms that is total on function symbols by ordering
the signature of the input theory by means of a tagging of each of its operators with a natural
number using the metadata attribute of Maude (see Section 4.5.2 of [2]), so that, say, operator f
is bigger than operator g iff f ’s number is bigger than g’s number. This should be done so that
all subsort-oveloaded version of each operators are annotated with the same number, and different
operator symbols are annotated with different numbers. The way to do this is illustrated in the
following example.

Consider the following equational theory in which no RPO order has been specified:

4Such axioms should not include identity axioms. This is ensured by the NuITP by means of an internal semantics-
preserving theory transformation that transforms identity axioms into rules and also tranforms the equations E to
match without identity axioms.
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fmod PEANO+ADD-NO-ORDER is

sorts Nat NzNat .

subsorts NzNat < Nat .

op 0 : -> Nat [ ctor ] .

op s_ : Nat -> NzNat [ ctor ] .

op _+_ : Nat Nat -> Nat [ assoc comm ] .

eq N:Nat + 0 = N:Nat .

eq N:Nat + s M:Nat = s(N:Nat + M:Nat) .

endfm

where 0 and s are constructor symbols and + is a defined function symbol (defined by its recursive
equations). Then, a suitable RPO order for this theory making it terminating is 0 ≺ s ≺ +. Thus,
starting by the smaller symbol in this order, operators must be tagged as follows:

fmod PEANO+ADD-WITH-ORDER is

sorts Nat NzNat .

subsorts NzNat < Nat .

op 0 : -> Nat [ ctor metadata "1" ] .

op s_ : Nat -> NzNat [ ctor metadata "2" ] .

op _+_ : Nat Nat -> Nat [ assoc comm metadata "3" ] .

eq N:Nat + 0 = N:Nat .

eq N:Nat + s M:Nat = s(N:Nat + M:Nat) .

endfm

Since we want to specify an RPO order to ensure termination of the equations defining the
module’s functions, any constructor symbol should be annotated with a smaller number than that
of any defined symbol. Finally, in the above example we have used 1 as the starting index, but
there is actually no restriction on the choice of the smallest value, provided that it is a natural
number and that the intended order between symbols is preserved.

1.5 Clauses and multiclauses

The formulas that can be shown to be inductive theorems of a given Maude functional mpdule by
the NuITP are what we call multiclauses. A multiclause is a formula of the form

(w1 = w′
1 ∧ . . . ∧ wn = w′

n) ⇒ ((u1
1 = v11 ∨ . . . ∨ u1

m1
= v1m1

) ∧ . . . ∧ (uk
1 = vk1 ∨ . . . ∨ uk

mk
= vkmk

))

which condenses into a single formula k clauses having the same condition (w1 = w′
1∧. . .∧wn = w′

n),
namely, the k clauses:

(w1 = w′
1 ∧ . . . ∧ wn = w′

n) ⇒ (u1
1 = v11 ∨ . . . ∨ u1

m1
= v1m1

)

. . .

(w1 = w′
1 ∧ . . . ∧ wn = w′

n) ⇒ (uk
1 = vk1 ∨ . . . ∨ uk

mk
= vkmk

).

A multiclause with no condition, i.e.,

(u1
1 = v11 ∨ . . . ∨ u1

m1
= v1m1

) ∧ . . . ∧ (uk
1 = vk1 ∨ . . . ∨ uk

mk
= vkmk

)

is understood as having condition true, that is,

true ⇒ (u1
1 = v11 ∨ . . . ∨ u1

m1
= v1m1

) ∧ . . . ∧ (uk
1 = vk1 ∨ . . . ∨ uk

mk
= vkmk

)

1.6 A simple proof: associativity of addition

In this section, we illustrate the basic operation of the theorem prover. As already stated, in
addition to the commands related to the management of the proof tree itself, the prover provides
several commands, which basically apply corresponding inference rules. Please, see [5] for detailed
descriptions of the inference rules, and Section 2 for a detailed info, concrete syntax and examples
on each command of the tool. Some additional examples can be found in Section 3.

All these commands have the form
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apply <inference rule name> to <goal id> [<possible additional arguments>] .

which basically apply a given inference rule on a specific goal. For example, we can request the
application of the EPS rule for equational predicate simplification on a specific pending goal, say
0.1, by giving the command:

NuITP> apply eps to 0.1 .

Let us see now some of these commands in action. To do so, let us begin with something simple,
the associativity of natural numbers defined using the Peano notation. Let us use the following
specification of numbers.

set include BOOL off .

fmod PEANO+R is

sorts Nat NzNat .

subsorts NzNat < Nat .

op 0 : -> Nat [ ctor metadata "1" ] .

op s_ : Nat -> NzNat [ ctor metadata "2" ] .

op _+_ : Nat Nat -> Nat [ metadata "3" ] .

eq N:Nat + 0 = N:Nat .

eq N:Nat + s M:Nat = s(N:Nat + M:Nat) .

endfm

The module PEANO+R defines sorts Nat and NzNat with 0 and s_ in the usual way. It also
defines a _+_ operation. The metadata attributes define an RPO order that makes the module’s
equations terminating and that will be used to orient future induction hypotheses as rewrite rules
when possible. The syntax used to define RPOs is taken directly from the MTA tool [4]. See
Section 1.4 for a brief presentation of RPOs and the syntax introduced by the MTA and used here.

By default, the BOOL module is imported in all modules. With the “set include BOOL off .”
Maude command we force Maude to deactivate such an inclusion before loading our file. Maude’s
“set include BOOL off .” command should be given before any module that is entered into the
NuITP. This is because of the non-built-in features of Maude. However, if the user needs Boolean
values, the module TRUH-VALUE imports just the truth values without creating any built-in-related
problems.

To begin our proof, we first need to load the peano+R.maude file and then start the tool.

$ maude -allow-files examples/peano+R.maude NuITP.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 3.2.1 built: Feb 21 2022 18:24:38

Copyright 1997-2022 SRI International

Mon Oct 3 11:47:25 2022

==========================================

erewrite in NuITP : init .

NuITP

Inductive Theorem Prover

for Maude Equational Theories

alpha 12a

NuITP>

Then, we set the module as current one.

NuITP> set module PEANO+R .

Module PEANO+R is now active.
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Then, we set the goal corresponding to the associativity of the _+_ operator.

NuITP> set goal X:Nat + (Y:Nat + Z:Nat) = (X:Nat + Y:Nat) + Z:Nat .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(X:Nat + (Y:Nat + Z:Nat)) = ((X:Nat + Y:Nat) + Z:Nat)

Once the top goal has been set, with identifier 0, we can start our proof. In this case, the
thing to do is to apply generator-set induction (GSI) on one of the variables. For example, we
can apply it on the variable Z, using the generator set given by 0 and s N for N a natural value.
Note that the generator terms in such a set are separated by ;;. Note also that the generator set
0 ;; s(K:Nat) corresponds to the standard induction on the natural numbers.

NuITP> apply gsi to 0 on Z:Nat with 0 ;; s(K:Nat) .

Generator Set Induction (GSI) applied to goal 0.

Goal Id: 0.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(X:Nat + (Y:Nat + 0)) = ((X:Nat + Y:Nat) + 0)

Goal Id: 0.2

Skolem Ops:

K.Nat

Executable Hypotheses:

((X:Nat + Y:Nat) + K) => (X:Nat + (Y:Nat + K))

Non-Executable Hypotheses:

None

Goal:

(X:Nat + (Y:Nat + s K)) = ((X:Nat + Y:Nat) + s K)

Two new goals have been created, with identifiers 0.1 and 0.2, which define the current frontier
of the proof. They can be easily discarded by equality predicate simplification as follows.

NuITP> apply eps to 0.1 .

Equality Predicate Simplification (EPS) applied to goal 0.1.

Goal 0.1.1 has been proved.

Unproved goals:

Goal Id: 0.2

Skolem Ops:

K.Nat

Executable Hypotheses:

((X:Nat + Y:Nat) + K) => (X:Nat + (Y:Nat + K))

Non-Executable Hypotheses:

None

8



Goal:

(X:Nat + (Y:Nat + s K)) = ((X:Nat + Y:Nat) + s K)

Note that the tool proves the goal, and shows the remaining, unproved goals. We can finish
the proof by proving goal 0.2, also by equality predicate simplification.

NuITP> apply eps to 0.2 .

Equality Predicate Simplification (EPS) applied to goal 0.2.

Goal 0.2.1 has been proved.

qed

When there are no pending goals, the tool will show the classical qed symbol (quod erat demon-
strandum), to inform us on such fact.

1.7 An alternative proof with ! commands: associativity of addition

The equational simplification of goals after the application of some other inference rules is quite
effective. Indeed, it is so common to combine them that NuITP provides modified versions of some
of its commands, including gsi and the narrowing induction ni discussed later, as, respectively,
gsi! and ni!, which basically apply the EPS rule to each of the subgoals generated by the given
original command. With the gsi! command, the proof in Section 1.6 is much simpler.

NuITP> set module PEANO+R .

Module PEANO+R is now active.

NuITP> set goal X:Nat + (Y:Nat + Z:Nat) = (X:Nat + Y:Nat) + Z:Nat .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(X:Nat + (Y:Nat + Z:Nat)) = ((X:Nat + Y:Nat) + Z:Nat)

NuITP> apply gsi! to 0 on Z:Nat with 0 ;; s(K:Nat) .

Generator Set Induction with Equality Predicate Simplification

(GSI!) applied to goal 0.

Goals 0.1 and 0.2 have been proved.

qed

1.8 Commutativity of addition

If you have completed the proof of the commutativity of addition before, you know that we will
need a lemma to complete the proof. But we cannot assume such things when we are facing a
proving task. We present two alternative proofs for it. In Section 1.8.1 we complete the proof
without using any previous knowledge. Then, in Section 1.8.2 we will present a more direct one in
which by timely introducing the right lemma we will get the goal proved in a smaller number of
steps.

9



1.8.1 Proving Commutativity of Addition the Hard Way

We are using our PEANO+R module, so we can begin by setting it and the goal to prove.

NuITP> set module PEANO+R .

Module PEANO+R is now active.

NuITP> set goal (X:Nat + Y:Nat = Y:Nat + X:Nat) .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(X:Nat + Y:Nat) = (Y:Nat + X:Nat)

Given this goal, we may begin by attempting to apply generator-set induction on one of the
variables, say X:Nat, using the generator set we have already used in previous proofs.

NuITP> apply gsi! to 0 on X:Nat with 0 ;; s K:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.

Goal Id: 0.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

Y:Nat = (0 + Y:Nat)

Goal Id: 0.2

Skolem Ops:

K.Nat

Executable Hypotheses:

None

Non-Executable Hypotheses:

(K + Y:Nat) = (Y:Nat + K)

Goal:

s (Y:Nat + K) = (s K + Y:Nat)

Nothing new so far, we got the expected goals. We can try to solve them by using induction
again. Let us begin with Goal 0.1.

NuITP> apply gsi! to 0.1 on Y:Nat with 0 ;; s K:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.1.

Goals 0.1.1 and 0.1.2 have been proved.

Unproved goals:

Goal Id: 0.2

Skolem Ops:
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K.Nat

Executable Hypotheses:

None

Non-Executable Hypotheses:

(K + Y:Nat) = (Y:Nat + K)

Goal:

s(Y:Nat + K) = (s K + Y:Nat)

The goal has automatically been discharged, and we are left with Goal 0.2.

NuITP> apply gsi! to 0.2 on Y:Nat with 0 ;; s K:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.2.

Goal 0.2.2 has been proved.

Goal Id: 0.2.1

Skolem Ops:

K.Nat

Executable Hypotheses:

None

Non-Executable Hypotheses:

(K + Y:Nat) = (Y:Nat + K)

Goal:

K = (0 + K)

We are almost done, but not quite: we are left with a goal that cannot be discharged by
equational simplification. In fact, it is a particular case of Goal 0.1 that we proved before. Even
though it was proved, the NuITP did not add it as a proved lemma to our theory. We need to add
it explicitly as a lemma using the LE rule:

NuITP> apply le to 0.2.1 with (Y:Nat = (0 + Y:Nat)) .

Lemma Enrichment (LE) applied to goal 0.2.1.

Goal Id: 0.2.1.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

Y:Nat = (0 + Y:Nat)

Goal Id: 0.2.1.2

Skolem Ops:

K.Nat

Executable Hypotheses:

(0 + Y:Nat) => Y:Nat

Non-Executable Hypotheses:

(K + Y:Nat) = (Y:Nat + K)

Goal:

K = (0 + K)

Of course, now we have our pending goal, and an additional goal for the lemma. With the
executable hypotheses we can discharge Goal 0.2.1.2 by equational simplification.

NuITP> apply eps to 0.2.1.2 .

Equality Predicate Simplification (EPS) applied to goal 0.2.1.2.
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Goal 0.2.1.2.1 has been proved.

Unproved goals:

Goal Id: 0.2.1.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

Y:Nat = (0 + Y:Nat)

Even though the lemma was not yet proven, we were able to use it. Of course, we need to
discharge it to complete the proof.

NuITP> apply gsi! to 0.2.1.1 on Y:Nat with 0 ;; s K:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.2.1.1.

Goals 0.2.1.1.1 and 0.2.1.1.2 have been proved.

qed

In the following section we present an alternative proof in which, by introducing the required
lemma sooner, we can complete the proof in fewer steps.

1.8.2 Proving Commutativity of Addition: An Easier Way

As usual, we begin by setting out module and goal.

NuITP> set module PEANO+R .

Module PEANO+R is now active.

NuITP> set goal (X:Nat + Y:Nat = Y:Nat + X:Nat) .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(X:Nat + Y:Nat) = (Y:Nat + X:Nat)

Since we anticipate that left identity of addition will help in our proof, we introduce it as a
lemma.

NuITP> apply le to 0 with (Y:Nat = (0 + Y:Nat)) .

Lemma Enrichment (LE) applied to goal 0.

Goal Id: 0.1

Skolem Ops:

None

Executable Hypotheses:

None
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Non-Executable Hypotheses:

None

Goal:

Y:Nat = (0 + Y:Nat)

Goal Id: 0.2

Skolem Ops:

None

Executable Hypotheses:

(0 + Y:Nat) => Y:Nat

Non-Executable Hypotheses:

None

Goal:

(X:Nat + Y:Nat) = (Y:Nat + X:Nat)

The executable hypothesis will now be used when needed. We may proceed by applying induc-
tion on the main goal.

NuITP> apply gsi! to 0.2 on X:Nat with 0 ;; s K:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.2.

Goal 0.2.1 has been proved.

Goal Id: 0.2.2

Skolem Ops:

K.Nat

Executable Hypotheses:

(0 + Y:Nat) => Y:Nat

Non-Executable Hypotheses:

(K + Y:Nat) = (Y:Nat + K)

Goal:

s(Y:Nat + K) = (s K + Y:Nat)

And again on Goal 0.2.2.

NuITP> apply gsi! to 0.2.2 on Y:Nat with 0 ;; s K:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.2.2.

Goals 0.2.2.1 and 0.2.2.2 have been proved.

Unproved goals:

Goal Id: 0.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

Y:Nat = (0 + Y:Nat)

And with one more application of gsi! we prove the only remaining goal:

NuITP> apply gsi! to 0.1 on Y:Nat with 0 ;; s K:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.1.

13



Goals 0.1.1 and 0.1.2 have been proved.

qed

1.9 Program equivalence

Using the NuITP, we can prove that the PEARNO+R module presented in Section 1.6 and the module
PEANO+L below are equivalent, that is, that they compute the same addition function. We can do
so by proving in PEARNO+R the axioms in PEANO+L and vice versa.5

set include BOOL off .

fmod PEANO+L is

sorts Nat NzNat .

subsorts NzNat < Nat .

op 0 : -> Nat [ ctor metadata "1" ] .

op s_ : Nat -> NzNat [ ctor metadata "2" ] .

op _+_ : Nat Nat -> Nat [ metadata "3" ] .

eq 0 + N:Nat = N:Nat .

eq s N:Nat + M:Nat = s(N:Nat + M:Nat) .

endfm

Let us begin with the axioms of PEANO+L.

NuITP> set module PEANO+R .

Module PEANO+R is now active.

NuITP> set goal ((0 + Y:Nat = Y:Nat) /\ (s X:Nat + Y:Nat = s(X:Nat + Y:Nat))) .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(Y:Nat = (0 + Y:Nat)) /\ s(X:Nat + Y:Nat) = (s X:Nat + Y:Nat)

NuITP> apply gsi! to 0 on Y:Nat with 0 ;; s K:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.

Goals 0.1 and 0.2 have been proved.

qed

Then we can prove the axioms of PEANO+R in the module PEANO+L.

NuITP> set module PEANO+L .

Module PEANO+L is now active.

5For a general notion of equivalence between equational programs and a justification of the proof method see: J.
Meseguer, Lecture 14, Lectures Notes for CS 476, Fall 2022, University of Illinois at Urbana-Champaign, available
at https://courses.grainger.illinois.edu/CS476/fa2022/#lecture-14-11th-oct.
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NuITP> set goal (Y:Nat + 0 = Y:Nat) /\ (Y:Nat + s X:Nat = s(Y:Nat + X:Nat)) .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(Y:Nat = (Y:Nat + 0)) /\ s(Y:Nat + X:Nat) = (Y:Nat + s X:Nat)

NuITP> apply gsi! to 0 on Y:Nat with 0 ;; s K:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.

Goals 0.1 and 0.2 have been proved.

qed

With these two simple proof scripts we have shown the equivalence of PEANO+R and PEANO-L.
Specifically, this proves that both modules have the same initial algebra and therefore satisfy the
same inductive properties.

1.10 Enriched specifications

Since PEANO+R and PEANO-L are equivalent, we can define a new module PEANO+LR defined with
the share signature of PEANO+R and PEANO-L and with all the equations of both modules without
changing their initial semantics.

set include BOOL off .

fmod PEANO+LR is

protecting PEANO+R .

eq 0 + N:Nat = N:Nat .

eq s N:Nat + M:Nat = s(N:Nat + M:Nat) .

endfm

Indeed, this is very similar to what we may get by lemma enrichment along our proofs, but it
has the important advantage of “internalizing” such lemmas, so that they can be reused on many
occasions.

1.10.1 Proving commutativity and associativity of addition in Two Steps

In this enriched module PEANO+LR, the proofs of the commutativity and associativity properties of
addition are straightforward.

NuITP> set module PEANO+LR .

Module PEANO+LR is now active.

NuITP> set goal (X:Nat + Y:Nat = Y:Nat + X:Nat) /\ ((X:Nat + Y:Nat) + Z:Nat = X:Nat +

(Y:Nat + Z:Nat)) .

Initial goal set.

Goal Id: 0

Skolem Ops:

None
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Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

((X:Nat + Y:Nat) = (Y:Nat + X:Nat)) /\ (X:Nat + (Y:Nat + Z:Nat)) =

((X:Nat + Y:Nat) + Z:Nat)

NuITP> apply gsi! to 0 on Y:Nat with 0 ;; s K:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.

Goal 0.1 has been proved.

Goal Id: 0.2

Skolem Ops:

K.Nat

Executable Hypotheses:

((X:Nat + K) + Z:Nat) => (X:Nat + (K + Z:Nat))

Non-Executable Hypotheses:

(K + X:Nat) = (X:Nat + K)

Goal:

(K + X:Nat) = (X:Nat + K)

As a result of the gsi! rule, the hypothesis coming from the application of the induction rule
on the associativity goal has been oriented, and has been directly used for simplification. However,
the hypothesis coming from the commutativity goal could not be oriented, and is left as a non-
executable hypothesis. Goal 0.2 matches it perfectly, and that is why by the application of the
CS rule in the last step, the goal is discharged, and the proof is completed.

NuITP> apply cs to 0.2 .

Clause Subsumption (CS) applied to goal 0.2.

Goal 0.2.1 has been proved.

qed

1.10.2 Program optimization

The enriched module PEANO-LR allows proving different kinds of goals without much effort. In the
following interaction, we show how to prove a different kind of goal, one that proves the correctness
of a program optimization that will make the computation of addition faster. In this case, we just
need equational simplification.

NuITP> set module PEANO+LR .

Module PEANO+LR is now active.

NuITP> set goal (s X:Nat + s Y:Nat = s s X:Nat + Y:Nat)

/\ (s s X:Nat + s s Y:Nat = s s s s(X:Nat + Y:Nat))

/\ (s s s X:Nat + s s s Y:Nat = s s s s s s X:Nat + Y:Nat) .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None
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Goal:

(s s s s (X:Nat + Y:Nat) = (s s X:Nat + s s Y:Nat)) /\ ((s X:Nat + s Y:Nat) =

(s s X:Nat + Y:Nat)) /\ (s s s X:Nat + s s s Y:Nat) = (s s s s s s X:Nat + Y:Nat)

NuITP> apply eps to 0 .

Equality Predicate Simplification (EPS) applied to goal 0.

Goal 0.1 has been proved.

qed

2 NuITP commands

In this section, we describe all the commands, including their syntax, an example of use, and some
requirements that must be satisfied. In Section 2.1 we present general commands. In Section 2.2
we introduce the simplification commands, which require less user interaction. In Section 2.3 we
introduce the induction commands, which may require more user interaction and add hypothesis
to the current goal.

2.1 General NuITP commands

2.1.1 The set command

The first task when starting a new NuITP session is to provide both the theory in which we want
to prove a goal and the goal itself, which we can achieve by means of the set command.

First, we set the module that NuITP will use in the current session as follows:

set module <module-name> .

where <module-name> is the identifier of the Maude module we want to set as current module in
NuITP. Note that the module must have been previously loaded into the Maude interpreter and
be available in the Maude System database.

Next, we set an initial goal to be proven with the following command:

set goal <goal> .

where <goal> is a multiclause of the form Γ -> Λ, where Γ is a conjunction of equations and Λ a
conjunction of disjunctions of equations. See Section 1.2.

Consider the already-discussed PEANO+Rmodule, which has been previously loaded in the Maude
system. First, we set PEANO+R as the theory that NuITP will use in this session:

NuITP> set module PEANO+R .

Module PEANO+R is now active.

Once we have loaded the theory, we set an initial goal to be proved. For example, if we want
to prove a simple, unconditional goal, we can write the following:

NuITP> set goal s(X:Nat) + Y:Nat = s(X:Nat + Y:Nat) .

Initial goal set.

Goal: 0

Skolem Ops:

None

Hypotheses:

None

Clause:

s(X:Nat + Y:Nat) = (s(X:Nat) + Y:Nat)
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NuITP>

Some other goals may be more complex: they may be conditional and may have a conclusion
which is a conjunction of disjunction of equations.

2.1.2 The show commands

The show commands show different kinds of information related to the state of the prover.

� The show module command shows the currently active module.

� The show log command shows a raw log of the session.

� The show goals command shows all goals, that is, the entire proof tree.

� The show frontier shows the goals in the frontier, that is, the goals pending to be proved
to complete the proof of the current top goal.

� The show goal <goal-identifier> shows the goal with the specified identifier.

Syntax

show module .

show log .

show goals .

show frontier .

show goal <goal-identifier> .

Examples

NuITP> show module .

NuITP> show log .

NuITP> show goals .

NuITP> show frontier .

NuITP> show goal 0.1 .

2.1.3 Load, save and export of proofs

The load, save, and export commands allow loading and saving proof scripts and proof trees, as
well as generating proof reports. Note that these commands do not have a final dot.

� The load command loads (and executes) a proof script, which helps to automatize proofs.

� The counterpart of load is the save command, which saves a minimal6 proof script of the
current proof in the specified file.

� Finally, the export creates a LATEX report of the current proof and saves it in the specified
file7.

Beware that, as in the current alpha 12a, NuITP does not ask for confirmation on the provided
name when saving either the session script or the LATEX report into the provided file. It is the user
responsibility to provide a safe file name.

6Where the effects of possible undo commands have been applied.
7Note that NuITP will automatically add a .tex extension to the provided file name.
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Syntax

load <file-name>
save <file-name>
export <file-name>

Examples

NuITP> load scripts/example

NuITP> save scripts/sessionScript

NuITP> export reports/proofReport

Requirements

Maude has to be started with the -allow-files flag.

2.1.4 Undo

The undo command, as its name indicates, undoes the effect of any inference rule applied to the
goal named by the given identifier, automatically removing from the proof tree any goals derived
from it or from any of its immediate children. For example, undoing goal 0 will reset the proof
entirely up to the point in which we set the initial goal. Note that the goal named by the given
identifier will not be removed. Instead, it becomes part of the current, new frontier; and it will
therefore be ready to have different rules applied to it.

Syntax

undo <goal-identifier> .

where <goal-identifier> is the goal on which to apply the command.

Example

NuITP> undo 0.1 .

Requirements

By definition, undoable goals are “childless” goals, that is, either “closed” goals whose formula
is true, or goals in the current frontier to which no inference rule has yet been successfully applied.

2.1.5 Help

The help command shows a brief summary of the available commands. Note that it does not
expect a final dot.

NuITP> help

2.1.6 Quit

The quit command, abbreviated q, is used to leave the prover. It does not expect a final dot.

NuITP> quit

or

19



NuITP> q

2.2 Simplification commands

In NuITP, simplification inference rules transform goals into simpler goals, sometimes proving
them altogether. Since applying them is almost always advantageous, they are ideally suited to be
automated by means of strategies. Furthermore, they require little to none user interaction. Most
of them can be applied manually, and for most of them only the goal identifier in which we want
to apply a given simplification rule is required.

2.2.1 Equality Predicate Simplification (EPS)

Syntax

apply eps to <goal-identifier> .

where <goal-identifier> is the identifier of the goal that we want to simplify with the EPS rule.

Example

NuITP> apply eps to 0.1 .

See examples of use in Sections 1.6, 1.8.1, 1.10.2, 3.1, 3.2, and 3.3.

2.2.2 Constructor Variant Unification Left (CVUL)

Syntax

apply cvul to <goal-identifier> .

where <goal-identifier> is the identifier of the goal that we want to simplify with the CVUL rule.

Example

NuITP> apply cvul to 0.1 .

Requirements

The condition of the multiclause contains at least one equality u = v such that both u and v
are defined in Σ1 (see Section 1.3).

2.2.3 Constructor Variant Unification Failure Right (CVUFR)

Syntax

apply cvufr to <goal-identifier> .

where < goal-identifier> is the identifier of the goal that we want to simplify with the CVUFR
rule.

Example

NuITP> apply cvufr to 0.1 .

Requirements

The right-hand side of the multiclause contains at least one equality ū = v̄ such that: (i) both u
and v are Σ1-terms; (ii) they may contain skolem constants; and (iii) the set of constructor variant
unifiers unifΩ

E1
(u = v) is empty (see Section 1.3).
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2.2.4 Substitution Left (SUBL)

Syntax

apply subl to <goal-identifier> .

where <goal-identifier> is the identifier of the goal that we want to simplify with the SUBL rule.

Example

NuITP> apply subl to 0.1 .

Requirements

The condition of the multiclause contains an equality x̄ = u such that: (i) x̄ is either a variable
or a fresh (skolem) constant; (ii) x̄ does not appear in u; (iii) the least sort of u is lesser or equal
to the sort of x̄; (iv) u is not a Σ1-term; and (v) the rest of the condition does not contain any
Σ1-equality (see Section 1.3).

2.2.5 Substitution Right (SUBR)

Syntax

apply subr to <goal-identifier> .

where <goal-identifier> is the identifier of the goal that we want to simplify with the SUBR rule.

Example

NuITP> apply subr to 0.1 .

Requirements

The right-hand side of the multiclause contains an equality x̄ = u such that: (i) x̄ is either
a variable or a fresh (skolem) constant; (ii) x̄ does not appear in u; (iii) the least sort of u is
lesser than or equal to the sort of x̄; (iv) u is not a Σ1-term; and (v) the rest of the multiclause’s
right-hand side is not empty.

2.2.6 Narrowing Simplification (NS)

Syntax

apply ns to <goal-identifier> .

where <goal-identifier> is the identifier of the goal that we want to simplify with the NS rule.

Example

NuITP> apply ns to 0.1 .

Requirements

The goal’s multiclause contains an equality f(v⃗) = u such that: (i) f(v⃗) is the narrowex, with f
a non-constructor function symbol in Σ; (ii) f is also not a Σ1 term; (iii) the terms v⃗ are constructor
terms; and (iv) u is a Σ1 term (see Section 1.3).

21



2.2.7 Clause Subsumption (CS)

Syntax

apply cs to <goal-identifier> .

where <goal-identifier> is the identifier of the goal that we want to simplify with the CS rule.

Example

NuITP> apply cs to 0.1 .

See an example of use in Section 1.10.1.

Requirements

The set of (executable and non-executable) hypotheses of the goal contains a hypothesis that
subsumes (part of) the goal’s multiclause.

2.2.8 Equality (EQ)

Syntax

apply eq
[
!
]
to <goal-identifier> with <hypothesis>

[
sub <substitution>

]
.

where <goal-identifier> is the identifier of the goal on which we want to apply the EQ rule,
<hypothesis> is the oriented version of a non-executable hypothesis of the goal (which must be
either an equation or a conditional equation), and <substitution> is an (optional and possibly
partial, i.e., specified only for some variables) substitution, whose domain is a subset of the set of
variables of the chosen non-executable hypothesis. If no (possibly partial) substitution is specified,
the rule is attempted using the empty substitution, i.e., trying to rewrite the goal’s multiclause in
one step with the oriented (and possibly conditional) hypothesis as a rewrite rule. The optional
partial substitution can be used both to restrict the possible applications of such a rewrite rule,
and/or to instantiate those variables in the rule’s righthand side or condition that do not appear
in the rule’s lefthand side. As usual, the EQ! versions of the rule correspond to applying EQ
followed by EPS.

Examples

NuITP> apply eq to 0.1 with N:Nat + M:Nat => M:Nat + N:Nat .

NuITP> apply eq! to 0.1 with N:Nat + M:Nat => M:Nat + N:Nat .

NuITP> apply eq to 0.1 with N:Nat + M:Nat => M:Nat + N:Nat sub N:Nat <- 0 ; M:Nat <- s(0) .

NuITP> apply eq! to 0.1 with N:Nat + M:Nat => M:Nat + N:Nat sub N:Nat <- 0 ; M:Nat <- s(0) .

See an example of use in Section 3.4.

Requirements

The goal contains at least one non-executable hypothesis that is either an equation or a condi-
tional equation that the user can manually orient.
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2.3 Induction commands

In the following, we show the induction commands available in the current version of NuITP.
Note that all induction commands have two options, the simple version that applies the specified
rule and the extended ! version that applies the rule likewise, but followed by EPS in order to
automatically simplify the rule’s resulting subgoals.

2.3.1 Generator Set Induction (GSI)

Syntax

apply gsi
[
!
]
to <goal-identifier> on <variable-name> with <generator-set> .

where < goal-identifier > is the identifier of the goal on which we want to apply the GSI rule,
< variable-name> is the variable on which we want to apply induction, and < generator-set> is
a set of terms separated by double semicolons we want to use as a generator set for all ground
constructor terms of the variable’s sort.

Examples

NuITP> apply gsi to 0.1 on X:Nat with 0 ;; s(Y:Nat) .

NuITP> apply gsi! to 0.1 on X:Nat with 0 ;; s(Y:Nat) .

See examples of use in Sections 1.6, 1.7, 1.8.1, 1.8.2, 1.9, 1.10.1, and 3.2.

Requirements

The goal’s multiclause contains the variable on which we want to apply GSI, and the generator
set does not contain any variable already existing in the clause of goal. Furthermore, the gener-
ator set should be a correct generator set (modulo the axioms holding among constructor terms)
for ground constructor terms the chosen sort. In this alpha version of the NuITP, checking the
correctness of the generator set (a check which can be semi-automated using Maude’s Sufficient
Completeness Checker (SCC)) is the user’s responsibility.

2.3.2 Narrowing Induction (NI)

Syntax

apply ni
[
!
]
to <goal-identifier> on <subterm> .

where < goal-identifier> is the identifier of the goal to which we want to apply the NI rule and
<subterm> is a subterm of the form f(v⃗) appearing in the clause of such goal.

Examples

NuITP> apply ni to 0.1 on rev(Q:List Y:Elt) .

NuITP> apply ni! to 0.1 on rev(Q:List Y:Elt) .

See examples of use in Sections 3.3.

Requirements

The goal’s multiclause contains the specified subterm f(v⃗) such that: (i) f(v⃗) is the narrowex,
with f a non-constructor function symbol in Σ; (ii) f(v⃗) does not contain any skolem constants;
and (iii) the terms v⃗ are all constructor terms.
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2.3.3 Lemma Enrichment (LE)

Syntax

apply le
[
!
]
to <goal-identifier> with <multiclause> .

where < goal-identifier> is the identifier of the goal on which we want to apply the LE rule and
<multiclause> is the (possibly conditional) multiclause that we want to introduce as a new lemma
in our proof.

Examples

NuITP> apply le to 0.1 with N:Nat + M:Nat = M:Nat + N:Nat .

NuITP> apply le! to 0.1 with N:Nat + M:Nat = M:Nat + N:Nat .

See an example of use in Section 3.4.

2.3.4 Split (SP)

Syntax

apply sp
[
!
]
to <goal-identifier> with <disjunction> sub <substitution> .

where < goal-identifier > is the identifier of the goal on which we want to apply the SP rule,
<disjunction> is a disjunction used to split the goal, and <substitution> is a substitution whose
domain is the set of variables of the disjunction.

Examples

NuITP> apply sp to 0.1 with (N:Nat + M:Nat > 0 = true) \/ (N:Nat + M:Nat <= 0 true)

sub M:Nat <- s(0) .

NuITP> apply sp! to 0.1 with (N:Nat + M:Nat > 0 = true) \/ (N:Nat + M:Nat <= 0 = true)

sub M:Nat <- s(0) .

Requirements

The range of <substitution> is contained in the set of variables of the goal’s multiclause.

2.3.5 Case (CAS)

Syntax

apply cas
[
!
]
to <goal-identifier> on <variable-name> with <generator-set> .

where < goal-identifier > is the identifier of the goal to which we want to apply the CAS rule,
<variable-name> is the variable on which we want to apply cases, and <generator-set> is a set
of generator terms separated by double semicolons that generate all the ground constructor terms
of the variable’s sort (modulo the axioms holding on constructors) and is used to use to generate
the different cases.

Examples

Applied on variables:

NuITP> apply cas to 0.1 on X:Nat with 0 ;; s(Y:Nat) .
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NuITP> apply cas! to 0.1 on X:Nat with 0 ;; s(Y:Nat) .

Applied on skolem constants:

NuITP> apply cas to 0.1 on X1 with 0 ;; s(Y:Nat) .

NuITP> apply cas! to 0.1 on X1 with 0 ;; s(Y:Nat) .

Requirements

The goal’s multiclause contains the variable on which we want to apply the CAS rule and the
generator set does not contain any variable already existing in the clause of the goal. As already
mentioned for the gsi command, in this alpha version of the NuITP, checking the correctness of
the generator set is the user’s responsibility.

2.3.6 Variable Abstraction (VA)

Syntax

apply va
[
!
]
to <goal-identifier> on < term> .

where < goal-identifier> is the identifier of the goal in which we want to apply the VA rule and
< term> is a (sub)term of the condition of such goal.

Examples

NuITP> apply va to 0.1 on Y:NzNat * Z:NzNat .

NuITP> apply va! to 0.1 on Y:NzNat * Z:NzNat .

Requirements

The the goal’s multiclause contains an equality u = v in its condition such that: (i) u is a Σ1

term; (ii) v is the term we provide as argument; and (iii) v is not a Σ1 term.

3 Some additional examples

In this section, we present a collection of examples that show how various simplification and
induction rules can be used together to improve the theorem proving capabilities of NuITP.

3.1 Multiclause simplification

We begin with a simple example that shows the application of the equality predicate simplification
rule (EPS).

Consider the following equational theory, which consists of the specification of the natural
numbers using Peano notation with the addition, multiplication, and exponentiation operations.
It also includes two constructor symbols, namely [_,_] and {_,_}, of sorts Pair and UPair, which
represent ordered and unordered pairs of numbers, respectively.8

fmod NAT-ARITH&PAIRS is

sorts Nat NzNat Zero .

subsorts Zero NzNat < Nat .

op 0 : -> Zero [ ctor metadata "1" ] .

8Note the comm attribute in the declaration of the second operator.
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op s : Nat -> NzNat [ ctor metadata "2" ] .

sorts Pair UPair .

op [_,_] : Nat Nat -> Pair [ ctor metadata "3" ] .

op {_,_} : Nat Nat -> UPair [ ctor comm metadata "4" ] .

vars N M : Nat .

op _+_ : Nat Nat -> Nat [ assoc comm metadata "5" prec 33 ] .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

op _*_ : Nat Nat -> Nat [ assoc comm metadata "6" prec 31 ] .

eq N * 0 = 0 .

eq N * s(0) = N .

eq N * s(s(M)) = N + (N * s(M)) .

op _^_ : Nat Nat -> Nat [ assoc metadata "7" prec 29 ] .

eq N ^ 0 = s(0) .

eq N ^ s(M) = N * (N ^ M) .

endfm

After starting NuITP with the module previously loaded into the Maude system, we first set
this module as the active module with the following NuITP command:

NuITP> set module NAT-ARITH&PAIRS .

Module NAT-ARITH&PAIRS is now active.

Then, we set the goal9 we want to prove or, in this case, simplify:

NuITP> set goal {X:Nat ^ s(s(0)), Y:Nat} = {s(Y:Nat), 0} -> [X:Nat + X:Nat ^ s(s(0)),

(X:Nat * X:Nat) ] = [s(X:Nat + Y:Nat), X:Nat] .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

{0, s(Y:Nat)} = {Y:Nat, X:Nat ^ s(s(0))}

-> [s(X:Nat + Y:Nat), X:Nat] = [X:Nat + X:Nat ^ s(s(0)), X:Nat * X:Nat]

This goal states that if the two unordered pairs to the left of the implication are equal, then the
two ordered pairs to the right are also equal.

We are now ready to simplify our goal, which has identifier 0, by applying the EPS rule:

NuITP> apply eps to 0 .

Equality Predicate Simplification (EPS) applied to goal 0.

Goal Id: 0.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

9All NuITP commands have to be written in a single line (see Section 4.1 for more info).
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Goal:

(0 = Y:Nat) /\ s(Y:Nat) = X:Nat * X:Nat

-> (X:Nat = X:Nat * X:Nat) /\ s(X:Nat + Y:Nat) = X:Nat + X:Nat * X:Nat

The execution of this command ends with the generation of a new goal, result of the simplifi-
cation of the previous one.

Note that, just by equality predicate simplification, the prover was able to find out that, for
the equality in the condition to be true, the variable Y:Nat must be equal to 0 (0 = Y:Nat).
The rule has simplified a complex clause that used multiplication, addition, power, and ordered
and unordered pairs into a much simpler multiclause that only uses addition and multiplication
operations.

3.2 Associativity of list concatenation

Consider the following functional module, which encodes an equational theory that consists of the
specification of the natural numbers using the Peano notation, a constructor symbol _;_ that builds
lists of numbers (with nil representing the empty list), and a symbol _@_ for list concatenation.

fmod LIST-APPEND is

sorts Nat List .

op 0 : -> Nat [ ctor metadata "1" ] .

op s : Nat -> Nat [ ctor metadata "2" ] .

op nil : -> List [ ctor metadata "3" ] .

op _;_ : Nat List -> List [ ctor metadata "4" ] .

op _@_ : List List -> List [ metadata "5" ] .

eq nil @ L:List = L:List .

eq (N:Nat ; L:List) @ Q:List = N:Nat ; (L:List @ Q:List) .

endfm

As usual, first we set our module as the active module:

NuITP> set module LIST-APPEND .

We want to prove that list concatenation is associative, that is, that the _@_ operator is asso-
ciative. We first set the following goal as the initial goal:

NuITP> set goal (L:List @ P:List) @ Q:List = L:List @ (P:List @ Q:List) .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(L:List @ (P:List @ Q:List)) = ((L:List @ P:List) @ Q:List)

For the application of the GSI rule, we need to decide on which variable of the initial goal’a
clause we are going to apply the GSI induction principle. Let us apply it on variable L:List.
We also need to think about a suitable generator set for that variable, which is of the List sort.
For this example, we can use nil ;; (m:Nat ; R:List) as our generator set, since any ground
constructor term instantiating L:List must be either the empty list or a list consisting of a natural
number as the head and another list as the tail. Note that the different alternatives in our generator
set are separated by using a double semicolon.

We are now ready to apply the GSI rule as follows:
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NuITP> apply gsi to 0 on L:List with nil ;; (m:Nat ; R:List) .

Generator Set Induction (GSI) applied to goal 0.

Goal Id: 0.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(nil @ (P:List @ Q:List)) = ((nil @ P:List) @ Q:List)

Goal Id: 0.2

Skolem Ops:

R.List

m.Nat

Executable Hypotheses:

((R @ P:List) @ Q:List) => (R @ (P:List @ Q:List))

Non-Executable Hypotheses:

None

Goal:

((m ; R) @ (P:List @ Q:List)) = (((m ; R) @ P:List) @ Q:List)

The output of the command shows the two subgoals that have been created. We can observe
that Goal 0.1 is the result of instantiating the chosen variable L:List in Goal 0 by nil. In Goal
0.2 the same variable has been instantiated by the term (m ; R), which is itself and instance of
the second term in the generator set we provided. Note also that both n and R are so-called Skolem
constants.

Usually, after applying an induction rule (or even some simplification ones), we want to simplify
the newly created goals by applying the EPS rule, since there is a good chance the simplification
process may succeed in proving those goals, or at least simplifying them. In our example, we can
simplify goals 0.1 and 0.2 by applying EPS as follows:

NuITP> apply eps to 0.1 .

Equality Predicate Simplification (EPS) applied to goal 0.1.

Goal 0.1.1 has been proved.

Unproved goals:

Goal Id: 0.2

Skolem Ops:

R.List

m.Nat

Executable Hypotheses:

((R @ P:List) @ Q:List) => (R @ (P:List @ Q:List))

Non-Executable Hypotheses:

None

Goal:

((m ; R) @ (P:List @ Q:List)) = (((m ; R) @ P:List) @ Q:List)

NuITP> apply eps to 0.2 .

Equality Predicate Simplification (EPS) applied to goal 0.2.

Goal 0.2.1 has been proved.

qed

By displaying the qed acronym (quod erat demonstrandum) the prover indicates that the proof
has been completed, since both subgoals have been proved and no more goals remain unproved.
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Note that, instead of applying the GSI rule and then teh EPS one to each subgoal after setting
our initial goal, we could have applied the GSI! rule, which automatically simplifies the resulting
goals by using the EPS rule:

NuITP> apply gsi! to 0 on L:List with nil ;; (m:Nat ; R:List) .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied to

goal 0.

Goals 0.1 and 0.2 have been proved.

qed

As we have shown, the GSI rule is a powerful induction rule that can help prove certain goals
easily. However, its correctness heavily relies on the correctness of the provided generator set,
meaning that a faulty or incomplete one that will not cover all possible values for our chosen
variable will result in a faulty or incomplete proof.

3.3 Reversing (non-empty) lists

In this example, we will show how to combine rules EPS and GSI with the narrowing induction
rule NI.

Consider the following equational theory encoding an associative constructor symbol __ for
non-empty lists of elements, and a predicate rev that reverses such lists.

fmod REVERSING-LISTS is

sorts Elt List .

subsort Elt < List .

op __ : List List -> List [ ctor assoc metadata "1" ] .

op rev : List -> List [ metadata "2" ] .

eq rev(X:Elt) = X:Elt .

eq rev(X:Elt L:List) = rev(L:List) X:Elt .

endfm

We begin by setting our functional module as the active module:

NuITP> set module REVERSING-LISTS .

We want to prove that the reverse of a list of the form Q:List Y:Elt is equal to the element
Y:Elt concatenated with the reverse of the list Q:List. For that we set our goal as follows:

NuITP> set goal rev(Q:List Y:Elt) = Y:Elt rev(Q:List) .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

rev(Q:List Y:Elt) = Y:Elt rev(Q:List)

We could try using the GSI rule, but instead we use narrowing induction by applying the NI
rule on the subterm rev(Q:List Y:Elt) of the clause:

NuITP> apply ni to 0 on rev(Q:List Y:Elt) .
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Narrowing Induction (NI) applied to goal 0.

Goal Id: 0.1

Skolem Ops:

0.1@1.Elt

0.1@2.Elt

0.1@3.List

Executable Hypotheses:

rev(0.1@3 0.1@2) => 0.1@2 rev(0.1@3)

Non-Executable Hypotheses:

None

Goal:

(0.1@2 rev(0.1@1 0.1@3)) = rev(0.1@3 0.1@2) 0.1@1

Goal Id: 0.2

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(0.2@2:Elt rev(0.2@1:Elt)) = rev(0.2@2:Elt) 0.2@1:Elt

This command basically narrows the term (i.e., it symbolically evaluates it with the equations
defining the rev function), yielding the shown two goals. Goal 0.1 has now a ground clause, where
fresh variables 0.1@1:Elt, 0.1@2:Elt, and 0.1@3:List, which were generated by the narrowing
algorithm, have been converted into skolem constants of their respective sorts. Moreover, an
executable (i.e., oriented, note the symbol => in the equality) hypothesis has also been generated.
We can now prove Goal 0.1 by applying the EPS rule:

NuITP> apply eps to 0.1 .

Equality Predicate Simplification (EPS) applied to goal 0.1.

Goal 0.1.1 has been proved.

Unproved goals:

Goal Id: 0.2

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(0.2@2:Elt rev(0.2@1:Elt)) = rev(0.2@2:Elt) 0.2@1:Elt

Goal 0.2 is not ground and has not generated any hypotheses. However, it can be trivially
proved by using the very same equations of the original theory, which state that the reverse of an
element is the element itself (rev(X:Elt) = X:Elt). Hence, we also apply the EPS rule on this
goal:

NuITP> apply eps to 0.2 .

Equality Predicate Simplification (EPS) applied to goal 0.2.

Goal 0.2.1 has been proved.

qed

As usual, we could have shorten our proof by using the NI! rule after setting the initial goal,
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which would apply narrowing induction followed by equality predicate simplification:

NuITP> apply ni! to 0 on rev(Q:List Y:Elt) .

Narrowing Induction with Equality Predicate Simplification (NI!) applied to goal 0.

Goals 0.1 and 0.2 have been proved.

qed

In the following, we will use the extended, ! versions of the NuITP induction rules to shorten
the presentation when there is no need to show the details of the intermediate steps, since we are
most likely interested in simplifying our new goals with the EPS rule before trying another rule
applications.

3.4 Using lemmas

Sometimes, when trying to prove a goal, we need auxiliary lemmas that either have been previously
proved or will be proved together with our initial goal. In this example, we will show how we can
add such lemmas by using the LE rule. Additionally, we will show how to use the CAS and EQ
rules, which will help proving our initial goal.

Let us consider the usual equational theory defining natural numbers in Peano notation with
the addition and multiplication operations:

fmod PEANO+RAxR is

sorts Nat NzNat Zero .

subsorts Zero NzNat < Nat .

op 0 : -> Zero [ ctor metadata "1" ] .

op s : Nat -> NzNat [ ctor metadata "2" ] .

op _+_ : Nat Nat -> Nat [ assoc metadata "3" ] .

eq N:Nat + 0 = N:Nat .

eq N:Nat + s(M:Nat) = s(N:Nat + M:Nat) .

op _*_ : Nat Nat -> Nat [ assoc comm metadata "4" ] .

eq N:Nat * 0 = 0 .

eq N:Nat * s(0) = N:Nat .

eq N:Nat * s(s(M:Nat)) = N:Nat + (N:Nat * s(M:Nat)) .

endfm

Note that, in the above specification, addition is declared associative but not commutative,
which is the property we will need to add as a lemma in our proof.

As usual, we start setting our module as the active module for the session:

NuITP> set module PEANO+RAxR .

Then, we declare this simple goal:

NuITP> set goal X:Nat * X:Nat = s(0) -> s(0) = X:Nat .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

s(0) = X:Nat * X:Nat -> X:Nat = s(0)
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Now, we can apply the case rule CAS on the X:Nat variable of our initial goal by specifying a
suitable generator set 0 ;; s(0) ;; s(s(Z:Nat)) for natural numbers in Peano notation:

NuITP> apply cas to 0 on X:Nat with 0 ;; s(0) ;; s(s(Z:Nat)) .

Case (CAS) applied to goal 0.

Goal Id: 0.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

s(0) = 0 * 0 -> 0 = s(0)

Goal Id: 0.2

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

s(0) = s(0) * s(0) -> s(0) = s(0)

Goal Id: 0.3

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

s(0) = s(s(Z:Nat)) * s(s(Z:Nat)) -> s(0) = s(s(Z:Nat))

Goals 0.1 and 0.2 can be easily proved by applying the EPS simplification rule:

NuITP> apply eps to 0.1 .

Equality Predicate Simplification (EPS) applied to goal 0.1.

Goal 0.1.1 has been proved.

Unproved goals:

Goal Id: 0.2

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

s(0) = s(0) * s(0) -> s(0) = s(0)

Goal Id: 0.3

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None
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Goal:

s(0) = s(s(Z:Nat)) * s(s(Z:Nat)) -> s(0) = s(s(Z:Nat))

NuITP> apply eps to 0.2 .

Equality Predicate Simplification (EPS) applied to goal 0.2.

Goal 0.2.1 has been proved.

Unproved goals:

Goal Id: 0.3

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

s(0) = s(s(Z:Nat)) * s(s(Z:Nat)) -> s(0) = s(s(Z:Nat))

However, simplifying Goal 0.3 with EPS will still not prove it:

NuITP> apply eps to 0.3 .

Equality Predicate Simplification (EPS) applied to goal 0.3.

Goal Id: 0.3.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

s(0) = s(s(s(Z:Nat)) + Z:Nat) + s(Z:Nat) * s(Z:Nat) -> false

At this point we can enrich our theory by means of a new lemma that will help us in the
proving process. Specifically, commutativity of the addition operator will be helpful. We can do
this by applying the LE rule in the following way:

NuITP> apply le to 0.3.1 with N:Nat + M:Nat = M:Nat + N:Nat .

Lemma Enrichment (LE) applied to goal 0.3.1.

Goal Id: 0.3.1.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(N:Nat + M:Nat) = M:Nat + N:Nat

Goal Id: 0.3.1.2

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

(N:Nat + M:Nat) = M:Nat + N:Nat

Goal:

s(0) = s(s(s(Z:Nat)) + Z:Nat) + s(Z:Nat) * s(Z:Nat) -> false
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Note that the application of the LE rule to Goal 0.3.1 produces two new subgoals, namely,
0.3.1.1 and 0.3.1.2. The first one is actually the lemma we have introduced, which needs
to be proved, and the second one adds this new lemma to the theory of the original goal as a
hypothesis. Unfortunately, since this new hypothesis is intrinsically non-terminating, it remains as
a non-executable hypothesis and we cannot use it as a rewrite rule to help proving our goal. We
can, however, use the hypothesis in a controlled way using the EQ rule or it EQ! extension with
EPS simplification. To apply it, we just need to specify how we want to orient it. In this case, we
can choose either N:Nat + M:Nat => M:Nat + N:Nat or M:Nat + N:Nat => N:Nat + M:Nat.

NuITP> apply eq! to 0.3.1.2 with N:Nat + M:Nat => M:Nat + N:Nat .

Equality with Equality Predicate Simplification (EQ!) applied to goal 0.3.1.2.

Goal Id: 0.3.1.2.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

(N:Nat + M:Nat) = M:Nat + N:Nat

Goal:

0 = s(s((s(Z:Nat) * s(Z:Nat)) + Z:Nat)) + Z:Nat -> false

Note that any ground instance of the goal’s condition will be false, since the equality that states
that 0 = s(s((s(Z:Nat) * s(Z:Nat)) + Z:Nat)) + Z:Nat will never be true in our example.
Also note that the subterm s(Z:Nat) * s(Z:Nat) cannot be reduced using the equations in our
theory. We can however apply GSI! with the usual generator set for natural numbers in Peano
notation and “get” the extra s symbol we are missing to be able to reduce such terms with the
original equations as follows:

NuITP> apply gsi! to 0.3.1.2.1 on Z:Nat with 0 ;; s(0) ;; s(s(W:Nat)) .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.3.1.2.1.

Goals 0.3.1.2.1.1, 0.3.1.2.1.2 and 0.3.1.2.1.3 have been proved.

Unproved goals:

Goal Id: 0.3.1.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(N:Nat + M:Nat) = M:Nat + N:Nat

At this point, the only remaining goal is the lemma we introduced with the LE rule, which
needs to be proved10 in the current session, but, for this example, let us assume we already did it
in a previous session and conclude that we have successfully proved our initial goal.

3.5 Multiplicative cancellation

In this example, we will use a variety of rules all combined to prove our goal, namely CVUL, CS,
GSI, VA, CAS in both variables and skolem constants, and, of course, EPS, since we will use
the extended versions of the rules that apply EPS automatically.

Consider the following equational theory defining Presburger arithmetic for the natural numbers
(_+_ and _>_), which we have extended with the _*_ multiplication operator. Note than both
addition and multiplication are declared with associative and commutative axioms. Note also that
the subset of equations that define the _>_ and _+_ symbols have the variant attribute, since

10Two alternative proofs of the commutativity of addition can be found in Section 1.8.
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they have the finite variant property (thus making Presburger arithmetic decidable by the so-called
variant satisfiability procedure), but not the equations defining the _*_, which are not FVP.

fmod PRESBURGER&MULT is

pr TRUTH-VALUE .

sorts Zero NzNat Nat .

subsorts Zero NzNat < Nat .

op 0 : -> Zero [ ctor metadata "1" ] .

op 1 : -> NzNat [ ctor metadata "2" ] .

op _>_ : Nat Nat -> Bool [ metadata "3" ] .

eq (X:Nat + X’:NzNat) > X:Nat = true [ variant ] .

eq X:Nat > (X:Nat + Y:Nat) = false [ variant ] .

op _+_ : Nat Nat -> Nat [ assoc comm metadata "4" ] .

op _+_ : Nat NzNat -> NzNat [ assoc comm metadata "4" ] .

op _+_ : NzNat Nat -> NzNat [ assoc comm metadata "4" ] .

op _+_ : NzNat NzNat -> NzNat [ ctor assoc comm metadata "4" ] .

eq X:Nat + 0 = X:Nat [ variant ] .

op _*_ : Nat Nat -> Nat [ assoc comm metadata "5" ] .

op _*_ : NzNat NzNat -> NzNat [ assoc comm metadata "5" ] .

eq X:Nat * 0 = 0 .

eq X:Nat * 1 = X:Nat .

eq X:Nat * (Y:Nat + Z:Nat) = (X:Nat * Y:Nat) + (X:Nat * Z:Nat) .

endfm

NuITP> set module PRESBURGER&MULT .

We want to prove the cancellation law for natural numbers multiplication so, after setting as
active our module above, we set the following initial goal:

NuITP> set goal X:Nat * Z’:NzNat = Y:Nat * Z’:NzNat -> X:Nat = Y:Nat .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(X:Nat * Z’:NzNat) = Y:Nat * Z’:NzNat -> X:Nat = Y:Nat

We start proving our goal by first applying our well known GSI! rule, which will apply GSI
followed by EPS in each of the generated goals:

NuITP> apply gsi! to 0 on X:Nat with 0 ;; 1 ;; 1 + X1:NzNat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.

Goal Id: 0.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

35



Goal:

0 = Z’:NzNat * Y:Nat -> 0 = Y:Nat

Goal Id: 0.2

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

Z’:NzNat = Z’:NzNat * Y:Nat -> 1 = Y:Nat

Goal Id: 0.3

Skolem Ops:

X1.NzNat

Executable Hypotheses:

None

Non-Executable Hypotheses:

Z’:NzNat = Z’:NzNat * Y:Nat -> 1 = Y:Nat

(X1 * Z’:NzNat) = Z’:NzNat * Y:Nat -> X1 = Y:Nat

Goal:

(Z’:NzNat * Y:Nat) = Z’:NzNat + X1 * Z’:NzNat -> Y:Nat = 1 + X1

To prove Goal 0.1, we apply CAS! on variable Y:Nat as follows:

NuITP> apply cas! to 0.1 on Y:Nat with 0 ;; Y1:NzNat .

Case with Equality Predicate Simplification (CAS!) applied to goal 0.1.

Goal 0.1.1 has been proved.

Goal Id: 0.1.2

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

0 = Z’:NzNat * Y1:NzNat -> 0 = Y1:NzNat

Then, we can use variable abstraction (VA), which will abstract the subterm of the clause that
we provide as argument (i.e., Z’:NzNat * Y1:NzNat) into a new, fresh variable:

NuITP> apply va! to 0.1.2 on Z’:NzNat * Y1:NzNat .

Variable Abstraction with Equality Predicate Simplification (VA!)

applied to goal 0.1.2.

Goal Id: 0.1.2.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

(0 = 0.1.2.1#1:NzNat) /\ 0.1.2.1#1:NzNat = Z’:NzNat * Y1:NzNat -> 0 = Y1:NzNat

This command leaves the clause in Goal 0.1.2.1 ready to be simplified by means of the CVUL
simplification rule11, since the equality 0 = 0.1.2.1#1:NzNat will never be true, which will falsify
the condition proving the premise:

11Note that the new abstraction variable uses the goal identifier to avoid undesirable clashes.

36



NuITP> apply cvul to 0.1.2.1 .

Constructor Variant Unification Left (CVUL) applied to goal 0.1.2.1.

Goal 0.1.2.1.1 has been proved.

Unproved goals:

Goal Id: 0.2

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

Z’:NzNat = Z’:NzNat * Y:Nat -> 1 = Y:Nat

Goal Id: 0.3

Skolem Ops:

X1.NzNat

Executable Hypotheses:

None

Non-Executable Hypotheses:

Z’:NzNat = Z’:NzNat * Y:Nat -> 1 = Y:Nat

(X1 * Z’:NzNat) = Z’:NzNat * Y:Nat -> X1 = Y:Nat

Goal:

(Z’:NzNat * Y:Nat) = Z’:NzNat + X1 * Z’:NzNat -> Y:Nat = 1 + X1

Now we try to prove Goal 0.2 in a very similar way by first applying GSI!:

NuITP> apply gsi! to 0.2 on Y:Nat with 0 ;; Y1:NzNat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.2.

Goal Id: 0.2.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

0 = Z’:NzNat -> false

Goal Id: 0.2.2

Skolem Ops:

Y1.NzNat

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

Z’:NzNat = Y1 * Z’:NzNat -> 1 = Y1

and then CVUL to Goal 0.2.1:

NuITP> apply cvul to 0.2.1 .

Constructor Variant Unification Left (CVUL) applied to goal 0.2.1.

Goal 0.2.1.1 has been proved.
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Unproved goals:

Goal Id: 0.2.2

Skolem Ops:

Y1.NzNat

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

Z’:NzNat = Y1 * Z’:NzNat -> 1 = Y1

Goal Id: 0.3

Skolem Ops:

X1.NzNat

Executable Hypotheses:

None

Non-Executable Hypotheses:

Z’:NzNat = Z’:NzNat * Y:Nat -> 1 = Y:Nat

(X1 * Z’:NzNat) = Z’:NzNat * Y:Nat -> X1 = Y:Nat

Goal:

(Z’:NzNat * Y:Nat) = Z’:NzNat + X1 * Z’:NzNat -> Y:Nat = 1 + X1

and CAS! to Goal 0.2.2 but, this time, on the skolem constant Y1:

NuITP> apply cas! to 0.2.2 on Y1 with 1 ;; 1 + Y1’:NzNat .

Case with Equality Predicate Simplification (CAS!) applied to goal 0.2.2.

Goals 0.2.2.1 and 0.2.2.2 have been proved.

Unproved goals:

Goal Id: 0.3

Skolem Ops:

X1.NzNat

Executable Hypotheses:

None

Non-Executable Hypotheses:

Z’:NzNat = Z’:NzNat * Y:Nat -> 1 = Y:Nat

(X1 * Z’:NzNat) = Z’:NzNat * Y:Nat -> X1 = Y:Nat

Goal:

(Z’:NzNat * Y:Nat) = Z’:NzNat + X1 * Z’:NzNat -> Y:Nat = 1 + X1

Finally, we start simplifying our remaining Goal 0.3 by first applying CAS!:

NuITP> apply cas! to 0.3 on Y:Nat with 0 ;; 1 ;; 1 + Y1:NzNat .

Case with Equality Predicate Simplification (CAS!) applied to goal 0.3.

Goals 0.3.1 and 0.3.2 have been proved.

Goal Id: 0.3.3

Skolem Ops:

X1.NzNat

Executable Hypotheses:

None

Non-Executable Hypotheses:

Z’:NzNat = Z’:NzNat * Y:Nat -> 1 = Y:Nat

(X1 * Z’:NzNat) = Z’:NzNat * Y:Nat -> X1 = Y:Nat

Goal:

(X1 * Z’:NzNat) = Z’:NzNat * Y1:NzNat -> X1 = Y1:NzNat

and then CS, as one of the non-executable hypotheses we have computed entirely subsumes
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the clause of our goal:

NuITP> apply cs to 0.3.3 .

Clause Subsumption (CS) applied to goal 0.3.3.

Goal 0.3.3.1 has been proved.

qed

Note that, in this example, we have used up to three different generator sets depending on our
strategy to prove a goal and the sort of the variable (or skolem constant) on which the rule was
going to be applied. Choosing the right generator set in each step can help us to greatly simplify
our proofs.

3.6 Reversing Palindromes

Consider the following conditional equational theory, which extends the theory of Section 3.3 with
a new defined predicate pal that, given a non-empty list, evaluates to true or false depending on
whether the provided list is a palindrome or not. We also add an auxiliary predicate _=e=_ that
evaluates to true if two given lists are equal, and to false otherwise:

fmod REVERSING-PALINDROMES is

pr TRUTH-VALUE .

sorts Elt List .

subsort Elt < List .

op __ : List List -> List [ ctor assoc metadata "1" ] .

op _=e=_ : List List -> Bool [ metadata "2" ] .

eq L:List =e= L:List = true .

eq L:List =e= Q:List = false [ owise ] .

op rev : List -> List [ metadata "3" ] .

eq rev(X:Elt) = X:Elt .

eq rev(X:Elt L:List) = rev(L:List) X:Elt .

op pal : List -> Bool [ metadata "4" ] .

eq pal(X:Elt) = true .

eq pal(X:Elt X:Elt) = true .

eq pal(X:Elt Q:List X:Elt) = pal(Q:List) .

ceq pal(X:Elt Y:Elt) = false if (X:Elt =e= Y:Elt) = false .

ceq pal(X:Elt Q:List Y:Elt) = false if (X:Elt =e= Y:Elt) = false .

endfm

NuITP> set module REVERSING-PALINDROMES .

For this example, we want to prove the straightforward statement that says that, if a list is a
palindrome, then the reverse of that list is the same list:

NuITP> set goal pal(L:List) = true -> rev(L:List) = L:List .

Initial goal set.

Goal Id: 0

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:
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true = pal(L:List) -> L:List = rev(L:List)

First, we introduce an auxiliary lemma rev(Q:List Y:Elt) = Y:Elt rev(Q:List) in our cur-
rent proof, which we already proved to be true in the reversing lists example of Section 3.3:

NuITP> apply le! to 0 with rev(Q:List Y:Elt) = Y:Elt rev(Q:List) .

Lemma Enrichment with Equality Predicate Simplification (LE!) applied to goal 0.

Goal Id: 0.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

rev(Q:List Y:Elt) = Y:Elt rev(Q:List)

Goal Id: 0.2

Skolem Ops:

None

Executable Hypotheses:

rev(Q:List Y:Elt) => Y:Elt rev(Q:List)

Non-Executable Hypotheses:

None

Goal:

true = pal(L:List) -> L:List = rev(L:List)

This command generates two goals: goal 0.1, which is actually the lemma we introduced, and
goal 0.2, where the lemma is added to the original goal as an executable hypothesis, which we now
try to prove by first applying narrowing induction NI! on the subterm pal(L:List) of its clause:

NuITP> apply ni! to 0.2 on pal(L:List) .

Narrowing Induction with Equality Predicate Simplification (NI!)

applied to goal 0.2.

Goals 0.2.1 and 0.2.2 have been proved.

Goal Id: 0.2.3

Skolem Ops:

0.2.3@1.Elt

0.2.3@2.List

Executable Hypotheses:

rev(Q:List Y:Elt) => Y:Elt rev(Q:List)

pal(0.2.3@2) = true -> rev(0.2.3@2) => 0.2.3@2

Non-Executable Hypotheses:

None

Goal:

true = pal(0.2.3@2) -> 0.2.3@2 = rev(0.2.3@2)

and then applying clause subsumption (CS) to the remaining goal. Note that CS will take
advantage of the new non-executable hypothesis we computed, as it subsumes (actually, it is equal
to) the clause we want to prove in our goal:

NuITP> apply cs to 0.2.3 .

Clause Subsumption (CS) applied to goal 0.2.3.

Goal 0.2.3.1 has been proved.
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Unproved goals:

Goal Id: 0.1

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

rev(Q:List Y:Elt) = Y:Elt rev(Q:List)

Now the only goal that remains unproved is the lemma we introduced, which was proved in a
previous session, so we can prove it exactly as before to conclude the proof of our initial goal.

4 Troubleshooting

In the following, we describe some requirements and common problems that can arise while running
NuITP and how to avoid them.

4.1 Common parsing problems

Any NuITP command is expected in one single line. Each time a new line is added, the tool
attempts parsing the input. Therefore:

� An empty line will produce an error message:

NuITP>

Error parsing command.

� A command with a carriage return will be considered as two separated commands, resulting
in two wrong inputs:

NuITP> set goal (Z:Nat * (X:Nat + Y:Nat) = (Z:Nat * X:Nat) + (Z:Nat * Y:Nat))

Error parsing command.

NuITP> /\ (((X:Nat + Y:Nat) * Z:Nat) = (X:Nat * Z:Nat) + (Y:Nat * Z:Nat)) .

Error parsing command.

4.2 Enabling I/O operations on files

NuITP allows users to load (resp. save) scripts from (resp. to) files, as well as generate LATEX
documents with a summary of the current session, by taking advantage of the latest Maude I/O
capabilities. Since accessing the file system represents a potential security threat, Maude has
I/O operations disabled by default. Therefore, in order to be able to use these NuITP features
successfully, the Maude interpreted needs to be initialized with the -allow-files or -trust flags (see
Chapter 9.2 of [2]) as follows:

$maude -allow-files NuITP.maude

or

$maude -trust NuITP.maude

Failing to initialize Maude with the -allow-files flag will result in the inability to use the
load, save and export commands, but should not affect the remaining features of NuITP.
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4.3 Writing and running scripts

As pointed above, NuITP relies on Maude’s I/O capabilities to access the file system, which in
turn wrap the C stdio library (see Chapter 9 of [2]). Access to files will therefore be limited by the
permissions the current user has been granted by the operative system. Proper failure messages
will be forwarding for NuITP to show them in case files are not accessible.

Beware also that, as of its current alpha 12a version, NuITP saves scripts (and also exports
proof reports) without asking for confirmation on the provided file name, so it will overwrite the
specified file if the file already exists. It is the user’s responsibility to provide a safe file name that
will not result in a potential risk.
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NuITP Reference Sheet 
 

 

help Shows the help message 

quit Exits NuITP 

q Exits NuITP (short version) 
 

  

load FILE Loads a script located in FILE 

save FILE Saves the current session script in FILE 

export FILE Creates a LaTeX report of the current session in FILE 
 

 

show log . Shows the full session log 

show module . Shows the active module 

show goals . Shows all the goals of the proof  

show frontier . Shows the open goals of the proof 

show goal GID . Shows the goal with GID identifier 

 

set module MODNAME . Sets module MODNAME as the active module 

set goal GOAL . Sets the initial goal (resets the proof) 

undo GID . Undoes any rule applied to the goal GID  

 

apply eps to GID . Applies Equality Predicate Simplification to the goal GID  

apply cvul to GID . Applies Constructor Variant Unification Left to the goal GID  

apply cvufr to GID . Applies Constructor Variant Unification Failure Right to the goal GID  

apply subl to GID . Applies Substitution Left to the goal GID  

apply subr to GID . Applies Substitution Right to the goal GID  

apply cs to GID . Applies Clause Subsumption to the goal GID  

apply varsat to GID . Applies Variant Satisfiability to the goal GID  

apply eq to GID with EQ . Applies Equality to the goal GID using the oriented hypothesis HYP 

apply eq to GID with HYP sub SUB . Applies Equality to the goal GID using the oriented hypothesis HYP and substitution SUB 

 

apply gsi to GID on VAR with GENSET . 
Applies Generator Set Induction to the goal GID, on variable VAR with generator set 

GENSET 

apply ni to GID on TERM . Applies Narrowing Induction to the goal GID on the (sub)term TERM 

apply le to GID with LEMMA . Applies Lemma Enrichment to the goal GID with lemma LEMMA 

apply sp to GID with DIS sub SUB . Applies Split to the goal GID with disjunction DIS and substitution SUB 

apply cas to GID on VAR with GENSET . Applies Case to the goal GID on variable VAR with generator set GENSET 

apply va to GID on TERM . Applies Variable Abstraction to the goal GID on (sub)term TERM 

 

I don’t know how to start NuITP $ maude –allow-files NuITP.maude 

I can’t load or save scripts Have you started Maude with the –allow-files flag? 

I can’t set my module Did you load your module in Maude before starting NuITP? 

Yes but I still can’t set my module! Check twice your module’s name. No quote at the beginning is needed. 

Why I always get “Error parsing command”? 
Did you forget the ending dot? Check if the command requires it. Also, try to use 

more parenthesis when specifying the arguments in the apply rules. 

Why I always get a failure message when trying to 

apply a rule to a goal that is in the frontier? 

Most of the rules have theory requirements that, if not met, will prevent them to be 

applied. Check the manual to learn more about them. 

Is there something I need to do before starting a proof 

session? 

Yes, check that your theory has the proper ctor, variant, and metadata 

attributes set. 

What is Σ1? And Ω? Check Section 1.3 of the manual. 

What’s the difference between, for example, the ni 

rule and the ni! rule? 

Induction rules, as well as the EQ rule, have extended (!) versions that apply EPS 

automatically to their computed subgoals in order to simplify them. 
 


	Getting started
	Running NuITP
	Preliminaries and Assumptions
	The ctor and variant attributes
	RPO termination order specified with the metadata attribute
	Clauses and multiclauses
	A simple proof: associativity of addition
	An alternative proof with ! commands: associativity of addition
	Commutativity of addition
	Proving Commutativity of Addition the Hard Way
	Proving Commutativity of Addition: An Easier Way

	Program equivalence
	Enriched specifications
	Proving commutativity and associativity of addition in Two Steps
	Program optimization


	NuITP commands
	General NuITP commands
	The set command
	The show commands
	Load, save and export of proofs
	Undo
	Help
	Quit

	Simplification commands
	Equality Predicate Simplification (EPS)
	Constructor Variant Unification Left (CVUL)
	Constructor Variant Unification Failure Right (CVUFR)
	Substitution Left (SUBL)
	Substitution Right (SUBR)
	Narrowing Simplification (NS)
	Clause Subsumption (CS)
	Equality (EQ)

	Induction commands
	Generator Set Induction (GSI)
	Narrowing Induction (NI)
	Lemma Enrichment (LE)
	Split (SP)
	Case (CAS)
	Variable Abstraction (VA)


	Some additional examples
	Multiclause simplification
	Associativity of list concatenation
	Reversing (non-empty) lists
	Using lemmas
	Multiplicative cancellation
	Reversing Palindromes

	Troubleshooting
	Common parsing problems
	Enabling I/O operations on files
	Writing and running scripts


